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Abstract: Type 2 diabetes (T2D) is characterized by chronic hyperglycemia secondary to the decline
of functional beta-cells and is usually accompanied by a reduced sensitivity to insulin. Whereas
altered beta-cell function plays a key role in T2D onset, a decreased beta-cell mass was also reported
to contribute to the pathophysiology of this metabolic disease. The decreased beta-cell mass in
T2D is, at least in part, attributed to beta-cell apoptosis that is triggered by diabetogenic situations
such as amyloid deposits, lipotoxicity and glucotoxicity. In this review, we discussed the molecular
mechanisms involved in pancreatic beta-cell apoptosis under such diabetes-prone situations. Finally,
we considered the molecular signaling pathways recruited by glucagon-like peptide-1-based therapies
to potentially protect beta-cells from death under diabetogenic situations.
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1. Introduction

Type 2 diabetes (T2D) is characterized by chronic hyperglycemia due to an insufficient
insulin secretion to effectively lower plasma glucose concentrations in the context of insulin
resistance of target tissues. The amount of released insulin depends on the output of each
beta-cell from pancreatic islets of Langerhans (beta-cell function) and of the total number of
these cells (beta-cell mass). There is evidence that beta-cells have a first compensatory phase
to counteract insulin resistance by increasing insulin secretion to maintain euglycemia [1,2].
Indeed, hypersecretion of insulin has been reported in obese patients [3–5], and the beta-cell
mass was shown to be increased in obese non-diabetic individuals [6–8] and in insulin
resistant patients [9] through neogenesis rather than proliferation [6,9,10], and/or transdif-
ferentiation of both acinar/ductal cells and alpha-cells into beta-cells (see reviews [2,11]).
Since insulin secretion measured in vivo [3–5] cannot be correlated to beta-cell mass in the
same patient [6–9], it is difficult to investigate their respective contribution in that context,
but both seem to contribute to the insulin compensatory increase. Whereas beta-cells seem
to compensate for high insulin demand that occurs in obesity, when the compensation
mechanisms are lost and beta-cells become exhausted, hyperglycemia appears [1,2].

The alteration in glucose-induced insulin secretion in human T2D was reported
to result from beta-cell dysfunction associated or not with a decrease in beta-cell mass.
A loss of first- and reduced second-phase insulin responses [12] with alteration of insulin
oscillatory release [13,14] are well established beta-cell functional abnormalities in T2D.
Beta-cell function in patients with T2D was reported to be reduced by 50% at diagnosis [15]
while the beta-cell mass was only reduced by 24% [7]. Since patients undergoing hemi
pancreatectomy for donation to a relative with type 1 diabetes showed normal 24-h glucose
profiles [16], and deterioration of insulin secretion and glucose tolerance one year later [16]
with an increased risk of developing T2D only in the presence of obesity and insulin
resistance [17], the contribution of the decreased beta-cell mass to the onset of T2D appeared
as a subject of debate [6,7].
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Beta-cell mass cannot yet be accurately measured in living patients; therefore, our
knowledge relies on pancreatic tissue sections from autopsies. A significant reduction in
beta-cell mass by 40–65% in subjects with glucose intolerance [6] and in T2D patients [6,7]
compared to nondiabetic subjects matched for body mass index (BMI) has been observed,
and was also reported by other studies including fewer subjects [18–20]. If the involvement
of the decrease in beta-cell mass in T2D onset is still controversial, its gradual decline with
duration of the disease undoubtedly contributes to the progressive deterioration of glucose
homeostasis [7]. Of note, it was also recently commented that persons with and without
T2D can have a similar beta-cell mass, but because of huge variabilities in insulin sensitivity
and insulin secretion in the general population, the total mass is inadequate and might be
responsible for their diabetes [21].

Several possibilities have been highlighted to explain the default in beta-cell mass
in T2D, such as a low innate beta-cell mass [22], a failed increase in beta-cell mass in
response to insulin resistance [2,6] or senescence [23], and/or a progressive beta-cell loss
caused by apoptosis [6] or beta-cell dedifferentiation [24]. Recent studies also suggested
the involvement of beta-cell ferroptosis, a nonapoptotic regulated cell death that relies on
iron-dependent regulated necrosis [25].

The purpose of this review is to discuss recent insights into the molecular mechanisms
involved in beta-cell apoptosis in T2D. Indeed, several studies have described a significant
increase of beta-cell apoptosis in sections of pancreas as one plausible cause for the de-
creased beta-cell mass in T2D [6,10,26,27]. Supporting this concept, beta-cell apoptosis was
also evidenced in isolated human T2D islets [27–29]. As stated above, given the difficulty
to assess beta-cell mass in vivo in humans [1], most studies have been performed post
mortem or in animal models of T2D, although mouse and human beta-cells may behave
differently. Additionally, it should also be stressed that the recourse to isolated pancre-
atic islets and cultured beta-cells (clonal and primary) is still required to elucidate the
molecular mechanisms involved in beta-cell apoptosis due to limited availability of human
samples and shortage of technologies. This review will focus on the molecular mechanisms
reported to alter beta-cell survival under T2D-prone situations, such as amyloid deposits,
lipotoxicity and glucotoxicity. Each situation will be reviewed in separate sections, but it
should be borne in mind that in the pathophysiological context they undoubtedly exert
synergistic effects. Moreover, if each individual alteration such as endoplasmic reticulum
(ER) overload, oxidative stress, inflammation, etc., may not lead to immediate apoptosis
in vivo, their cumulative effects will exacerbate the deleterious outcome of each pathway
over time (Figure 1). We will also review whether glucagon-like peptide-1 (GLP-1) based
therapies can influence beta-cell apoptosis in the context of T2D (Figure 2).
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Figure 1. Main mechanisms involved in pancreatic beta-cell apoptosis under T2D-prone situations. Increased islet amyloid
polypeptide (IAPP) levels with misfolding and aggregation, lipotoxicity and glucotoxicity are the most investigated causative
factors of beta-cell demise. These situations individually elicit stress pathways such as endoplasmic reticulum (ER) stress,
mitochondrial/oxidative stress, inflammation, and disrupt the main pathways of protein clearance (ubiquitin-proteasome
system and autophagy/lysosomal pathway). The synergistic deleterious effects of these situations as well as the crosstalk
between the stress pathways ultimately contribute to beta-cell apoptosis. The immunofluorescence image is a human islet
showing beta-cells in red and alpha-cells in green.

