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A B S T R A C T   

Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to 
reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and 
DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). 
Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of 
DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy 
participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the 
delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug 
administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain 
threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in 
DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 
antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor 
cortex stimulation, although there were no clear changes in pain experiences. These novel findings together 
highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excit-
ability dependent on stimulation targets.   

Introduction 

Transcranial magnetic stimulation (TMS) is a safe and non-invasive 
form of brain stimulation. Repetitive TMS (rTMS) delivered at a high 
frequency (≥ 5 Hz) has direct implications for pain management, which 
has been repeatedly demonstrated to improve chronic pain (Attal et al., 
2021; Hosomi et al., 2019; Lefaucheur et al., 2006). Of note, rTMS over 
the primary motor cortex (M1) contralateral to painful side has level A 
evidence on neuropathic pain (Lefaucheur et al., 2020, 2014). Although 
relatively less studied, the dorsolateral prefrontal cortex (DLPFC) is also 
believed to improve certain chronic pain conditions, such as migraine 
(Granato et al., 2019; Leung et al., 2018; Sahu et al., 2019) and fibro-
myalgia (Altas et al., 2019; Fitzgibbon et al., 2018; Short et al., 2011). 
However, it is worth noting that rTMS only has a small to medium 
analgesic effect, which largely limits the clinical applications in pain 
conditions (Attal et al., 2021; Lefaucheur & Nguyen, 2019; Wang et al., 
2023). 

To date, the mechanisms underlying rTMS analgesia are still unclear, 

which may help improve rTMS efficacy. A line of evidence has indicated 
the involvement of dopamine system (DA), particularly dopamine re-
ceptor D2 neurotransmissions (DRD2), in pain sensations and poten-
tially the modulation of pain perception by rTMS (DosSantos et al., 
2016, 2018). It is well established that dopaminergic neurotransmis-
sions are closely involved in reward (Arias-Carrión et al., 2010; Dreher 
et al., 2009) and motor control (Damier et al., 1999; Michely et al., 
2015). In addition, a large number of studies have demonstrated dopa-
mine engagement in both the transmission and modulation of pain 
experience (Hagelberg et al., 2002; Martikainen et al., 2005, 2015). 

In the case of motor cortex, a pioneering study has demonstrated that 
human motor cortex rTMS induced dopamine release in ipsilateral pu-
tamen (Strafella et al., 2003), corresponding to the corticostriatal 
efferent originating in monkey motor cortex (Künzle, 1975). However, a 
more recent study indicated that motor cortex rTMS was not able to 
change either pain sensitivity or dopamine D2 receptor availability in 
any striatal regions (including putamen) (Lamusuo et al., 2017). Other 
studies indicated that these contradictory findings could be associated 
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with the variances in dopamine D2 gene polymorphisms, such as 957TT 
homozygote and COMT Val158Met (Jääskeläinen et al., 2014; Lind-
holm et al., 2015; Ojala et al., 2022). Overall, more evidence is needed to 
establish the role of DRD2 neurotransmissions in the analgesic effect of 
motor cortex rTMS. 

In contrast to the motor cortex, there is no evidence on how DRD2 
neurotransmissions could impact rTMS analgesia over the DLPFC. A few 
studies indicated that both excitatory and inhibitory forms of DLPFC- 
rTMS could modulate dopamine release in the caudate nucleus (Ko 
et al., 2008; Strafella et al., 2001). Moreover, DLPFC-rTMS was 
demonstrated to induce dopamine release in cortical regions which are 
the main target areas of the mesocortical dopamine system, such as the 
anterior cingulate cortex (ACC) (Cho & Strafella, 2009). It is noted that 
the ACC plays a vital role in nociceptive transmission and may form a 
corticocortical pathway to reduce pain following DLPFC stimulation 
(Lorenz et al., 2003; Tracey & Mantyh, 2007; Ye et al., 2022). Overall, it 
is likely that dopaminergic neurotransmissions may play a different role 
in rTMS analgesia while targeting the DLPFC compared to the motor 
cortex. 

