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Background: Studies have reported that coppers are involved in the

tumorigenesis and development of tumor. In herein, we aimed to construct

a prognostic classification system for lung adenocarcinoma (LUAD) associated

with cuproptosis.

Methods: Samples information of LUAD were acquired from The Cancer

Genome Atlas (TCGA) and GSE31210 dataset. Cuproptosis-related genes

were screened from previous research. ConsensusClusterPlus was applied to

determine molecular subtypes, which evaluated by genome analysis, tumor

immune microenvironment analysis, immunotherapy, functional enrichment

analysis. Furthermore, univariate Cox analysis combined with Lasso analysis

were employed to construct a cuproptosis-related risk model for LUAD.

Results: 14 genes related to cuproptosis phenotype were identified, and

2 clusters (C1 and C2) were determined. Among which, C1 had better

survival outcome, less advanced stages, enhanced immune infiltration and

enriched in TCA related pathways. A 7 cuproptosis-associated genes risk

model was constructed, and the performance was verified in the

GSE31210 dataset. A higher RiskScore was significantly correlated with worse

overall survival, advanced stages. Cox survival analysis showed that RiskScore

was an independent predictor. High-risk group patients had weakened immune

infiltration, less likely to benefit from immunotherapy and was more sensitived

to immunotherapy.

Conclusion: The cuproptosis-related gene signature could serve as potential

prognostic predictors for LUAD patients and may provide clues for the

intervention of cuproptosis induced harm and targeted anti-tumor application.
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Introduction

Lung adenocarcinoma (LUAD), the most common type of

non-small cell lung cancer, is characterized by dense

lymphocytic infiltration and early metastasis (Luo et al.,

2020). Although treatment strategies for LUAD have

improved greatly in recent years, the survival rate of

patients with LUAD is still very low (Kleczko et al., 2019).

Chemotherapy, surgical resection and radiotherapy are

routine treatments for LUAD, However, due to the lack of

specificity of these treatments, they can also cause damage to

adjacent normal cells (Wang et al., 2021). Targeted therapy

and immunotherapy are one of the main methods for the

treatment of LUAD. Although both have achieved good

clinical efficacy (Osmani et al., 2018; Xing et al., 2019), the

clinical benefit population is still limited (Park and Jang, 2016;

Testa et al., 2018). Therefore, it is of great significance to

further search for new diagnostic markers and therapeutic

targets for LUAD.

It is well known that copper, as a cofactor of essential

enzymes, plays an important role in human life (Kim et al.,

2008). The concentration of copper in normal cells is very low,

which mainly prevents the harmful accumulation of free

intracellular copper through the homeostasis mechanism

across the concentration gradient, thus maintaining cellular

copper homeostasis (Lutsenko, 2010; Ge et al., 2022).

However, a recent study shows that copper death is

dependent on mitochondrial respiration, which is different

from the previously known programmed cell death (such as

iron death and apoptosis). In this process, copper directly

binds to the lipid components of the tricarboxylic acid cycle,

resulting in the aggregation of lipoacylated proteins and the

loss of iron-sulfur cluster proteins, leading to proteotoxic

stress and cell death (Tsvetkov et al., 2022). The

importance of copper homeostasis in immune infiltration

has also been demonstrated in some recent correlation

studies (Choi et al., 2013; Tan et al., 2021). Tan et al.

(2021) found that copper chelation on macrophages can

eliminate lysyl oxidase-like 4-mediated programmed death

molecule ligand 1 presentation, thereby inhibiting cell

immune escape. Choi et al. (2013) showed that

chlorodoxyquine (a common copper chelator) can

effectively reduce the infiltration of encephalitis-causing

immune cells (CD4, CD8, etc.).

Based on this, this study is the first to investigate the

prognosis of LUAD by combining LUAD microarray data and

cuproptosis-related genes. Using the GSE31210 dataset of

TCGA database and GEO database, combined with the

13 copper-death genes provided by Tsvetkov et al. (2022),

we identified important cuproptosis related genes and

molecular subtypes, and constructed a risk model. Finally,

based on the subtypes and risk models obtained above,

functional enrichment analysis, immune infiltration

analysis, immunotherapy and chemotherapy drug

prediction were performed, so as to provide some

theoretical support for the mechanism research of

cuproptosis in LUAD.