2. Molecular Mechanisms Involved in Beta-Cell Apoptosis
2.1. Islet Amyloid Polypeptide

The islet in T2D is characterized by amyloid deposits derived from islet amyloid
polypeptide (IAPP), a protein synthesized and secreted along with insulin by pancreatic
beta-cells. Due to an amyloidogenic sequence, IAPP has the propensity to form oligomers
and subsequently insoluble fibrils in species at risk to develop diabetes (cats, primates and
humans) [22]. Indeed, islet amyloid has frequently been reported in islets from patients
with T2D [18,20,30]. Further supporting a role of IAPP in the development of human T2D,
a rare missense mutation in the IAPP gene (S20G) that increases its amyloidogenicity [31],
is associated with beta-cell deficit and increased risk for T2D [32].

In rodents, IAPP is nonamyloidogenic due to proline substitutions in the amyloido-
genic sequence, and these species do not spontaneously develop diabetes [33]. However,
overexpression of human IAPP (h-IAPP) in rodent models promotes amyloid deposits,
beta-cell dysfunction and apoptosis, consequently leading to reduced beta-cell mass and
hyperglycemia [22,33,34], supporting the role of h-IAPP as a contributor to the islet pathol-
ogy in human T2D. The following paragraphs will focus on the molecular pathways by
which amyloidogenic IAPP promotes beta-cell apoptosis.

2.1.1. ER Stress and Aberrant Ca2+ Release

ER stress is a well-established feature of T2D [35–37] that is induced by accumula-
tion of misfolded/unfolded proteins in the lumen of the ER. To prevent the deleterious
consequences of ER stress, an unfolded protein response (UPR) is engaged by the cells
with activation of three main branches of signaling transducers: inositol requiring ER-to-
nucleus signal kinase 1 (IRE1), PKR-like ER kinase (PERK) and activating transcription
factor 6 (ATF6), leading to attenuation of global protein translation, synthesis of folding
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enzymes and ER-associated degradation. Even if ER overload does not necessarily culmi-
nate in apoptosis, severe prolonged and unresolved ER stress can shift the balance towards
proapoptotic pathway activation.

To face insulin resistance, healthy beta-cells will secrete larger amount of insulin.
Since IAPP is coexpressed with insulin, this compensatory production/hypersecretion of
insulin and IAPP may exceed the synthesis, folding and trafficking capacity of the ER,
eventually leading to the formation of membrane-permeant toxic oligomers [38]. Indeed,
toxic oligomers of IAPP have been found associated with ER membranes in beta-cells of in-
dividuals with T2D [38], likely contributing to ER stress. Despite one study describing that
amyloid formation was not associated with significant increase in ER stress markers [39],
most studies performed in transgenic rodent overexpressing h-IAPP, rodent beta-cell lines
and human islets/pancreases agree that oligomerization-prone h-IAPP induces ER stress-
mediated beta-cell apoptosis [35,40–42]. In support of this postulate, deletion of the ER
stress marker C/EBP homologous protein (CHOP) was shown to delay beta-cell loss and
diabetes onset in h-IAPP transgenic mice [43]. However, deletion of CHOP only par-
tially prevents mice from h-IAPP-induced diabetes [43], suggesting that other molecular
mechanisms are involved in h-IAPP toxicity.

Given their membrane-disrupting properties, h-IAPP oligomers may trigger physical
changes in the plasma membrane that can be sensed by nonselective ion channels leading
to aberrant cytosolic free Ca2+ concentration increases [44,45]. Additionally, since toxic
oligomers were found to be associated with intracellular membranes of ER, secretory
vesicles and mitochondria in beta-cells of T2D subjects [38], we cannot exclude the pos-
sibility that local membrane instability caused by toxic oligomers permits unregulated
Ca2+ release from the ER. Indeed, overexpression of h-IAPP, leading to the formation
of toxic oligomers, induced apoptosis through increased cytosolic Ca2+ and activation
of the Ca2+-dependent proapoptotic protease calpain-2 in INS-1 832/13 beta-cells and
isolated human islets [45]. The detection of cleaved alpha-spectrin, a target of calpain-2
and indicator of a compromised cytoskeleton and cellular membranes, in beta-cells from
T2D subjects further indicates that calpain may play a key role in the pathophysiology
of T2D [45]. In line with this assumption, suppression of calpain activation attenuates
h-IAPP-induced beta-cell apoptosis in human islets [45] and in a transgenic mouse model,
thereby preventing diabetes onset [46].

2.1.2. Alteration of Protein Degradation Pathways

To prevent ER stress-induced apoptosis, cells also promote the elimination of mis-
folded proteins by the ER-associated degradation. In the cytoplasm, protein quality control
is achieved by the ubiquitin-proteasome pathway that involves recognition of dysfunc-
tional/misfolded proteins, their covalent conjugation to ubiquitin and subsequent degra-
dation by the proteasome. Increased expression of amyloidogenic h-IAPP in beta-cells
alters the ubiquitin–proteasome system as shown by the accumulation of polyubiquiti-
nated proteins in vitro in clonal beta-cells and isolated human islets, but also in vivo in
h-IAPP transgenic rodents [40,41,47]. We further demonstrated that this accumulation of
ubiquitinated proteins is due to a deficit in ubiquitin C-terminal hydrolase L1 (UCH-L1),
a deubiquitinating enzyme that allows ubiquitinated proteins to access the proteasome [47].
Importantly, deficit in UCH-L1 enhances ER stress-induced apoptosis in INS-1 832/13 cells
and in vivo in h-IAPP transgenic mouse beta-cells [47,48]. The potential involvement of
this deleterious mechanism in T2D was evidenced by the presence of polyubiquitinated
proteins and decreased UCH-L1 levels in beta-cells of subjects with T2D [47].