This study was designed to investigate the different impacts of DRD2 
neurotransmissions on rTMS analgesia between the motor cortex and 
DLPFC. Using oral intake of chlorpromazine, a primary DRD2 antagonist 
(Boyd-Kimball et al., 2018), this study evaluated rTMS analgesia across 
the motor cortex, DLPFC, and sham stimulation in a double-blind, 
randomised, sham- and placebo-controlled design. It is hypothesized 
that chlorpromazine would have a different impact on M1- and 
DLPFC-induced analgesia, based on their different effects on DRD2 
neurotransmissions discussed above. As secondary outcome measures, 
corticospinal excitation (motor-evoked potentials, MEP) and inhibition 
(cortical silence period, CSP) were also systematically evaluated, which 
in one way could indicate the inhibitory effects of chlorpromazine and in 
another way could monitor the effects of rTMS on cortical excitability. 

Methods 

Participants 

Sample size calculation was initially performed to determine the 
minimum sample size needed to power a mixed-design ANOVA [36]. 

Specifically, the significant level (alpha) and power were set to 0.05 and 
0.8 respectively. In order to achieve the pre-defined effect size (η2

p =

0.3) (de Andrade et al., 2011, 2014; Taylor et al., 2012), a total sample 
of 30 was needed. 

A group of 45 healthy, right-handed, TMS eligible (Rossi et al., 2011) 
adults were recruited in this study (age range: 21–64 years, mean ± SD: 
25.98 ± 9.02, 27 females). Exclusion criteria included history or current 
diagnosis of psychiatric disorder, the experience of any form of chronic 
or constant pain during participation, or the use of psychoactive medi-
cation, as assessed by the Mini International Neuropsychiatric Interview 
(MINI) (Sheehan et al., 1998). No participant withdrew from this study, 
data from 45 participants were therefore analysed. All participants 
provided written informed consent before study commencement. This 
study was approved by the Ethics Committee in the Affiliated Hospital of 
Hangzhou Normal University (2022-E2-HS-012) and was conducted in 
accordance with the Declaration of Helsinki. 

Study design 

This was a double-blind, randomised, sham- and placebo-controlled 
study (Fig. 1). Participants randomised to each of the three groups (M1, 
DLPFC, Sham) visited the lab twice, with an interval of 7 days or longer. 
In each session, participants received an oral dose of chlorpromazine or 
placebo and rested for 90 min, followed by a single session of rTMS. 
Participants also underwent heat pain and cortical excitability assess-
ment both before drug administration and after rTMS intervention. 

Group randomization and blinding 

XC performed randomization with RESEARCH RANDOMIZER 
(https://www.randomizer.org/). Unique numbers from 1 to 45 were 
used to generate three sets of numbers each containing 15 numbers. 
Seven out of 15 participants in the Sham group received sham stimu-
lation over the M1, with the rest targeting the DLPFC (Cheng et al., 
2023; de Andrade et al., 2011). YW performed TMS treatment and BT 
collected the outcome measures. Both the participants and outcome 
assessor (BT) were blinded to the group allocation. 

Fig. 1. Experiment procedure. A group of 45 participants were equally randomised to the three groups (M1, DLPFC, Sham) and visited the lab twice with an interval 
of 7 days or longer. In each session, participants received an oral dose of chlorpromazine (25 mg) or placebo and rested for 90 min, followed by a single session of 
rTMS. Participants also underwent heat pain and cortical excitability assessment both before drug administration and after rTMS intervention. 
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Pain protocol 

Heat pain threshold, intensity, and unpleasantness were used to 
evaluate pain experiences. A custom-built electrothermal device was 
able to heat from 20 to 60 ◦C with 0.5 ◦C steps. A 2 * 2-cm contact 
thermode was attached to the right volar forearm 5 cm from the wrist. 
The thermode started from body temperature of 37 ◦C with an increase 
rate of 0.5 ◦C. Each block lasted for 22 s followed by a 1-min break 
(Martin et al., 2013; Taylor et al., 2012). Pain threshold was defined as 
the temperature at which the stimulus became painful. For pain ratings, 
the thermode was continued to be heated until the participants reported 
a rating of 7/10 on a 0–10 scale. It is noted that a potential target 
temperature was adjusted until it reliably generated a 7/10 rating in 3/5 
times (Martin et al., 2013). This temperate was then used to evaluate 
pain intensity and unpleasantness on a 0–10 visual analogue scale (VAS, 
0-none, 10-extreme). 