Materials and methods

Data source

In order to obtain the microarray data related to lung

adenocarcinoma, TCGA and GEO databases were searched

with “LUAD” as the search term. The TCGA-LUAD dataset

contains 472 cancer patient samples and 59 healthy samples,

and the GSE31210 dataset contains 226 LUAD samples.

472 tumor samples were classified into the training cohort

randomly (n = 236), the testing cohort (n = 236). The two

groups were similar in age, gender, Stage, follow-up time, and

Event (Table 1).

The 13 cuproptosis related genes, SLC31A1, PDHB, PDHA1,

LIPT1, FDX1, DLD, DLST, DBT, LIAS, DLAT, GCSH, ATP7A,

and ATP7B, were derived from a recent report by team Tsvetkov

et al. (2022).

Differentially expressed genes analysis

Based on 13 cuprotosis related genes, scores of cuprotosis

related genes in each sample were calculated by single sample

gene set enrichment analysis (ssGSEA), and DEGs were screened

between cancer tissues and para-carcinoma tissue with

FDR<0.05 and |log2FC|>2.
Then, the correlation analysis between DEGs and scores were

analyzed by pearson methods with selection criteria |R|>0.2 and
p.value < 0.05 to obtained genes associated with cuproptosis

phenotype.

Univariate COX survival analysis

Next, Univariate COX survival analysis using coxph function of

R package was used to analysis genes associated with cuproptosis

phenotype with p < 0.05 to determine cuproptosis-related genes for

LUAD prognosis, for subsequent analysis

Cluster analysis

Base on cuproptosis-related genes, Then, molecular subtypes

were performed separately for TCGA-LUADdataset samples via the

Consensus Cluster Plus 1.52.0 (Wilkerson and Hayes, 2010). “pam”

arithmetic and “pearson” distance were utilized to complete

500 bootstraps with every bootstrap having specimens (≥80%) of
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TCGA-LUAD dataset. Cluster number k was between 2 and 10, and

the optimum k was identified as per cumulative distribution

function (CDF) and AUC. Survival curves (KM curves) between

molecular subtypes were then analyzed for difference. In addition,

differences in the distribution of clinical characteristics between

molecular subtypes were compared and a chi-square test was

completed, and p < 0.05 had significance on statistics.

Single-sample GSEA

The ssGSEAwas used to evaluate the various pathways scores

(Charoentong et al., 2017) using GSVA of R package.

NES>0 indicates pathway activation, and NES<0 indicates

pathway inhibition.

Estimation of STromal and immune cells in
MAlignant tumours using expression data

R software ESTIMATE arithmetic (Yang et al., 2021) was

utilized to compute overall stroma level (Stromal Score), the

immunocyte infiltration (Immune Score) and the combination

(ESTIMATE Score) of sufferers in the TCGA-LUAD cohort

using Wilcox.test analysis to determine difference.

Cell-type identification by estimating
relative subsets of RNA transcripts

CIBERSORT analyses were utilized to compare diversities in

different immunocytes in molecular subtypes. Wilcox.test

TABLE 1 Sample information of TCGA training dataset and validation dataset.

Characteristics Train (N =
236)

Test (N =
236)

Total (N =
472)

p value FDR

Gender 1 1

FEMALE 127 (26.91%) 128 (27.12%) 255 (54.03%)

MALE 109 (23.09%) 108 (22.88%) 217 (45.97%)

T.stage 0.79 1

T1 76 (16.10%) 84 (17.80%) 160 (33.90%)

T2 130 (27.54%) 123 (26.06%) 253 (53.60%)

T3 22 (4.66%) 21 (4.45%) 43 (9.11%)

T4 8 (1.69%) 7 (1.48%) 15 (3.18%)

Ukown 0 (0.0e+0%) 1 (0.21%) 1 (0.21%)

N.stage 0.2 1

N0 160 (33.90%) 153 (32.42%) 313 (66.31%)