The ubiquitin–proteasome system is not the unique pathway involved in the elimina-
tion of misfolded proteins. The autophagy/lysosomal pathway (or macroautophagy) also
plays a key role to prevent the intracellular accumulation of misfolded/aggregated proteins
and damaged organelles. This pathway involves the formation of a double-membrane
vesicle, the autophagosome, to surround the material to be degraded. The autophagosomes
then fuse with lysosomes in which the sequestered material is degraded by hydrolytic en-
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zymes. Whereas one would have expected that the lysosomal degradation will compensate
for the compromised ubiquitin–proteasome system under h-IAPP overexpression, the au-
tophagy pathway is rather impaired in beta-cells overexpressing h-IAPP as demonstrated
in vivo in h-IAPP transgenic mice and rats [49]. Consequently, the alteration in lysosomal
degradation impairs the clearance of damaged mitochondria through mitophagy [50],
inducing oxidative stress and further exacerbating beta-cell ER stress and apoptosis. In
addition, the implication of the autophagy in h-IAPP clearance itself shown in isolated hu-
man islets and in transgenic mouse models [51–54] contributes to a vicious cycle whereby
IAPP reduces lysosomal degradation, which further promotes IAPP overload and toxicity.
Further providing evidence of such deleterious mechanism in vivo, a recent article reveals
that an autophagy enhancer ameliorated diabetes of h-IAPP transgenic mice through clear-
ance of amyloidogenic oligomers [52]. The potential involvement of autophagy deficits in
the decline of beta-cell mass in human T2D has been suggested by the accumulation of au-
tophagic vacuoles [55] and the increased levels of p62, a marker for lysosomal degradation
defects, in beta-cells of T2D human islets [37,53,56]. It is of note that dead beta-cells with
signs of altered autophagy and no major chromatin condensation observed in T2D patients
rather reflect an autophagy-associated cell death [55]. This form of programmed cell death
morphologically distinct from apoptosis may therefore additionally contribute to beta-cell
loss in T2D.

2.1.3. Oxidative Stress

Oxidative stress, defined as excessive production and accumulation of reactive oxygen
species (ROS), is another mediator of h-IAPP-induced beta-cell apoptosis. In autopsy
pancreatic tissues from Japanese patients with T2D, beta-cell loss and islet amyloid are
associated with expression of oxidative stress markers [19,37]. In vitro and ex vivo ex-
perimental research using rodent beta-cell lines, islets isolated from h-IAPP transgenic
mice or human islets showed that h-IAPP/islet amyloid induces oxidative stress, thus
contributing to beta-cell apoptosis [50,57–59]. Involvement of oxidative stress in h-IAPP
toxicity was further supported by the reduction in h-IAPP-induced beta-cell death fol-
lowing exposure of h-IAPP mouse islets and rat insulinoma RIN-m5F cells to antioxidant
or thiol/disulfide reducing agents [59,60]. Mechanistically, overexpression or exogenous
addition of h-IAPP activates apoptosis signal-regulating kinase 1 (ASK1), in rodent clonal
beta-cells, in beta-cells from h-IAPP transgenic mice and in human islets, leading to c-Jun
N-terminal kinase (JNK) activation and beta-cell apoptosis [57,58]. Inhibition of ASK1 was
shown to decrease h-IAPP-induced toxicity in RIN-m5F cells and isolated human islets [57].
Interestingly, h-IAPP-induced JNK activation is a critical downstream mediator in both
mitochondria-dependent (intrinsic) and death receptor-mediated (extrinsic) beta-cell apop-
tosis as reported in the h-IAPP transgenic mouse model [58]. Whereas, the involvement of
the intrinsic pathway in the cytotoxicity of h-IAPP is consistent with its role in induction of
oxidative stress, the activation of the extrinsic pathway suggests that h-IAPP also plays a
role in inflammation.

2.1.4. Inflammation

Amyloidogenic IAPP toxicity is also linked to islet inflammation and macrophage
infiltration, characteristics of islet pathology in T2D [61,62]. Indeed, h-IAPP increases
the expression of genes encoding chemokines, macrophage markers, nucleotide-binding
domain leucin-rich repeat and pyrin-containing receptor 3 (NLPR3) inflammasome com-
ponents and proinflammatory cytokines in islets from h-IAPP transgenic mice fed with
high fat diet [63]. In line with these results, h-IAPP aggregation triggers activation of
the NLRP3 inflammasome, leading to the production of the proinflammatory cytokine
interleukin 1β (IL1β) from macrophages and dendritic cells in vitro [64] as well as from
resident islet macrophages in h-IAPP transgenic mice [65,66]. Whereas the source of islet
IL1β remains under consideration (resident macrophages and/or beta-cells themselves),
this proinflammatory cytokine is known to induce beta-cell apoptosis. In human islets and
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islets from h-IAPP transgenic mice, IL1β mediates amyloid-induced apoptosis through
upregulation of the cell death receptor Fas and caspase-8 activation [67–69]. In addition,
amyloid formation reduces the levels of the natural IL1 receptor antagonist (IL1-Ra) in
human islets [70], potentially promoting IL1β-induced beta-cell death. Consistent with
the involvement of receptor-mediated processes in h-IAPP-induced inflammation, the re-
ceptor for advanced glycation end products (RAGE) was also reported to interact with
toxic h-IAPP intermediates to mediate inflammation and cytoxicity in INS-1 beta-cells and
murine primary islets [71]. Prevention of this interaction in vivo inhibited h-IAPP toxicity
and ameliorated islet pathology in h-IAPP transgenic mice [71].

2.2. Lipotoxicity

Beta-cells can be exposed to high circulating levels of free-fatty acids (FFAs) coming
from dietary origin or released by adipose tissue in the context of obesity, a T2D risk
factor. Therefore, in vitro studies have suggested that prolonged exposure (>12 h) to
saturated FFAs alters beta-cell function and survival, a phenomenon that was called
lipotoxicity. Nevertheless, whether the increase in FFAs levels in vivo is high enough to
damage beta-cells is still hotly debated with strong arguments from both sides [72–74].
Additionally, it remains unclear to what amount and type of lipids beta-cells are indeed
exposed in obese and/or T2D patients. This discussion is beyond the scope of our review,
so we decided to summarize the available literature on the in vitro mechanisms underlying
the toxic effects of FFAs on beta-cells/islets, in order to highlight potential targets involved
in apoptosis that might be relevant in vivo. Palmitate is not the only saturated FFA that may
target beta-cells in vivo, but it is the most abundant in human plasma, and it was shown
to be positively associated with T2D incidence [75]. In addition, palmitate is more toxic
than monounsaturated oleate and polyunsaturated linoleate in clonal rodent beta-cells and
dispersed human islet cells [76,77]. In the following paragraphs, we will therefore focus on
the molecular mechanisms involved in beta-cell death under chronic palmitate exposure.