Resting motor threshold and cortical excitability 

Resting motor threshold (RMT) was defined as the minimum in-
tensity to induce motor-evoked potentials (MEPs) > 0.05 mV of the first 
dorsal interosseous (FDI) muscle in 5/10 trials. Single pulses to the hand 
region of the left M1 (45◦ to the midline, handle pointing backward) at 5 
s ± 10% jitter intervals were sent by a figure-eight coil connected to a 
Magstim Rapid2 system (Magstim Company Ltd, UK). Coil position was 
measured relative to the nasion and inion to facilitate consistent re- 
positioning of the coil between two sessions (Che et al., 2019). 

Corticospinal excitability was measured with MEP and CSP at rest 
and during a sustained voluntary FDI muscle contraction respectively 
(Hupfeld et al., 2020). The maximal voluntary contraction (MVC) was 
calculated and 20% of MVC was used for tonic contraction in CSP (Fling 
& Seidler, 2012; Liu et al., 2021). A total of 40 single pulses (20 for MEP 
and 20 for CSP) were consecutively delivered to the hand region of the 
left M1 at 120% RMT (45◦ to the midline, handle pointing backward). 
CSP was evaluated following MEP as the muscle contraction during CSP 
may have an impact on MEP (Conforto et al., 2004). 

Drug administration 

In each session, participants orally took a single tablet of 25 mg of 
chlorpromazine or vitamin C, with the two drugs being identical in 
appearance. These two drugs were stored in two identical glass bottles 
with label A or B for blinding purposes. The sequence of drug admin-
istration was randomised across participants. 

Repetitive transcranial magnetic stimulation 

rTMS protocol included 30 trains of 5-second stimulation given at 10 
Hz, with the inter-train interval being set to 25 s (1500 pulses) (Bovy 
et al., 2019; Yılmaz et al., 2014). rTMS was delivered to the left M1 or 
DLPFC with an intensity of 90% and 110% RMT respectively (Lefau-
cheur & Nguyen, 2019). M1 was located by the ‘hotspot’, and the DLPFC 
target was determined by the Beam F3 methodology (Beam et al., 2009). 
The coil was set to be parallel (handle pointing backward) and 
perpendicular (handle pointing to left side) to the midline in the M1 and 
DLPFC site respectively (Lefaucheur & Nguyen, 2019). Sham stimula-
tion was performed using the same protocol as M1 or DLPFC according 
to group allocation, but with a 75-mm high plastic block to avoid the 
penetration of magnetic field (Ojala et al., 2022). 

Data analysis 

MEP was calculated by peak to peak. The calculation of CSP duration 
was based on the Mean Consecutive Difference (MCD) (Garvey et al., 
2001), which was recommended in a recent review (Hupfeld et al., 
2020). This method is briefly described here: (1) All silent period trials 

were rectified using the absolute value and then were averaged; (2) The 
MCD of 100 ms of pre-stimulus EMG was calculated, in which the MCD is 
the mean successive difference between individual data points; (3) 
Thresholds were set at: ± MCD x 2.66 (i.e. 3 standard deviations), which 
covers 99.76% of possible pre-stimulus EMG data points; (4) Silent 
period onset was defined as the time point at which the post-stimulus 
EMG falls below the variation threshold for three consecutive data 
points, while the silent period offset was determined as the time point at 
which the post-stimulus EMG returns above the variation threshold for 
three consecutive data points. Both MEP and CSP were expressed as the 
ratio between post- and pre-stimulation, which has been commonly used 
to measure TMS-induced plasticity(de Freitas Zanona et al., 2022; Liu 
et al., 2021). 