N1 40 (8.47%) 46 (9.75%) 86 (18.22%)

N2 34 (7.20%) 28 (5.93%) 62 (13.14%)

N3 0 (0.0e+0%) 2 (0.42%) 2 (0.42%)

Ukown 2 (0.42%) 7 (1.48%) 9 (1.91%)

M.stage 0.88 1

M0 159 (33.69%) 161 (34.11%) 320 (67.80%)

M1 9 (1.91%) 7 (1.48%) 16 (3.39%)

Ukown 68 (14.41%) 68 (14.41%) 136 (28.81%)

Stage 0.83 1

I 135 (28.60%) 129 (27.33%) 264 (55.93%)

II 53 (11.23%) 61 (12.92%) 114 (24.15%)

III 36 (7.63%) 34 (7.20%) 70 (14.83%)

IV 9 (1.91%) 7 (1.48%) 16 (3.39%)

Ukown 3 (0.64%) 5 (1.06%) 8 (1.69%)

Event 0.57 1

Alive 141 (29.87%) 148 (31.36%) 289 (61.23%)

Dead 95 (20.13%) 88 (18.64%) 183 (38.77%)

Age 0.13 0.92

<=65 69 (14.62%) 77 (16.31%) 146 (30.93%)

>65 159 (33.69%) 157 (33.26%) 316 (66.95%)

Ukown 8 (1.69%) 2 (0.42%) 10 (2.12%)
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analyses were completed to identify the difference of 22 kinds of

infiltrating immunocyte score between molecular subtypes. The

“ggplot2” package (Ito andMurphy, 2013) was used to realize the

visualization of the distributional status of the diversities in

22 kinds of infiltration immunocytes.

Immunotherapy

The expression levels of 47 immune checkpoint genes, which

from HigsAtlas (Liu et al., 2017), were determined.

Construction and evaluation a prognostic
risk model for lung adenocarcinoma

Lasso-cox regression was performed using the Glnmet

package in R language to select the best prognostic genes

(Tibshirani, 1997). Glmnet is a software package for fitting

generalized linear and similarity models by penalized

maximum likelihood. The regularization path is the

calculation of the lasso or elastic net penalty on the value

(on a logarithmic scale) of the regularization parameter

lambda (Goeman, 2010). The optimal value of the penalty

FIGURE 1
Identification of genes closely related to cuproptosis related gene pathway score. (A) Differentially expressed gene between cancer tissue and
para-carcinoma tissue. (B) 14 genes closely related to cuproptosis related gene pathway score. (C) mutation analysis of genes in TCGA-LUAD
dataset. (D) The expression levels of 14 genes in cancer tissue and para-carcinoma tissue. ***p < 0.0001.
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coefficient λ and the genes to be included in the model were

selected by running the 10-fold cross-validation probability

1000 times. Subsequently, Cox multivariate regression

analysis coefficients of prognostic genes were extracted, and

the gene expression levels were used to calculate the risk score

by the following formula as the survival risk score of each

patient:

RiskScore � ∑n

k�0βi × Expi

Where, βi represents the Cox hazard ratio coefficient of

mRNA, and Expri represents the gene expression level.

TCGA-LUAD samples were divided into high risk

(RiskScore>0) and low risk groups (RiskScore<0) according
to the risk score, which was for zscore. At the same time,

GSE31210 were used to evaluate the effectiveness and

robustness of the prognostic risk model. Kaplan-Meier

(KM) curves combined with the Logrank test were used to

analyze survival differences among different risk groups. The

timeROC package was used to determine the area under the

receiver operating characteristic curve (AUC) to predict 1-

year, 2-year, 3-year, 4-year and 5-year survival rates,

respectively.

Independent prognostic power of
RiskScore

Univariate and multivariate COX regression were used to

examine the independent prognostic power of RiskScore.