2.2.1. ER Stress and Aberrant Ca2+ Release

As demonstrated by the upregulation of a large number of UPR genes in human
islets [78] and the activation of PERK and IRE1 branches in INS-1E cells, rat primary
beta-cells and human islets [79], an ER stress response is induced by chronic exposure
to palmitate. IRE1-induced JNK activation and PERK-induced CHOP contribute to the
execution of apoptosis in INS-1E cells [79]. Caspase-12, a prodeath protease located
on the outer surface of the ER, is subsequently activated to initiate the proapoptotic
cascade caspase under lipotoxic stress [79]. To trigger this deleterious ER response, chronic
palmitate depletes ER Ca2+ stores, therefore leading to PERK activation, alteration in ER
Ca2+ homeostasis and subsequent ER stress-induced apoptosis in rodent clonal beta-cells
and human islets [79–82]. Another consequence of ER Ca2+ depletion is the increase in
resting cytoplasmic free Ca2+ levels [80], known to initiate a Ca2+-dependent beta-cell
death pathway along with the activation of calpain-2 as observed in INS-1 832/13 cells
treated with palmitate and high glucose, but also in islets from diabetic db/db mice [82].

Chronic palmitate not only disrupts protein folding capacity of the ER, but also
induces ER protein overload. Palmitate alters ER lipid rafts distribution [83] and induces
aberrant protein palmitoylation [84], therefore reducing ER-to-Golgi protein trafficking and
contributing to beta-cell lipoapotosis [85]. In line with these data, a recent combined human
islet transcriptomic and INS-1E cell proteomic study revealed that palmitate modifies genes
involved in ER function, ER-to-Golgi transport and ER stress pathway in beta-cells [86].
Initiation of ER stress by palmitate also activates the intrinsic mitochondrial pathway of
apoptosis in clonal and primary rat beta-cells, pointing to an ER stress-mitochondrial cross
talk involved in lipotoxic beta-cell apoptosis [87].
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2.2.2. Mitochondrial Alterations

Palmitate-induced beta-cell apoptosis was shown to be mediated by the intrinsic
mitochondrial pathway as demonstrated by the translocation of the proapoptotic compo-
nent Bax from the cytosol to the mitochondria, and the subsequent cytochrome c release
from the mitochondria to form the apoptosome involved in caspase-9 and -3 activation in
INS-1E cells [87]. Contributing to the induction of this mitochondrial pathway of apoptosis,
in vitro exposure to palmitate also reduces the expression of the antiapoptotic components
Bcl-xl and Bcl-2 [87,88], and induces the expression of proapoptotic members death protein
5 (DP5) [87] and p53-upregulated modulator of apoptosis (PUMA) in clonal, primary rat
and human beta-cells [87,88]. Supporting their role in palmitate-induced beta-cell apop-
tosis, knockdown of either DP5 or PUMA reduces apoptosis in rat and human beta-cells
and protects mice from high fat diet-induced diabetes [87]. Palmitate further contributes
to beta-cell apoptosis through disruption of the mitochondrial network as illustrated by
the punctuated/fragmented mitochondria morphology in rodent clonal beta-cells and
human islets [78,87,89,90]. In addition, through generation of excess nitric oxide (NO),
palmitate causes mitochondrial DNA damage-induced apoptosis in INS-1 cells [91]. Palmi-
tate was also reported to trigger ROS production from diverse sources including the
mitochondrial electron transport chain [92], peroxisomes [93], or due to NADPH oxidase
activation [94]. A recent transcriptomic/proteomic profiling using INS-1E cells and isolated
human islet data further suggested that palmitate may elicit an oxidative stress response in
beta-cells [86].

2.2.3. Autophagy and Ubiquitin–Proteasome System Impairment

Palmitate was firstly suggested to stimulate autophagy in INS-1 cells [95], but other
studies revealed that exposure to palmitate rather impairs lysosomal degradation in pan-
creatic beta-cells [78,96–98]. In human islets chronically exposed to palmitate, beta-cells
present a massive increase in autophagic vacuoles and autophagosomes associated with
decreased lysosomal-associated membrane protein 2 (LAMP2) and cell death, similar to
T2D islets [55]. These observations suggest that palmitate alters autophagic removal of
these structures. Indeed, elevated levels of palmitate were shown to increase autophago-
some numbers [78,96,97,99–101] but alter autophagic flux in clonal beta-cells and human
islets [78,96–98]. Among the mechanisms involved in palmitate-induced autophagic flux
impairment, defect in lysosomal acidification and function [96,98], activation of mam-
malian target of rapamycin complex 1 (mTORC1), an inhibitor of autophagy [97], and
ER stress-induced JNK activation [99] were proposed to contribute to this lipotoxic alter-
ation. In addition, RNA-sequencing analysis of palmitate-treated human islets reveals
a decrease in autophagy-related and lysosomal function-related genes that may affect
autophagosome–lysosome fusion [78]. The link between palmitate-induced autophagy
alteration and beta-cell apoptosis was evidenced by the use of autophagy enhancing drugs
such as rapamycin and carbamazepine. Despite some controversies regarding the role of
palmitate on autophagy modulation (inhibition or activation), all studies unanimously
reported that stimulation of autophagy restores autophagic flux and decreases palmitate-
induced apoptosis in rodent beta-cells and human islets [78,96,97,101–103], while blocking
autophagy exacerbates beta-cell lipoapoptosis [102]. Supporting the relevance of these
findings in human T2D, rapamycin was shown to restore autophagic flux and to alleviate
ER stress and beta-cell death in human T2D islets [102], further pointing to a protective
role of autophagy in the maintenance of beta-cell integrity.