Statistical analysis 

Using SPSS (version 22; IBM Corp, Armonk, NY), statistical analyses 
were performed using two-way ANOVAs to examine the main and 
interaction effects of Drug (2 levels: chlorpromazine, placebo) and Time 
(2 levels: pre, post) for each group. Post-hoc pairwise comparisons were 
conducted to further explore the significant main and interaction effects, 
with the α-level set to 0.05 and Bonferroni corrected. 

Results 

Demographic information 

There was no group effect on gender or age (all PBonferroni > 0.05). 
Two-way ANOVAs on baseline data also revealed no group effect (three 
groups) or testing session effect (two sessions) on either RMT, pain 
threshold, pain intensity or unpleasantness (all PBonferroni > 0.05) 
(Table 1). 

Heat pain threshold 

In the stimulation of the DLPFC, a two-way ANOVA indicated a 
significant drug * time interaction (F1,14 = 4.96, P = 0.043, η2

p= 0.26)
(see Table 2 and Fig. 2b). Post-hoc comparisons indicated that DLPFC- 
rTMS increased pain threshold from pre- to post-stimulation in the 
placebo condition (Meanpre = 44.67, Meanpost = 46.00, PBonferroni =

0.008). Meanwhile, this effect was abolished in the chlorpromazine 
condition (PBonferroni = 1.000). In the Sham stimulation, there was also a 
drug * time interaction (F1,14 = 7.18, P = 0.018, η2

p= 0.34) (Fig. 2c), 
with post-hoc comparisons indicating increased pain threshold from pre- 
to post-stimulation in the chlorpromazine condition (Meanpre = 43.47, 
Meanpost = 44.40, PBonferroni = 0.042), but not in the placebo condition 
(PBonferroni = 0.668). In the motor cortex group, no significant main or 
interaction effect was observed (all PBonferroni > 0.05) (Fig. 2a). 

Heat pain unpleasantness and intensity 

In the stimulation of the DLPFC, a two-way ANOVA indicated a 
significant drug * time interaction on pain unpleasantness (F1,14 = 5.78, 
P = 0.031, η2

p= 0.29) (Fig. 3b). Post-hoc comparisons indicated that 
chlorpromazine increased pain unpleasantness from pre- to post- 
stimulation (Meanpre = 2.40, Meanpost = 3.69, PBonferroni = 0.024). No 
significant main or interaction effect on pain unpleasantness was 
observed in the M1 or Sham stimulation (all PBonferroni > 0.05) (Fig. 3a,c). 

In terms of pain intensity, no significant main or interaction effect 
was observed in either of these three targets (all PBonferroni > 0.05, see 
Supplementary Materials). There was a strong positive correlation be-
tween increased pain unpleasantness and intensity induced by DLPFC 
stimulation following chlorpromazine pre-treatment (R2= 0.58, p =
0.001) (Fig. 3d). 

Y. Wang et al.                                                                                                                                                                                                                                   
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Group comparisons 

A two-way ANOVA indicated a significant group * time interaction 
on pain threshold in the placebo condition (F1,14 = 3.90, P = 0.028, η2

p =

0.16) (Fig. 2d). Post-hoc comparisons indicated that only DLPFC-rTMS 
increased heat pain threshold from pre- to post-stimulation, further 
confirming the analgesic effect of DLPFC stimulation. There were no 
significant results in either pain intensity or unpleasantness in the pla-
cebo condition (results not shown). 

Corticospinal excitability 

MEP data indicated a significant interaction effect (F1,44 = 4.21, P =
0.022, η2

p= 0.17) (Fig. 4a). Post-hoc comparisons indicated that chlor-
promazine increased MEP amplitude following M1 stimulation (Mean =
2.11) compared to the target of DLPFC (Mean = 0.86, PBonferroni = 0.003) 
and of Sham (Mean = 0.46, PBonferroni = 0.018) stimulation. 

