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Next generation sequencing (NGS) can be applied to identify and characterize the entire

set of microbes within a sample. However, this platform does not provide a morphological

context or specific association between the viral or bacterial sequences detected and

the histological lesions. This limitation has generated uncertainty whether the sequences

identified by NGS are actually contributing or not for the clinical outcome. Although in situ

hybridization (ISH) and immunohistochemistry (IHC) can be used to detect pathogens in

tissue samples, only ISH has the advantage of being rapidly developed in a context of an

emerging disease, especially because it does not require development of specific primary

antibodies against the target pathogen. Based on the sequence information provided by

NGS, ISH is able to check the presence of a certain pathogen within histological lesions,

by targeting its specific messenger RNA, helping to build the relationship between the

pathogen and the clinical outcome. In this mini review we have compiled results of the

application of NGS-ISH to the investigation of challenging diagnostic cases or emerging

pathogens in pigs, that resulted in the detection of porcine circovirus type 3, porcine

parvovirus type 2, Senecavirus A, and Mycoplasma hyorhinis.

Keywords: pig, diagnosis, emerging infectious diseases, NGS-ISH, PCV3, PPV2, SVA

INTRODUCTION

The U.S. swine industry has evolved from small independent farming operations to integrated
large systems (1). Along with this process, the production systems have faced emerging health
challenges, particularly regarding virus diseases (2). In addition, virus-associated syndromes and
disease complexes have become more common due to the involvement of multiple pathogens
or virus subtypes in the same tissue (2). The early identification of pathogens in pig herds is
crucial for the decision-making process in regards of disease control, prevention, strategy of
treatment and, therefore, mitigation of the impact of a particular disease (3). Next-generation
sequencing has been recently used to detect nucleotide sequences in challenging diagnostic cases,
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but it does not provide morphological context that would
allow the association of a specific viral sequences with the
histological lesions. This scenario generates uncertainty whether
the sequences identified by NGS are actually contributing for the
clinical signs. While immunohistochemistry may overcome this
limitation by detecting antigens in association with histological
lesions, it requires specific antibodies that are not always
promptly available commercially (4). Alternatively, in situ
hybridization assay allows the detection of nucleotide sequences
in histological sections without requiring the development of
such antibodies.

Traditional diagnostic methods are still extremely important
to veterinary diagnostics medicine. However, the turnaround
time for results that are crucial during diagnostic investigations
of unsolved cases can be much to slow. Q-PCR is an assay with
a short turnaround that offers an indirect quantification of the
amount of a microorganism in the sample, but it is not able to
distinguish whether a given pathogen was viable in the sample,
whether its presence is associated with histological lesions of
if the pathogen/lesions association correlates with the clinical
signs. Bacterial and viral isolation is considered the gold standard
method for the definitive diagnostics of numerous infectious
diseases, but these classic approaches can be time consuming.
Also, isolation of an emerging pathogen faces obstacles, such as
what is the susceptible cell line or media for isolation, if it is a
caused by a non-culturable agent and are there multiple agents
involved in the disease syndrome (5).

Tissue-based diagnosis is undeniably one of the most
important approaches for the identification of a potential
role of the pathogen as the etiologic agent of that disease.
The histological lesions recognized by the pathologist can be
associated with the presence of a given pathogen detected
by immunohistochemistry within the lesions (4). Nevertheless,
when dealing with an emerging disease, production of a
sensible and specific antibody and the optimization of the
immunohistochemistry protocol can take several months,
delaying effective actions to control a particular emerging disease.
This mini-review focuses on the development and application
of a new platform of diagnostics that combine next-generation
sequencing and in situ hybridization for investigating unsolved
diagnostic cases in swine.

NEXT-GENERATION SEQUENCING AND
IN SITU HYBRIDIZATION

Sequence technologies have risen in the past few years as
a meaningful ancillary tool for diagnostic investigation of
infectious diseases. Next generation sequencing (NGS) is one of
the most recent sequencing approaches included in the range
of diagnostic methods for veterinary diagnostic investigations
(6–8). The NGS advantage in relation to simple sequencing
relies on a de novo or mapping assembly of sequenced regions,
dismissing the use of specific targets to build a complete
genome. With NGS, genome fragments of virtually all the
microorganisms present in the clinical samples are sequenced
and then, re-assembled based on genome data bases publicly

available. These characteristics of NGS make it very convenient
for investigation of infectious disease outbreaks in which the
etiologic agent is unknown. Although extremely sensitive, NGS
lacks the association of the presence of a microorganism and
the type of histological lesion. Since the development of specific
antibodies for immunohistochemistry requires a long period of
time, there was a demand for a diagnostic method that would
allow the association of the genomes detected by NGS with a
tissue lesion.