The role of FFAs on the ubiquitin–proteasome system has been less investigated. How-
ever, studies reported that palmitate disrupts the proteasome function as demonstrated by
the altered expression of genes associated with proteasome activity in human islets [78]
and the accumulation of ubiquitinated proteins in the MIN6 beta-cell line, isolated mouse
and human islets, similar to what is observed in pancreatic sections from mice fed a high
fat diet and from obese human donors [88]. Under these conditions, activation of the pro-
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teasome decreases ubiquitinated proteins and prevents the proapoptotic pathway induced
by palmitate in MIN6 cells [88].

2.2.4. Inflammation

Supporting a role of lipotoxicity in islet inflammation, several studies revealed that
exposure of human islets to palmitate promotes the expression of proinflammatory cy-
tokines and chemokines [104,105]. Whereas this IL1β-dependent induction of cytokines
and chemokines can be prevented by IL1R antagonism [104,105], blockage of IL1β signaling
does not protect human islets from lipotoxicity-induced beta-cell death [105], suggesting
that palmitate-induced mild inflammation may not be involved in beta-cell apoptosis. In ad-
dition, Wali et al. demonstrated that palmitate-induced islet cell death is not dependent
on the activation of the NLRP3 inflammasome [106]. Recent studies however revisited the
role of palmitate-induced inflammation in beta-cell apoptosis. Indeed, Hu et al. identified
the stimulator of interferon genes-interferon regulatory factor 3 (STING-IRF3) as a novel
signaling pathway involved in lipotoxicity-induced beta-cell inflammation and apoptosis
using INS-1 cells and islets from db/db mice [107]. Furthermore, palmitate exposure also
triggers secretion of a member of damage-associated molecular patterns (DAMPs) by iso-
lated human islets to promote macrophage infiltration of the islets, further driving islet
inflammation and beta-cell apoptosis [108]. Significant increase in the expression of this
specific DAMPs molecule was detected in islets of db/db mice, highlighting the potential
relevance of this mechanism in vivo [108].

2.3. Glucotoxicity and Glucolipotoxicity

Once the pathogenesis of diabetes is established, the sustained elevated levels of
glucose seen in individuals with T2D may ultimately exacerbate the loss of functional beta-
cells, and this concept has been termed “glucotoxicity” [109]. Supporting this assumption,
high glucose exposure has been shown to trigger beta-cell apoptosis in cultured human
islets [110–112]. In the course of obesity-associated T2D, the combined excess of glucose
and lipids may synergize to cause a faster and severe progression of beta-cell deficit, a
phenomenon called “glucolipotoxicity” [113–116], albeit debated [74]. In this section, we
will report recent mechanisms involved in glucotoxicity-induced beta-cell apoptosis as
well as the deleterious effects of glucolipotoxicity.

2.3.1. ER Stress and Aberrant Ca2+ Release

Chronic hyperglycemia was shown to perturb ER homeostasis and to induce ER
stress in pancreatic beta-cells. Indeed, prolonged exposure to high glucose leads to Ca2+

efflux from the ER to the cytosol, a process ultimately involved in beta-cell death [82].
This deleterious Ca2+ efflux from the ER was explained by the downregulation of the
sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) pump as observed in INS-1
832/13 cells treated with chronic high glucose, but also in islets from db/db mice and human
islets from subjects with T2D [82]. Importantly, the ER Ca2+ depletion is worsened in INS-1
832/13 beta-cells exposed to glucolipotoxic conditions [82]. Recently, a phenotypic screen
conducted to identify molecules that protect beta-cells further points to Ca2+ overload as
a key mechanism of glucolipotoxicity-induced apoptosis in INS-1E cells, rat and human
islets [117]. In addition, gluco(lipo)toxicity has been shown to induce ER stress-mediated
beta-cell apoptosis through the induction of the PERK-dependent proapoptotic factor
CHOP in mouse islets [118]. mTORC1 also appears as an important transducer of ER stress
response under glucolipotoxicity as demonstrated by its implication in the activation of
IRE1α-JNK pathway [119]. Glucotoxicity-mediated ER stress further induces activation of
apoptosis-initiating Bcl-2 homology domain 3 (BH3) proteins such as Bim and PUMA in
mouse islets [118], pointing to the reciprocal interplay between ER stress and mitochondrial
pathway of apoptosis under nutrient stress conditions.
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2.3.2. Oxidative Stress and Mitochondrial Dysfunction

Exposure to high levels of glucose (in combination with FFAs) has been shown to affect
beta-cell viability by inducing oxidative stress and mitochondrial apoptosis [116,120]. In-
deed, inhibition of oxidative stress protects clonal beta-cells, mouse islets and human islets
against the adverse effects of glucotoxicity [118,120]. Recently, altered iron metabolism has
been identified as a novel mechanism relaying gluco(lipo)toxicity to cytosolic ROS produc-
tion, mitochondrial dysfunction and beta-cell apoptosis in isolated mouse islets, but also
in vivo in a transgenic mouse model with beta-specific knockout of an iron transporter [121].
Supporting the involvement of mitochondrial dysfunction in glucotoxicity-induced beta-
cell demise, a global downregulation of mtDNA-encoded respiratory chain subunits has
been shown in human islets chronically exposed to elevated glucose levels [110]. This alter-
ation may lead to altered respiratory activity and increased susceptibility of beta-cells to
apoptosis [110]. Furthermore, elevated glucose (and FFAs) alters mitochondrial dynamics
in INS-1 cells [90] and in islets from diabetic Goto Kakizaki (GK) rats [89,122], whereas
its preservation protects INS-1 beta-cells from glucolipotoxicity-induced mitochondrial
fragmentation and apoptosis [90].