In terms of CSP, there was also a significant interaction effect (F1,44 
= 3.78, P = 0.031, η2

p= 0.15) (Fig. 4b). Post-hoc comparisons indicated 
that chlorpromazine resulted in a larger CSP compared to placebo in the 
Sham group (Meanchlorpromazine = 1.13, Meanplacebo = 0.91, PBonferroni =

0.000). 
Correlation analysis indicated that increased MEP was strongly 

associated with CSP induced by M1 stimulation following chlorproma-
zine pre-treatment (R2 = 0.44, p = 0.007) (Fig. 3c). Further analysis 
found that this pattern of relationship was not significant following 
placebo pre-treatment (p = 0.165) (Fig. 3d). 

Safety assessment 

There was no serious adverse effect by monitoring patients’ vitality, 
and physical and mental health. There was a chance to experience mild 
headache (3, 8, 0 in the M1, DLPFC, Sham group) and/or mild scalp 
discomfort (6, 8, 1 in the M1, DLPFC and Sham group), but the sensa-
tions dissolved within minutes or hours. Two subjects reported dizziness 
after taking chlorpromazine, but symptoms disappeared after having a 
rest. Overall, the protocol was safe and well-tolerated. 

Discussion 

Using a double-blind, randomised, sham- and placebo-controlled 
design, this study investigated the influence of dopamine on rTMS- 
induced analgesia across the motor cortex and the DLPFC. DRD2 
antagonist was found to selectively abolish the increased heat pain 
threshold induced by DLPFC stimulation as well as to increased pain 
unpleasantness. Further analysis indicated that the absence of analgesic 
effects in the DLPFC stimulation was not associated with plastic changes 
in the corticospinal pathway. Meanwhile, DRD2 antagonist did not 
interact with motor cortex rTMS in the modulation of pain experiences, 
whereby it increased corticospinal excitability and rebalanced cortico-
spinal excitation and inhibition following motor cortex stimulation. 

Our data demonstrated for the first time that DRD2 antagonist 

Table 1 
Demographic and baseline information across groups and drugs.  

Measure M1 
(N = 15) 

DLPFC 
(N = 15) 

Sham 
(N = 15) 

F/χ2 P 

Age, y 0.159 0.853 
Mean ± SD 27.07 

±9.35 
25.53 
±10.76 

25.33±7.13   

Sex 2.222 0.329 
Male 6 8 4   
Female 9 7 11   

RMT    
Group effect 0.689 0.508    
Session 
effect 

2.070 0.158 

Chlorpromazine      
Mean ± SD 61.93 

±6.41 
61.93±7.94 64.13±4.97   

Placebo      
Mean ± SD 62.07 

±5.66 
62.67±7.27 64.73±4.91   

Threshold    
Group effect 0.625 0.540    
Session 
effect 

0.229 0.635 

Chlorpromazine      
Mean ± SD 45.07 

±2.79 
44.80±3.00 43.47±3.74   

Placebo      
Mean ± SD 44.20 

±2.37 
44.67±3.11 43.93±3.17   

Intensity    
Group effect 1.834 0.172    
Session 
effect 

0.628 0.432 

Chlorpromazine      
Mean ± SD 7.23±1.40 5.77±2.03 5.50±2.34   

Placebo      
Mean ± SD 6.60±1.53 6.03±2.13 6.60±1.67   

Unpleasantness    
Group effect 0.042 0.959    
Session 
effect 

2.777 0.103 

Chlorpromazine      
Mean ± SD 2.73±2.53 2.40±1.88 2.07±1.76   

Placebo      
Mean ± SD 2.63±2.05 3.05±1.65 3.03±1.97    

Table 2 
Main results.   

