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Abstract: The presence of one-dimensional (1D) nodal lines, which are formed by band crossing
points along a line in the momentum space of materials, is accompanied by several interesting
features. However, in order to facilitate experimental detection of the band crossing point signatures,
the materials must possess a large linear energy range around the band crossing points. In this work,
we focused on a topological metal, YB2, with phase stability and a P6/mmm space group, and studied
the phonon dispersion, electronic structure, and topological nodal line signatures via first principles.
The computed results show that YB2 is a metallic material with one pair of closed nodal lines in the
kz = 0 plane. Importantly, around the band crossing points, a large linear energy range in excess of 2 eV
was observed, which was rarely reported in previous reports that focus on linear-crossing materials.
Furthermore, YB2 has the following advantages: (1) An absence of a virtual frequency for phonon
dispersion, (2) an obvious nontrivial surface state around the band crossing point, and (3) small
spin–orbit coupling-induced gaps for the band crossing points.

Keywords: YB2; linear band crossing; topological metal; spin–orbit coupling; phonon dispersion;
electronic structure

1. Introduction

Since the discovery of topological insulators [1–10], the search for band topology has attracted
considerable research interest. In recent years, nontrivial band topology has progressed from insulators
to semimetals/metals [11–25]. Semimetals and metals that contain nontrivial band crossing points
are known as topological semimetals and topological metals, respectively. The band crossings in
topological semimetals and topological metals are not only limited to forming zero-dimensional band
crossing points, they are also able to form nodal lines, i.e., one-dimensional (1D) band crossings, and
nodal surfaces, i.e., two-dimensional (2D) band crossings, in the momentum space.

Nodal line materials [26–35] were first predicted in carbon-based networks and exhibit many
interesting electronic and optical properties; furthermore, the associated nontrivial drum head-like
surface states have emerged as an interesting research topic. Moreover, if multiple nodal lines conjoin,
new types of topological materials are formed, such as nodal chain materials [36–38], nodal net
materials [39], and nodal link materials [40–42].

However, following the discovery of new topological semimetals/metals, the detection of materials
suitable for experimental operation represents a significant challenge. To be suitable for experimental
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operation, materials should have the following basic properties: (1) The target materials are already
prepared or at the least are, in theory, phase stable, (2) a large linear energy range should be present
around the band crossing points, and (3) the influence of spin–orbit coupling effect on the electronic
structure should be relatively small [29].

In this study, we found that P6/mmm-type YB2 possesses the above-mentioned advantages.
We would like to point out that P6/mmm-type YB2 is an existing material and its experimental lattice
constants are a = b = 3.3042 Å, c = 3.8465 Å [43]. Note that Song et al. [44] revealed that high-purity
YB2 powders can be obtained by vacuum solid-state reaction at 1800 ◦C for 10 h. We studied the
structural stability, electronic structure, and topological signatures of this material via first principles.
Our calculations showed that YB2 is a topological semimetal with one pair of nodal lines in the kz = 0
plane and a large linear band dispersion around the band crossings, which should facilitate further
experimental investigation. To determine the structural stability of this system, the phonon dispersion
was also examined. When the effect of spin–orbit coupling is considered, small gaps (up to 40 meV)
are found at the band crossing points. Therefore, YB2 is a good candidate for the investigation of the
physical properties of nodal line fermions.

2. Crystal Structure and Methods

Hexagonal-type YB2 with a P6/mmm space group was the focus of this study. According to the
Materials Project Database [45], the formation energy per atom for YB2 is −0.564 eV and the Inorganic
Crystal Structure Database IDs of 615708 and 44602 are assigned to YB2. The crystal structure of YB2 is
shown in Figure 1A. One primitive cell contains one Y atom and two B atoms. The Y atom occupies
the (0,0,0) sites and the two B atoms occupy the (0.3333, 0.6666, 0.5) and (0.6666, 0.3333, 0.5) sites.
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Figure 1. (A) Structural model of P6/mmm YB2, (B) the bulk Brillouin zone (BZ) of YB2.

We used first principles to calculate the electronic structure of the entire YB2 material.
For the exchange-correlation potential, the generalized gradient approximation (GGA) [46] of the
Perdew–Burke–Ernzerhof (PBE) [47] function was adopted. In this study, the cutoff energy was set at
600 eV and the Brillouin zone was sampled using the Monkhorst–Pack k-point mesh with a size of
11 × 11 × 8. To determine the nontrivial surface states in YB2, the WANNIERTOOLS package (version
2.5.0) [48] was selected.

The crystal structure of YB2 was fully relaxed and the optimized lattice parameters were found to
be a = b = 3.29 Å and c = 3.85 Å. These values are in a good agreement with the experimental ones [43].
Also, these values match well those in the Materials Project Database (a = b = 3.30 Å, c = 3.85 Å).

The Phonopy code was used to plot the phonon dispersion curve using the supercell-based
approach. A 2 × 2 × 2 supercell was built and the phonon dispersion of the YB2 supercell along the
Γ-M-K-Γ-A-L-H-A paths (see Figure 1B) is shown in Figure 2. The absence of imaginary frequencies
in the first Brillouin zone confirms its dynamic stability.
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Figure 2. Phonon dispersion curve of YB2.