2.3.3. Autophagy and Ubiquitin–Proteasome System Impairment

Chronic exposure to elevated glucose has been shown to favor accumulation of ubiq-
uitinated proteins in clonal rat beta-cells and human islets [123,124]. Large aggregates
of ubiquitinated proteins in beta-cells were also observed on Zucker diabetic fatty rat
pancreatic sections [124]. These observations suggest that the degradation systems re-
moving such modified proteins (autophagy and/or proteasome) are dysfunctional in
beta-cells exposed to glucotoxic conditions. In Broca et al., accumulation of ubiquitinated
proteins was attributed to a decrease in proteasomal function as shown in high glucose-
treated INS-1E cells, human islets and hyperglycemic GK rat islets [123]. The alteration
in proteasomal activity was shown to be involved in ER stress induction and subsequent
beta-cell apoptosis in INS-1E cells and human islets [123]. In contrast, it was also re-
ported that although the proteasome is recruited to ubiquitinated protein aggregates in
clonal beta-cells exposed to high glucose, autophagy is rather involved in mediating their
clearance [124], therefore suggesting an alteration of beta-cell autophagic clearance under
glucotoxic treatment. Only few studies investigated the role of glucotoxicity on beta-cell
autophagy. Glucotoxicity was shown to positively regulate autophagy via PTEN-induced
putative kinase 1 (PINK1) in INS-1 and rat beta-cells [125] with an increased number of
autophagosomes detected in human islets [110], but it was also suggested that glucotoxicity
alters lysosomal degradation in human islets [97]. Most studies investigated the effects of
glucolipotoxicity and revealed that whereas glucose and palmitate synergize to increase
autophagosome formation [56,96,97,126], this combination also impairs autophagic flux
through lysosomal dysfunction in clonal beta-cells, mouse and human islets [56,96,97].
This defect occurring downstream of ER stress leads to accumulation of defective lysosomes
and subsequent release of hydrolytic enzymes such as cathepsin D through lysosomal
membrane permeability [56]. This release of cathepsin D into the cytoplasm, observed in
treated INS-1E cells, mouse islets and pancreatic sections from T2D subjects, is involved
in glucolipotoxicity-induced beta-cell death [56]. To further support the involvement of
defective autophagic clearance as a mediator of glucolipotoxicity, stimulation of autophagy
with rapamycin was shown to protect rodent clonal beta-cells from glucose and lipid
excess-induced apoptosis [97,126].

2.3.4. Inflammation

Whereas intra-islet IL1β production was suggested to be a toxic response to high glu-
cose exposure in human islets [127,128], other studies failed to demonstrate any increase in
IL1β expression in human beta-cells exposed to glucotoxicity [105,106,129]. Furthermore,
neither IL1β production nor activation of the NLRP3 inflammasome complex seem to me-
diate islet cell death in response to glucotoxicity or glucolipotoxicity [106,129–131]. Linking
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glucotoxicity to islet inflammation, a recent study, however, reported that high glucose
concentrations trigger secretion of a signaling molecule (DAMPs) from pancreatic human
islets, promoting macrophage infiltration of the islets, further driving islet inflammation
and beta-cell apoptosis [108]. This cascade of events is exacerbated under a combination
of glucose and lipids [108]. Attraction of circulating immune cells involved in local islet
inflammation and beta-cell death may also be mediated by gluco(lipo)toxic activation of
the transcription factors nuclear factor-kappa B (NFκB) and signal transducer and activator
of transcription 1 (STAT1) through tumor necrosis factor receptor 5 (TNFR5) induction,
as shown in INS-1 cells, human islets, and islets from high fat-fed mice [132].

2.3.5. Epigenetic Mechanisms and Nuclear Events

Epigenetic mechanisms may also contribute to gluco(lipo)toxicity-induced beta-cell
apoptosis by modulating gene expression through chromatin modification and/or non-
coding RNAs. Indeed, Li et al. demonstrated that the microRNAs (miRNAs) miR-375,
miR-30a and miR-34a are increased in INS-1 cells and pancreatic islets exposed to high
glucose levels, as well as in islets from diabetic GK rats [133]. miRNAs are endogenous
non-coding RNAs known to regulate gene expression by binding to the 3′UTR of their
target mRNAs resulting in their degradation and/or translational inhibition. In this study,
glucotoxicity-induced miR-375, miR-30a and miR-34a are involved in the inactivation
of Notch1 pathway, resulting in INS-1 cell apoptosis [133]. Using a miRNA microarray
analysis, another study identified a set of differentially expressed miRNAs in human
islets exposed to glucolipotoxic conditions [134]. Among them, miR-299-5p was shown to
be downregulated and this was revealed as a key mediator of glucolipotoxicity-induced
beta-cell apoptosis in human islets [134]. Regarding the factors involved in chromatin
remodeling, the histone acetyl-transferase p300 was shown to be diminished in clonal
beta-cells and human islets exposed to gluco/lipotoxicity as well as in beta-cells of hu-
man T2D donors [135]. This study further demonstrates that alteration of p300 levels
and activity plays a key role in mediating apoptosis in INS-1E cells and isolated mouse
islets [135]. The transcription factor cAMP-responsive element-binding protein (CREB) is
another key component of the transcriptional beta-cell machinery promoting cell survival.
We demonstrated that the degradation of CREB by the ubiquitin-proteasome system is
a mechanism subserving glucotoxicity-induced beta-cell death in rodent beta-cells and
human islets [136]. Finally, induction of the abovementioned deleterious mechanisms in
gluco(lipo)toxic INS-1 832/13 cells, rodent and human islets culminates in activation of
executioner caspases (-3 and -6) that are involved in the degradation of nuclear lamins,
components of the lamina in the nuclear envelope [137,138]. As a consequence of lamin
degradation, chromatin condensation and collapse of nuclear envelope under glucotoxicity
appear as additional events involved in beta-cell demise [137,138].

3. Molecular Mechanisms Induced by GLP-1 to Protect Beta-Cells from Apoptosis

Oral glucose induces a greater stimulation of insulin secretion than intravenous
glucose administration. This is called the incretin effect [139] and is caused by the release
of GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) from the gut by L and
K cells, respectively. GIP has a poor insulinotropic efficacy in T2D, thus incretin based-
therapies have been focused on GLP-1. Moreover, GLP-1 based therapies have positive
impact in promoting weight loss [140] and present low risk of hypoglycemia as they induce
insulin secretion in the presence of elevated glucose concentrations. GLP-1 has a short half-
life (1–2 min) as it is rapidly degraded in the circulation by a serine exopeptidase dipeptidyl
peptidase 4 (DPP-4) [139]. Consequently GLP-1 receptor agonist (GLP-1RA) therapies have
been developed in generating either stable derivatives of GLP-1 with prolonged action
resistant to DPP-4 (liraglutide, dulaglutide, semaglutide, lixisenatide) [140], or derivatives
of exendin-4 (exenatide, lixisenatide) [140]. Instead, another strategy consists of using
inhibitors of DPP-4 (iDPP-4) activity to preserve the endogenous production of GLP-1 [141].