Source df Mean 
square 

F p η2
p 

M1 

(THRESHOLD)      
Drug 1.00 0.82 0.33 0.576 0.02 
Time 1.00 7.35 1.40 0.256 0.09 
Drug × Time 1.00 6.02 1.39 0.259 0.09 
(INTENSITY)      
Drug 1.00 4.54 2.97 0.107 0.18 
Time 1.00 0.20 0.12 0.736 0.01 
Drug × Time 1.00 0.10 0.06 0.815 0.00 
(UNPLEASANTNESS)      
Drug 1.00 1.07 0.46 0.510 0.03 
Time 1.00 2.82 1.54 0.236 0.10 
Drug × Time 1.00 0.42 0.53 0.480 0.04 

DLPFC 

(THRESHOLD)      
Drug 1.00 4.27 1.14 0.303 0.08 
Time 1.00 6.67 1.87 0.193 0.12 
Drug × Time 1.00 6.67 4.96 0.043* 0.26 
(INTENSITY)      
Drug 1.00 0.00 0.00 0.964 0.00 
Time 1.00 5.10 1.57 0.231 0.10 
Drug × Time 1.00 1.20 0.85 0.371 0.06 
(UNPLEASANTNESS)      
Drug 1.00 0.13 0.21 0.655 0.02 
Time 1.00 8.21 2.20 0.160 0.14 
Drug × Time 1.00 4.59 5.78 0.031* 0.29 

Sham 

(THRESHOLD)      
Drug 1.00 0.42 0.06 0.809 0.00 
Time 1.00 1.35 1.41 0.255 0.09 
Drug × Time 1.00 6.02 7.18 0.018* 0.34 
(INTENSITY)      
Drug 1.00 6.34 1.37 0.261 0.09 
Time 1.00 0.20 0.06 0.815 0.00 
Drug × Time 1.00 3.04 1.78 0.204 0.11 
(UNPLEASANT)      
Drug 1.00 7.35 1.71 0.212 0.11 
Time 1.00 1.07 0.62 0.443 0.04 
Drug × Time 1.00 1.07 0.97 0.342 0.07  
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Fig. 2. Heat pain threshold by stimulation target and drug pre-treatment. (a) There was no significant main or interaction effect in the M1 stimulation. (b) DLPFC 
stimulation increased pain threshold in the placebo condition (PBonferroni = 0.008), and this effect was eliminated by the pre-treatment of chlorpromazine. (c) 
Chlorpromazine increased pain threshold following Sham stimulation (PBonferroni = 0.042). * denotes PBonferroni < 0.05, ** denotes PBonferroni < 0.01. (d) DLPFC-rTMS 
increased heat pain threshold in the placebo condition (PBonferroni = 0.008). 

Fig. 3. Heat pain unpleasantness by stimulation target and drug pre-treatment. (a) and (c) There were no significant main or interaction effect in the M1 or Sham 
stimulation. (b) DLPFC stimulation increased pain unpleasantness in the pre-treatment of chlorpromazine (PBonferroni = 0.024). (d) There was a strong positive 
correlation between increased pain unpleasantness and intensity induced by DLPFC stimulation in the pre-treatment of chlorpromazine (R2 = 0.58, p = 0.001). * 
denotes PBonferroni < 0.05. 
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selectively reversed the increased heat pain threshold induced by DLPFC 
stimulation (Fig. 2b). In fact, pain threshold in experimental settings was 
the most consistent outcome measure of DLPFC-induced analgesia as 
demonstrated by our previous meta-analysis (Che et al., 2021a). We also 
evaluated heat pain induced pain intensity and unpleasantness, in which 
DRD2 antagonist increased pain unpleasantness in the DLPFC stimula-
tion (Fig. 3b). Moreover, increased pain intensity was strongly corre-
lated with unpleasantness in the chlorpromazine-DLPFC interaction, 
although increased pain intensity did not reach statistical significance 
(Fig. 3d). These data together provide novel findings that the analgesic 
effect of DLPFC-rTMS relies on DRD2 neurotransmissions. 