The usefulness of in situ hybridization (ISH) to detect
pathogens within histological lesions in pigs has been recognized
since the 1990’s (9–12). At first, ISH probes were radioactively
labeled, but due to the risk of manipulation and low sensitivity of
the test, alternative labeling systems were developed (4), such as
digoxigenin, biotin, dinitrophenol, and fluorescence (also named
as FISH). Although the traditional ISH assays have satisfying
specificity, their sensitivity has also been a target of discussion
even with non-radioactively labeled probes, especially when the
target was a short nucleotide sequence (4, 10, 13, 14). Recently,
a new approach for increased ISH sensitivity has been developed
(15). This improved method is based on a signal amplification
system that allows visualization of a single molecule in paraffin
embedded sections. Since then, various publications have proven
the applicability of this new ISH method for research studies
in veterinary medicine (16–21). In those cases, the design of
ISH probes was based on the nucleotide sequences of endemic
or well-described microorganisms. Withal, in cases in which
the involvement of known pathogens has been ruled out by
other methods, there is a need of an auxiliary method for the
detection of possible new emergent pathogens or variant of
known pathogens in clinical samples. Therefore, the association
of NGS and ISH has been extremely advantageous to overcome
those limitations (Figure 1).

APPLICATION

Vesicular Lesions Caused by
Senecavirus A
The years of 2014 and 2015 were marked in the swine
industry of the USA, Canada, China, and Brazil by outbreaks
of diseases characterized by vesicular lesions on the coronary
band and snouts of sows and growing pigs and acute
neonatal pig deaths (22–25). In addition to the impact of the
disease in pig herds itself, the vesicular lesions are clinically
indistinguishable from foot-and-mouth disease (FMD) and other
vesicular diseases.

Diagnostic investigations ruled out the most common
vesicular diseases of pigs (swine vesicular disease, vesicular
stomatitis and vesicular exanthema), as well as FMD.
Then, samples were submitted for NGS. NGS revealed
genome sequences with high similarity to Senecavirus A
(SVA) available in GenBank (22). Since then, SVA has
been confirmed as the etiologic agent of those outbreaks of
vesicular diseases in pig herds in North America and South
America (26, 27), and a commercial kit for SVA qRT-PCR
was developed.
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FIGURE 1 | Workflow for diagnostic investigation of unsolved cases using next-generation sequencing and in situ hybridization.

Although SVA has been associated with swine idiopathic
vesicular disease in Canada and the USA since 2008, anti-
SVA antibodies were not commercially available for IHC for
investigation of SVA outbreaks in 2014. Based on the genome
sequences identified by NGS, ISH probes were designed to
investigate the presence of SVA within the histological lesions
from RT-qPCR positive samples, including tissue samples from
piglets affected by acute neonatal losses (17). Lesions in the
skin of sows with snout and coronary band vesicles consistently
associated with low Ct values for SVA in the RT-qPCR and a
strong positive label in ISH (17). Samples from piglets affected
by the acute neonatal losses did not showed histological lesions,
with exception of erosive lesions of tongues from piglets (17, 23),
which were also ISH positive for SVA-mRNA.

ISH has also been valuable for investigation of the
pathogenesis of SVA infection in pigs. Vesicular lesions
were reproduced by the experimental infection of 15-weeks-old
pigs with a contemporary SVA isolate obtained from a lesion
swab of a finishing pig with vesicular disease (18). Histological
lesions were observed in skin (vesicles) and associated with
ISH positive signals as previously reported. All other tissues
were histologically normal, except lymphoid tissues, in which
lymphoid hyperplasia was observed. ISH positive signals for SVA
were observed in tonsils, which had higher amounts of nucleic
acids determined by RT-qPCR (18).