Int. J. Mol. Sci. 2021, 22, 5303 11 of 23

At the molecular level, GLP-1 binds to its receptor (GLP-1R) belonging to the G-
protein coupled receptor (GPCR) family, which is known to be positively coupled to
cAMP production, albeit a coupling to Gq has also been reported [142,143]. The in-
tracellular increase in cAMP production activates protein kinase A (PKA) and cAMP-
activated guanine nucleotide exchange factors that target Ras-like GTPases 2 (EPAC2),
which in turn mediate changes in ion-channel activity leading to an increase in cytoso-
lic Ca2+ concentration, but also exert a direct action at the level of the exocytosis ma-
chinery [144] (Figure 2). These events enhance the stimulation of insulin secretion in a
glucose-dependent manner. The GLP-1R is also known to recruit scaffold proteins such
as beta-arrestins (ARRBs) [145,146] that may activate extracellular signal-related kinases
1 and 2 (ERK1/2) [147,148] or c-SRC [149], which are known to be involved in beta-cell
survival. Of note, ERK1/2 are also activated by GLP-1 independently of ARRBs in a PKA
dependent manner [147].
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Figure 2. Main molecular mechanisms induced by glucagon-like peptide-1 (GLP-1) to protect beta-
cells from apoptosis. Beta-cell stressors (such as increased IAPP, gluco- and/or lipotoxicity) may
trigger ER stress, alter mitochondrial function and/or the autophagic flux and modify gene expression.
GLP-1 and GLP-1RA have been reported to protect beta-cells by alleviating these deleterious effects.

3.1. GLP-1RA Alleviates Beta-Cell Apoptosis Induced by Diabetogenic Conditions or in T2D

GLP-1R activation triggers the transcription of genes involved in proliferation, or
that display antiapoptotic and/or anti-inflammatory activities in beta-cells, suggesting
that GLP-1 promotes beta-cell survival and regulates beta-cell mass [150]. However,
whereas a treatment with long lasting analogues such as liraglutide or dulaglutide are
able to promote pancreatic beta-cell proliferation in diabetic db/db mice [151,152], in
high-fat-fed and streptozotocin-induced [153] or alloxan-induced [154] mouse model of
T2D, it is well accepted that adult human beta-cells have a limited capacity to prolif-
erate [155]. On the contrary, many studies have identified in rodent and human that
GLP-1RA alleviate beta-cell apoptosis [151,156–159] induced by several stressors such as
gluco/lipotoxicity [160–163], which may trigger oxidative [164] and ER stress [162,165],
or by cytokines [166–169]. A reduced beta-cell apoptosis was also observed in diabetic
db/db [152] and Akita [170,171] mice or prediabetic GK rats [172] chronically treated with
GLP1-RA. Unlike GLP-1-induced insulin secretion, its role as a pro survival molecule is
far from a consensus, and pleiotropic effects have been reported. Indeed, multiple signal-
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ing pathways and the regulation of various genes have been described. Therefore, our
knowledge regarding the molecular mechanisms involved is unclear. For instance, de-
pending on studies and models, GLP-1RA were shown to protect beta-cells from apoptosis
through PKA and phosphoinositide 3-kinase (PI3K)-AKT-dependent pathways partly via
the inhibition of ER stress [162,165,171,173] by increasing immunoglobulin heavy-chain
binding protein (BiP) and JunB [162] or by blocking the induction of sterol regulatory
element-binding protein 1 (SREBP1c) and C/EBPb transcription factors [174]. Indepen-
dently of ER stress, PKA and PI3K-AKT-dependent pathways were shown to be involved
in suppression of Forkhead box O1 (FoxO1) [160,175,176], the restoration of pancreatic
and duodenal homeobox 1 (PDX1) [176,177] via mammalian sterile 20-like kinase 1 (Mst1)
inactivation [161], inactivation of NADPH oxidase 2 (NOX2) [163] or improved mito-
chondrial function [161] by suppressing sustained AMP-activated protein kinase (AMPK)
hyperactivation [178]. Exendin-4 also reduced oxidative damage and apoptosis through
Ca2+-independent phospholipase A2 [179], or preserved proteasome activity from the
deleterious effects of glucotoxicity [123] in clonal beta-cell lines.

Other signaling that is known to be involved in beta-cell survival is also improved
upon GLP-1R treatment such as the insulin signaling [180] or the activation of the tran-
scription factor CREB [181,182] leading to the expression of the insulin receptor substrate
2 (IRS-2) [181,182]. Finally, GLP-1 was shown to trigger the phosphorylation of Bad at
specific Ser sites leading to its inactivation, via SAD-A, a serine/threonine protein kinase
of the AMPK subfamily [183] or via ERK1/2- phosphorylated p90 ribosomal S6 kinase
(p90RSK) activation [147]. On the contrary, a prolonged treatment with GLP-1 did not
retain protective effect probably because of the increased ER stress [160].

Autophagy, which prevents beta-cell injury and death by protecting against ER stress,
inflammation and/or oxidative stress, was shown to be affected by GLP1-RA. Exendin-4
was primarily reported to improve beta-cell function and survival without modulating the
autophagic flux [184]. This was demonstrated by only measuring p62 expression in diabetic
db/db mice [184]. Nevertheless, with the development of new techniques to monitor the
autophagic flux, it is now agreed that GLP-1RA may indeed modulate autophagy in
beta-cells [184]. In glucolipotoxic beta-cells (clonal INS-1E cells and human islets) that
showed increased apoptosis, the number of autophagosomes was shown to be increased,
demonstrating a blockade of the autophagic flux [56]. Interestingly, treatment of beta-cells
and/or animals with exendin-4 [56] or liraglutide [153,185–187] rescued lysosomal function
and autophagic flux in both lipotoxic and glucolipotoxic conditions leading to a protective
effect on beta-cells, and suggesting that stimulation of the autophagic flux by GLP-1 is
critical for its protective effects [188].