The absence of DLPFC-induced analgesia in the pre-treatment of 
DRD2 antagonist could be associated with the antinociceptive effects of 
DRD2 neurotransmissions. Previous studies have already demonstrated 
that DLPFC-rTMS is able to induce endogenous dopamine D2 release in 
the striatal regions and other regions along the mesocortical dopamine 
system (Cho & Strafella, 2009; Ko et al., 2008; Strafella et al., 2001). 
Moreover, a large number of studies have confirmed the antinociceptive 
effects of DRD2 neurotransmissions as well as a disruption of dopami-
nergic functioning across different chronic pain conditions (Hagelberg 
et al., 2003a,b; Ledermann et al., 2016; Scott et al., 2006; Wood et al., 
2007). For instance, dopamine D2 binding potential in the striatal re-
gions was associated with pain threshold (Hagelberg et al., 2002; Mar-
tikainen et al., 2005). Further study revealed decreased dopamine D2 
binding potential in chronic back pain patients compared to healthy 
controls (Martikainen et al., 2015). Therefore, the absence of pain 
threshold changes in the DLPFC condition could result from the abol-
ishment of DRD2 neurotransmissions which has an antinociceptive 
effect. 

In line with the role in antinociception, DRD2 antagonist is also able 
to reduce sensations of reward and/or pleasure that could work against 
the analgesic effects of DLPFC-rTMS. Dopamine system is well-known 
for the involvement in reward and pleasure sensations (Wise, 1980, 
2004). Similarly, DLPFC-rTMS has been cleared by the Food and Drug 
Administration (FDA) for treating major depression disorders, due to its 
capability in modulating brain regions such as the ACC and amygdala 
that are critical for the generation and modulation of emotions (Cash 
et al., 2021; Eshel et al., 2020; Fox et al., 2012). In chronic pain 

conditions, DLPFC-rTMS was also found to reduce the emotional aspects 
of pain, such as fearful, sickening, and tiring emotions (Che et al., 
2021a). Our data of increased pain sensitivity and unpleasantness are 
therefore likely result from the suppression of reward and pleasure 
sensations induced by DRD2 antagonist. 

Our findings on corticospinal excitability also provide insights on the 
mechanisms of DLPFC-induced analgesia. Specifically, DLPFC stimula-
tion did not induce significant changes in either corticospinal excitation 
or inhibition indexed by MEP and CSP respectively. Moreover, DRD2 
antagonist did not interact with DLPFC in the modulation of cortico-
spinal excitability. Previous studies have demonstrated inconsistent 
findings on whether DLPFC-rTMS is able to induce corticospinal excit-
ability. For instance, one study demonstrated decreased pain experience 
and increased MEP and intracortical inhibition following DLPFC-rTMS 
(Fierro et al., 2010). Meanwhile, DLPFC-rTMS did not change MEP or 
intracortical inhibition in another study, although there was a clear 
increase in heat pain threshold same as our data (De Martino et al., 
2019). Moreover, one study from our group indicated that DLPFC-rTMS 
is more likely to induce cortical plasticity in the frontal and insular 
cortices that are associated with pain reduction (Ye et al., 2022). 
Overall, our data suggest that DLPFC-induced analgesia is not likely to 
result from excitability changes in the motor pathway. 

It is noted that chlorpromazine was found to increase heat pain 
threshold in the sham stimulation in our data (Fig. 2c). In fact, this effect 
could be dated back to 1950s when the drug was initially introduced 
(Hougs & Skouby, 1957). Chlorpromazine was reported to induce ‘an 
indifference to pain’ (Lane & Ross, 1985). Our data of increased heat 
pain threshold therefore replicate this effect. Moreover, we have pro-
vided interesting findings that chlorpromazine increased CSP for the 
first time in the sham condition (Fig. 3b). CSP is thought to indicate 
GABAB-mediated intracortical inhibition (Werhahn et al., 1999), which 
has a negative association with both chronic pain (Parker et al., 2016) 
and induced pain (Liu et al., 2021). Increased pain threshold here aligns 
nicely to the enhancement of intracortical inhibition. 