Tumor immune dysfunction and exclusion

TIDE (Jiang et al., 2018; Fu et al., 2020) algorithm (http://

tide.dfci.harvard.edu) was used to evaluate three cell types that

FIGURE 2
Identification of molecular subtypes. (A) Cumulative distribution function. (B) Delta area. (C) Heatmap of sample clustering when k = 2. (D) KM
survival analysis of C1 and C2 in TCGA-LUAD dataset. (E) KM survival analysis of C1 and C2 in GSE31210 dataset.
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limit T-cell invasion into tumors, including IFNG, myeloid

suppressor cells (MDSC), and M2 subtypes of tumor-

associated macrophages (TAM.M2), as well as dysfunction of

tumor infiltration cytotoxic T lymphocytes (CTL) and exclusion

of CTL by immunosuppressive factors.

Chemotherapy drugs sensitivity analysis

pRRophetic (Geeleher et al., 2014) was used to predict the

sensitivity of Cisplatin, Salubrinal, Vinorelbine, QS11, AKT

inhibitor ⅤⅢ and Embelin to IC50.

Sangerbox provided assistance with this article (Shen et al.,

2022).

Results

Identification of genes closely related to
cuproptosis related gene pathway score

602 DEGs were screened between cancer tissue and para-

carcinoma tissue in TCGA-LUAD dataset (Figure 1A), from

which, 138 genes were closely with cuproptosis related gene

pathway score. Next, Univariate Cox regression analysis

identified 14 genes associated with prognosis in lung

adenocarcinoma (Figure 1B). 40 of 567 samples (7.05%) in

TCGA-LUAD had genes mutation (Figure 1C). The

expression levels of 14 genes had significance between

cancer tissue and para-carcinoma tissue (Figure 1D).

Those data showed that cuproptosis was associated

with LUDA.

Identification of molecular subtypes

Based on 14 genes, samples in TCGA-LUAD dataset were

clustered with CDF and delta area (Figures 2A,B). When k = 2,

2 clusters (C1 and C2) were found (Figure 2C). KM survival

analysis indicated that patients in C1 had better survival outcome

in TCGA-LUAD dataset (p = 0.00076, Figure 2D) and

GSE32210 dataset (p = 0.00045, Figure 2E). Distribution of

clinical features in clusters showed that samples in C2 had

more Male, T3/4 stage, N1/2 stage, StageⅢ/Ⅳ and Dead

patients (Figure 3). Those analysis indicated that the 2 clusters

had clinical significance.

FIGURE 3
The distribution of clinical features, included Gender, T Stage, N Stage, M Stage, Stage Ages, and Status in C1 and C2. *p < 0.05.
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FIGURE 4
Genome analysis. (A) the analysis of Aneuploidy Score, Homologous Recombination Defects, Fraction Altered, number of segments, and non-
silent mutation rate in C1 and C2. (B) Top 10 mutation genes in C1 and C2. ***p < 0.0001.
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High gene mutation was observed in
subtypes

Genome analysis between clusters showed that C1 patients

presented less Aneuploidy Score, Homologous Recombination

Defects, Fraction Altered, Number of Segments, Nonsilent

Mutation Rate (Figure 4A). In addition, top10 genes,

especially TP53, TTN, MUC16, had obviously mutation

differences between C1 and C2 (Figure 4B).

Moreover, GSEA analysis showed that such as

CITRATE_CYCLE_TCA_CYCLE and

AMINOACYL_TRNA_BIOSYNTHESIS were activated in C2,

while, TAURINE_AND_HYPOTAURINE_METABOLISM were

activated in C1 (Figure 5A). Tricarboxylic acid cycle related

pathways and genes were acquired to calculated TCA pathways

scores using ssGSEA, and the results showed that 7 pathways were

higher enriched in C2 (Figure 5B). Cell growth and death pathways,

and genes were obtained from Kyoto Encyclopedia of Genes and

Genomes (KEGG) (https://www.kegg.jp/kegg/pathway.html),

ssGSEA analysis indicated that cellular senescence, p53 signaling

pathway and cell cycle were higher in C2, while Necroptosis and

Apoptosis were activated in C1 (Figure 5C).