The mechanisms underlying the impact of GLP-1RA on both autophagy and lysosomal
function are not yet elucidated, but several pathways have been explored. It has been
recently reported in INS-1 cells that liraglutide ameliorated the injury triggered by lipotoxic
conditions through the upregulation of autophagy mediated by FoxO1 [187], or throughout
the upregulation of mesencephalic astrocyte derived neurotrophic factor (MANF) in MIN6
cells [189], thus protecting cells from ER stress. It has also been reported that GLP-1 may
protect beta-cells from glucotoxicity through enhancing autophagy by AMPK inhibition in
INS-1 cells [190]. GLP-1-induced protection against apoptosis through the autophagic flux
in human beta-cells still need to be fully explored.

Only a limited number of studies have investigated the potential impact of GLP-
1RA on IAPP toxicity. Exendin-4 alleviated h-IAPP-induced apoptosis in MIN6 [191] and
in INS-1E [192] beta-cell lines, in islets from h-IAPP transgenic mice [193] or in human
islets [194,195]. The protection was not associated with a reduced formation of h-IAPP
deposits [192], but with increased levels of AKT phosphorylation [192–195]. Several mech-
anisms downstream AKT phosphorylation have been reported such as reduced IL1β
immunoreactivity and release [194], the enhancement of pro h-IAPP processing [195],
translocation of PDX-1 in the nucleus [192] and improved mitochondrial function [192].
A reduced JNK activation has not always been noticed [192,195], and exendin-4 protection
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from h-IAPP toxicity does not seem to alleviate ER stress in INS-1E cells [192]. Finally, an im-
provement of the autophagic flux by exendin-4 was reported in MIN6 cells overexpressing
h-IAPP [191].

3.2. iDPP-4 Alleviates Beta-Cell Apoptosis Induced by Diabetogenic Conditions

Although the impact on weight loss is less pronounced than that of GLP-1RA, in-
hibition of DPP-4 activity is another potent strategy for preserving both GLP-1 and GIP
endogenous production, and therefore enhancing incretin-induced insulin secretion in
T2D [141]. Few studies in vivo have investigated the impact of DPP-4 inhibition on beta-cell
survival [196–202]. In Zucker diabetic rats, the plasma levels of GLP-1 were increased upon
alogliptin treatment, and beta-cell survival was improved through CREB activation, and
restoration of Bcl-2 and IRS-2 expression [196]. Vildagliptin reduced beta-cell apoptosis
in a mouse model of diabetes (KK-Ay-TaJcl) [197] and in db/db [199] mice, and this was
associated with decreased ER [197,199] and oxidative stress [197]. Moreover, vildagliptin
was also reported to protect beta-cells from inflammation in advanced-aged diet-induced
obesity mouse model [200], while a treatment with another iDPP-4, MK-626, improved the
autophagic flux in high fat diet-induced obese mice [201].

In addition to preserving GLP-1 secreted by the gut, recent studies have reported
that inhibiting DPP-4 may also protect GLP-1 released locally by islets [203–206]. Indeed,
DPP-4 is expressed in rodent and human islets [205,207–210] and GLP-1 was reported to be
expressed [205,211,212] and released [205,211,212] by islet alpha-cells upon glucose [211],
arginine [211], GPR142 activation [213] or GIP stimulation [214]. Intra-islet GLP-1 makes
a significant contribution to islet adaptation, particularly expansion of beta-cell mass to
face insulin resistance [158,215] or adaptation in pregnancy [216] in mice. Moreover, intra
islet GLP-1 was shown to reduce apoptosis triggered by lipotoxicity [158] and glucol-
ipotoxicity [213] in rodent beta-cells, whereas blocking GLP-1R signaling in beta-cells
with exendin-(9–39) decreased cell viability and increased cell apoptosis via PDX1 inhi-
bition [158]. Inhibiting DPP-4 activity in human beta-cells protected against gluco- [203],
lipo- [203] and cytokine- [203,204] induced toxicity by reducing cytokine production and
secretion from islets [203] and NFκB1 expression [204]. A reduction of oxidative stress was
also involved [203]. Most importantly, it also reduced apoptosis in islets from T2D donors,
suggesting that inhibiting DPP-4, besides playing a role in incretin effects, directly affects
beta-cell survival [204]. Nevertheless, it should be stressed that in T2D islets the propor-
tion of alpha-cells expressing GLP-1 is increased [205] while DPP-4 expression [204,210]
and activity [208] are reduced, leading to an increased secretion of GLP-1 [211]. There-
fore, a protective role of iDPP4 in preserving intra islet GLP-1 needs to be further addressed
to unequivocally determine its relevance in T2D.

4. Conclusions and Perspectives

This review relates the molecular mechanisms involved in beta-cell apoptosis. As stated
above for clarity, we independently described the stress pathways involved, but it has to be
considered that crosstalk between these pathways may occur at different levels to further
exacerbate beta-cell death (Figure 1). Moreover, even though amyloid deposits, lipotoxicity
and glucotoxicity are the “most investigated” causative factors of beta-cell demise, hostile
environmental context may also superimpose deleterious mechanisms to further accelerate
the progression towards overt T2D. Indeed, a new area of research points to the detrimental
consequences of altered circadian rhythms/sleep deprivation or exposure to pollutants on
beta-cell survival [217–219].

It should also be stressed that mainly in vitro or ex vivo molecular mechanisms in-
volved in beta-cell apoptosis were reported as stated in the introduction. Although studies
in human islets have been described, the relevance of these mechanisms remains to be
proven in T2D. In particular, whether “lipotoxicity” has a significant deleterious effect on
beta-cells in vivo. Another key point that is still unknown, is whether GLP-1RA-based
therapies in T2D patients participate in the protection and maintenance of the beta-cell
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mass in vivo. This question is unresolved because we are still lacking technologies to assess
in 3D the real beta-cell mass in vivo in humans.

Finally, whereas the protective mechanisms of GLP-1R based therapies have been studied,
only few studies have investigated beta-cell protection induced by the other incretin GIP [220],
and its relevance in human islets remains to be established. This is a critical question that will
undoubtedly be addressed in futures studies. Indeed, although GLP-1 and GIP have some
overlapping functionality, their combined use (dual agonist also called twincretins) leads to
synergistic effects on diabetes and related metabolic disease [221–223]. Therefore, development
of dual agonists and elucidation of their potential role on beta-cell mass preservation represent
a considerable interest to improve current GLP-1R-based therapies in T2D.
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