3. Results and Discussion

Using the GGA–PBE method, the density of states of YB2 was produced and can be seen in Figure 3.
We can see that this material exhibited metallic properties; however, the total density of states value
was low, at around 2 eV. The total density of states in the range 0–2 eV was mainly dominated by Y-d
orbitals (see the yellow area in Figure 3).
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Figure 3. The total and projected density of states (PDOSs) of YB2 without considering the spin–orbit
coupling effect. The Fermi level energy is set at zero.

To fully understand the nontrivial band crossing points and the corresponding topological
signatures, we also determined the band structure of YB2, as shown in Figure 4. From Figure 4,
we can see two obvious band crossing points, named A1 and A2, near the K high symmetry points.
Before discussing the topological signatures of both band crossing points, we should point out that the
energy range of the linear band dispersion around the A1 and A2 band crossing points was more than
2 eV (see the yellow and green areas in Figure 4). Such a large linear energy range is substantially
larger than most other proposed linear-type band dispersion materials [49]. Moreover, such a large
linear energy range makes YB2 a promising candidate to study the physics related to experimental
band crossings. To obtain an accurate range of the large linear band dispersion and band crossing
points of YB2, the hybrid functional [50] was used to calculate the electronic structure along the M-K-Γ
paths, and the results are shown in Figure 5. It is clear that the two band crossing points, A1 and A2,
and the large range (larger than 2 eV) of the linear band dispersion were retained.
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Figure 5. The band structure of YB2 calculated using Heyd−Scuseria−Ernzerhof (HSE) 06.

Next, we discuss the topological signatures of these two band crossing points, A1 and A2, based
on the arguments presented by Weng et al. [51]. These double-degenerated crossings should be
assigned to a line, and the band crossing points should not be seen as isolated points. To further prove
that A1 and A2 reside on a nodal line, the K-centered three-dimensional (3D) plot of the two bands
in the kz = 0 plane as well as the K-centered 2D plot of the two bands in the kz = 0 plane are given
in Figure 6A,B, respectively. The white lines in Figure 6 show the intersections between the two bands,
namely, an obviously closed line. As shown in Figure 6A, we can see that the band crossing points
belong to a nodal line in the kz = 0 plane, and this nodal line has a slight energy variation. The 2D
plane figure of the K-centered nodal line is shown in Figure 6B.

A YB2 crystal structure has two mechanisms to protect the nodal line: (1) A horizontal mirror
plane with the nodal line located in the mirror-invariant kz = 0 plane and (2) inversion symmetry and
time-reversal symmetry. It should be noted that the system has time-reversal symmetry and, thus,
there should be the same nodal line centered at the K’ point, as shown in Figure 7. Note that the
band structures of ScB2, VB2, ZrB2, NbB2, HfB2, and TaB2 with P6/mmm structure were calculated by
Zhang et al. [52]. Based on their work, one can see that these above-mentioned materials also have
large linear energy range.
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The surface states along the (001) direction for the nodal line are given in Figure 8. In Figure 8B,
the band crossing points are shown using yellow balls and the nontrivial surface states using red lines.
From Figure 8B, one can see that the surface states along the K− Γ path are merged in the bulk state;
however, the surface states along the M−K path are clearly defined. Note that the investigation of
nodal line material is at initial stage, and some of them [53–55] have been confirmed in experiment.
For example, the nodal line fermions of ZrSiSe [55] were proven in de Haas–van Alphen (dHvA)
quantum oscillations.
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The calculated electronic structures displayed above did not consider the spin–orbit coupling
effect. Therefore, as a final consideration, we will discuss the effect of spin–orbit coupling on the band
crossing points in the YB2 system. The results are shown in Figure 9; one can see that the spin–orbit
coupling-induced gaps for points A1 and A2 were 31 meV and 40 meV, respectively. For almost
all topological materials with nodal line states, gaps can be formed between their nodal lines via
spin–orbit coupling effects. However, the spin–orbit coupling gaps in the YB2 system were relatively
small in comparison to some well-known nodal line semimetals/metals, such as CaTe (~50 meV) [56],
BaSn2 (>50 meV) [57], CaAgBi (>80 meV) [58], and TiOs (>100 meV) [59].
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Figure 9. The band structure of YB2 along the M-K-Γ paths calculated using GGA. The spin–orbit
coupling effect is taken into consideration.
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4. Conclusions

In conclusion, we have reported a perfect topological metal, P6/mmm-type YB2, using first
principles. The P6/mmm-type YB2 has high structural stability, one pair of nodal lines in the kz = 0
plane, and a large linear energy range near the band crossings. The single pair of nodal lines are
protected by two independent mechanisms: (1) Mirror symmetry and (2) inversion and time-reversal
symmetries. We observed the nontrivial surface states in the (001) plane. Under the effect of spin–orbit
coupling, gaps were present between the nodal lines with values of up to 40 meV. It should be
noted that the spin–orbit coupling-induced gaps were smaller than some predicted nodal line state
topological materials.
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