We also provided novel findings that DRD2 antagonist selectively 
increased MEP amplitude following M1 stimulation compared to other 
targets. This increased pattern of MEP was strongly associated with 
increased CSP latency, although increase in CSP did not reach statistical 

Fig. 4. MEP and CSP results. (a) Chlorpromazine increased MEP amplitude following M1 stimulation compared to DLPFC (PBonferroni = 0.003) and Sham (PBonferroni =

0.018) stimulation. (b) Chlorpromazine increased CSP latency compared to placebo in the Sham stimulation (PBonferroni = 0.000). (c) Increased MEP was strongly 
associated with CSP induced by M1 stimulation following chlorpromazine pre-treatment (R2

= 0.44, p = 0.007). (d) This pattern of relationship was not significant 
following placebo pre-treatment (p = 165). * denotes PBonferroni < 0.05, ** denotes PBonferroni < 0.01, ***denotes PBonferroni < 0.001. 
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significance following M1 stimulation. Of note, the MEP-CSP dyad was 
not significant in placebo conditions, indicating that DRD2 antagonist is 
able to rebalance corticospinal excitation and inhibition in M1 stimu-
lation. It has been debated how dopamine, glutamate, and GABA neu-
rons could interact with each other in neurotransmissions (Carlsson & 
Carlsson, 1990; Sun et al., 2020; Taber & Fibiger, 1997). Our data 
indicated that dopaminergic transmissions could modulate corticospinal 
excitability and furthermore reshape excitation-inhibition relationship 
potentially mediated by glutamate and GABA neuronal activity. 

It is quite surprising that rTMS over the M1 region did not induce 
significant changes either in heat pain sensitivity or heat pain ratings. It 
is well-established that M1-rTMS is effective in managing neuropathic 
pain and experimentally induced pain (Attal et al., 2021; Che et al., 
2021b). A closer examination of the literature on induced pain reveals 
that rTMS has a consistent analgesia on cold pain across a large number 
of studies (Che et al., 2021a; de Andrade et al., 2011, 2014; Moisset 
et al., 2015; Summers et al., 2004). Meanwhile, heat pain data are 
relatively scarce, and the results are inconsistent (Johnson et al., 2006; 
Lamusuo et al., 2017). These data together highlight the importance of 
nociceptive fibres (e.g. A δ and C fibres) that can be selectively targeted 
by different pain protocols (Mylius et al., 2007). These findings also help 
to explain the null findings in heat pain experience in the 
M1-chlorpromazine interaction, although chlorpromazine was found to 
rebalance corticospinal excitation and inhibition in this condition. 

There were some limitations in this study. Here we presented evi-
dence on pain experiences and corticospinal excitability, without neural 
circuits evidence from functional magnetic resonance imaging (fMRI) or 
positron emission tomography (PET). These imaging technologies would 
reveal neural pathways whereby dopamine modulates TMS-induced 
analgesia. Blood samples were not collected which was done before to 
monitor the pharmacokinetics of chlorpromazine following oral 
administration (Whitfield et al., 1978). Oral administration of CPZ be-
gins to appear in systemic circulation after a mean lag time of ~ 20 min 
and is subsequently absorbed for an average of 2.9 h. Our design 
included a lag of 90 min following oral administration and a subsequent 
rTMS session for ~ 20 min which together would fall into the period of 
the peak concentration of chlorpromazine (Whitfield et al., 1978). A 
heat pain protocol was used in this study, results of which need to be 
validated in other pain protocols such as cold pain or capsaicin induced 
hyperalgesia. In addition, it remains to be determined how dopamine 
could affect rTMS effects in chronic pain conditions, such as migraine 
and fibromyalgia that can benefit from DLPFC stimulation (Altas et al., 
2019; Fitzgibbon et al., 2018; Granato et al., 2019; Leung et al., 2018; 
Sahu et al., 2019; Short et al., 2011). Although baseline pain levels were 
not considered during recruitment, our data presented baseline pain 
levels at 6–7 (Table 1). This is consistent with recent TMS trials reporting 
a medium level of pain at baseline (~ 7/10) (Attal et al., 2021; Wang 
et al., 2023; Che et al., 2021b). 

In conclusion, dopamine antagonist selectively abolished rTMS ef-
fects on pain sensitivity while targeting the DLPFC. In addition, dopa-
mine antagonist is able to rebalance corticospinal excitation and 
inhibition in motor cortex rTMS. These findings highlight the influence 
of dopaminergic neurotransmission on rTMS-induced pain experiences 
and corticospinal excitability dependent on stimulation targets. 
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