C1 had higher immune infiltration

16 of 22 immune cells had significantly difference using

CIBERSORT analysis between 2 clusters (Figure 6A). Then,

ESTIMATE analysis showed that C1 had higher score of

StromalScore, ImmuneScore and ESTIMATEScore

(Figure 6B). Our team afterwards evaluated the 47 immune

check genes expressions, and 41 immune checkpoint genes

had obviously high expressions in C1 that those in C2

(Figure 6C). Next, the scores of CYT, T cell receptor signaling

pathway and B cell receptor signaling pathway, were calculated

using ssGSEA, and they all were higher in C1 that those in C2

(Figures 6D–F).

Identification of hub genes and RiskScore

1687 DEGs, including 1462 upregulated genes and

422 downregulated genes, were identified in C1 vs. C2

(Figure 7A). TCGA-LUAD dataset was divided into TCGA-

training dataset and TCGA-test dataset. In TCGA- training

dataset, univariate Cox survival analysis determined 14 genes

associated with prognosis, included 12 risk genes and

2 protective genes (Figures 7B,C). LASSO Cox regression

module was conducted to build a prognostic signature

based on the expression matrix of the 14 genes.

Consequently, we identified a 7-genes signature module

according to the optimal λ value (Figures 7D,E). RiskScore

of LUAD patients base on 7 genes was calculated using

the following formula: RiskScore = 0.168*ARHGEF39-

0.079*EFCC1-0.124*SERPIND1+0.065*INSL4+0.11*

ANLN+0.04*RHOV+0.17*CCL20.

FIGURE 5
Functional enrichment analysis. (A)GSEA analysis demonstrated that pathways, such as, cell cycle were activated in C2. (B) 7 TCA pathways were
activated in C2. (C) 6 pathways associated with tumorigenesis had differences in C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.0001, ns: no significance.
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FIGURE 6
Analysis of immune infiltration. (A) analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between C1 and C2. (D–F) The differences of CTY score, T cell receptor signaling pathway score, B cell
receptor signaling pathway score between C1 and C2. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, ns: no significance.
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FIGURE 7
Identification hub cuproptosis related genes. (A) Volcano of differentially expressed genes identified from C1 and C2. (B) Volcano of
differentially expressed genes identified using univariate Cox analysis. (C) Forest map of differentially expressed genes identified using univariate Cox
analysis. (D) Lambda trajectory of differentially expressed genes. (E) Confidence interval under lambda.
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Prognostic model has well predictive
performance

RiskScore was for zscore, and the samples into high-risk

(RiskScore> 0) and low-risk (RiskScore <0) groups in

TCGA-test and GSE31210 dataset. ROC and survival

analyses were performed in TCGA-test dataset (Figures

8A,B) and GSE31210 dataset (Figures 8C,D). The

results revealed that the accuracy of the model was

better in predicting the 1-, 2-, 3-, 4-, and 5-year

survival rates in above datasets, as all values of the area

under the curve (AUC) were greater than 0.6. Results

of Kaplan-Meier survival analysis showed overall survival

was higher in low-risk group than high-risk group. High

group had more samples with higher clinical grade

(Figure 9A), the RiskScore was higher in MALE, a higher

T stage, N2 stage and clinical stage, and dead samples

(Figure 9B).

FIGURE 8
Validation of RiskScore. (A) ROC analysis of RiskScore in TCGA-test dataset. (B) KM survival analysis of RiskScore in TCGA-test dataset. (C) ROC
analysis of RiskScore in GSE31210 dataset. (D) KM survival analysis of RiskScore in GSE31210 dataset.
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RiskScore was an independent prognostic
factor

To identify the independence of 7-gene signature

model in clinical application, in TCGA-LUAD dataset,

univariate and multivariate COX regression were used

to analyze the HR, 95%CI of HR and Pvalue of Age,

Gender, T Stage, N Stage, M Stage, Stage and RiskType.

Univariate COX regression analysis showed that T Stage,

N Stage, Stage and RiskType were significantly associated

with survival (Figure 10A), while multivariate

COX regression analysis showed that only RiskType

(HR = 2.06, 95%CI = 1.43–2.99, p < 0.001) was still

significantly associated with survival (Figure 10B). Those

data imply that RiskType was an independent prognostic

factor.

FIGURE 9
Analysis of clinical features in RiskScore. (A) The distribution of clinical features groups, included Gender, T Stage, N Stage, M Stage, Stage, Age
and Status, in high group and low group. (B) The RiskScore differences analysis in clinical features groups, includedGender, T Stage, N Stage, M Stage,
Stage, Age and Status. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, ns: no significance.
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Low group had higher immune infiltration
and sensitived to immunotherapy

CIBERSORT analysis indicated that 14 of 22 immune cells,most

were significantly higher in low group that those in high group

(Figure 11A). While, ESTIMATE analysis showed that low group

had higher StromalScore, ImmuneScore and ESTIMATEScore

(Figure 11B). And 24 immune checkpoint genes had obviously

difference expressions between high group and low group

(Figure 11C). TIDE, MDSC and Exclusion were lower in low

group that in high group, while Dysfunction and TAM.M2 were

higher in low group (Figure 11D), suggesting that low group was

more likely to benefit from immunotherapy. IC50 of Cisplatin,

Salubrinal, Vinorelbine, QS11, AKT inhibitorⅤⅢ and Embelin were

higher in low group, which suggested the developed model could be

used to predict chemotherapeutic drug sensitivity (Figure 11E).

Discussion

Cuproptosis is a newly discovered form of cell death, which is

characterized by the accumulation of intracellular free copper and the

lipidation of proteins leading to cytotoxic stress, thereby inducing cell

death (Tsvetkov et al., 2022). However, the mechanism of copper

death in LUAD has not been studied. Based on this, the relevant

microarraywas downloaded fromTCGAandGEOdatabases, and the

correlation and difference of immune infiltrationwere analyzed. Then,

the results were integrated with cuproptosis related genes, and the risk

model was constructed. Finally, seven copper death genes related to

lung adenocarcinoma were screened out, including ARHGEF39,

EFCC1, SERPIND1, INSL4, ANLN, RHOV and CCL20.

The overexpression of ARHGEF39 has also been identified in

various human malignancies, including non-small cell lung cancer

(Zhou et al., 2018), gastric cancer (Wang et al., 2018), and

hepatocellular carcinoma (Wang et al., 2012). Decreased

expression of EFCC1 was significantly associated with progression

of LUAD (Xia et al., 2019; Yu and Zhang, 2020). SERPIND1 acts as a

potential oncogene in the development of tumor, including in lung

cancer (Bossé et al., 2012; Zhu et al., 2016). INSL4 as prognostic

marker for proliferation and invasiveness in Non-Small-Cell Lung

Cancer (Scopetti et al., 2021). ANLN participates in cell

developmental processes via regulating nuclear division pathway

in LUAD (Long et al., 2018). Overexpression of RHOV in LUAD

promotes the progression (Chen et al., 2021). Production of

FIGURE 10
Independence of RiskScore. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis.
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CCL20 from lung cancer cells induces the cell migration and

proliferation (Wang et al., 2016). To sum up, although the copper

death related gene in LUAD mechanism study is less, but according

to previous research and the research results can be speculated that

cuproptosis related genes may play an important role in LUAD

progress, steady state and how to adjust the copper to prevention and

treatment of LUAD, is the need for further research.

The analysis results of this study have certain reference value

for the subsequent basic research of cuproptosis on LUAD, and

could reduce unnecessary waste in experiments to a certain

extent. However, this study still has some limitations. First,

although the chip data used has met the sample size required

by the research, the results may still be biased due to the small

sample size. Second, although cuproptosis related genes

FIGURE 11
Analysis of immune infiltration. (A) analysis of 22 immune cells using CIBERSORT. (B) Analysis of immune infiltration using ESTIMATE. (C) The
expression levels of 42 immune check genes between low group and high group. (D) The differences of TIDE, IFNG, MDSC, Exclusion, Dysfunction
and TAM.M2 between low group and high group. (E) IC50 of traditional drugs in low group and high group. *p < 0.05, **p < 0.01, ***p < 0.001, ***p <
0.0001, ns: no significance.
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associated with LUAD have been screened out, their specific

mechanism of action has not been elucidated, which needs to be

further explored in subsequent studies.
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