PCV2- and PCV3-Associated Diseases
Pigs from many countries have been suffering from clinical
syndromes caused by porcine circovirus type 2 (PCV2). PCV2

associated disease was first described in the early 1990’s (28). The
clinical signs of PCV2 are associated with the well-recognized
manifestations of the infection [post-weaning multisystemic
wasting syndrome (PMWS), Porcine dermatitis and nephropathy
syndrome (PDNS), reproductive disease, enteric disease, lung
disease] although subclinical infections are also common (29).
Since the development of a vaccine against PCV2, the clinical
signs of PCV2-associated diseases has been diminished (29). It
was in 2016 when the new porcine circovirus was found in pigs
exhibiting clinical signs similar to the PCV2-associated diseases.

Cases of post-weaned pigs with unspecific clinical signs,
mainly characterized by weight loss, failure to thrive and
occasionally respiratory distress were presented at the Veterinary
Diagnostic Laboratory at the University of Minnesota (UMN-
VDL). Although the majority of the clinical signs and histological
lesions were attributed to the presence of known pathogens
identified by traditional diagnostic tests, lymphoplasmacytic and
histiocytic myocarditis, vasculitis and interstitial pneumonia
observed in affected pigs were still lacking an etiologic
explanation. Tissue samples were submitted to NGS and a
“porcine circovirus-like” sequence was consistently identified.
From the sequences identified by NGS, a sequence of 200 bases
with high similarity to the genus Circovirus, was used to design
a ISH probe, in order to confirm the presence of the proposed
virus within histological lesions. PCV3 mRNA demonstrated by
hybridization signals was observed in cardiomyocytes and in
wall of arteries with inflammation (30). PCV3 has then been
recognized as a new Circovirus species by the International
Committee on Taxonomy of Viruses (ICTV) (31).
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Since then, primers for q-PCR were developed based on the
PCV3 genome sequence and have been used in countries from
Asia (32–34), Europe (35, 36), and South America (37, 38).
PCR positive results and ISH positive signals were detected in
tissues sections from sows with PDNS and reproductive failure,
in tissues from aborted fetuses, and in diverse samples from pigs
with PMWS, especially in myocardium and arteries (39, 40).
Although viral isolation is still lacking, PCV3 has been proposed
as the etiologic agent of clinical syndrome associated with the
histological lesions described above, based on the molecular
guidelines for microbiological etiologic causation as suggested by
Fredricks and Relman (41).

Although PCV2 could be ruled out as a potential etiologic
agent in cases of PMWS, PNDS, and reproductive failure, there
was still a possibility of a co-infection of PCV2 and PCV3,
especially due to the endemic distribution of both viruses within
the pig population. Hence, a duplex-ISH was developed to allow
the simultaneous detection of both viruses in pig samples (37).
From a total of 477 tissue samples recovered from the UMN-
VDL historical cases, 9% (n = 43) were positive for both viruses,
PCV2 and PCV3 by ISH (37). Both viruses were predominantly
observed in germinal centers in lymph nodes, in peritarteriolar
lymphoid tissue in the spleen, in lymphohistiocytic infiltrates
of heart arterioles and also in peri-bronchiolar lymphoid cuffs
(37). However, it was noted that lymphoid depletion is not
a characteristic of PCV3 infection, as it is for PCV2. These
results highlight the challenges for interpreting PCR results when
animals are positive for PCV2 and PCV3 and reinforce the need
of qualified pathologists to interpret the histological lesions and
the possible association with the agent identified by NGS.

Mycoplasma hyorhinis-Associated
Conjunctivitis
Recent outbreaks of swine conjunctivitis have been reported to
the University of Minnesota Veterinary Diagnostic lab. After
ruling out the most common causes of infectious conjunctivitis
in pigs (pseudorabies, swine influenza, porcine cytomegalovirus,
and Chlamydia) and discarding the possibility of a non-infectious
cause palpebral conjunctiva from affected pigs were submitted for
NGS. NGS results indicated a high proportion of M. hyohrinis
genome in the samples, which were confirmed by qPCR. In
order to verify whether M. hyorhinis was present within the
lesions, and due to a lack of antibodies anti-M. hyorhinis for
immunohistochemistry, ISH probes were designed based on
the 16S sequence of M. hyorhinis. Hybridization signals were
observed in samples from affected pigs, but not in samples from
non-affected animals from unrelated non-affected herds (42).
These results corroborate past investigations that indicated M.
hyorhinis as the etiologic agent of swine conjunctivitis (43, 44).

Porcine Parvovirus Type 2-associated With
Perivasculitis
A novel porcine parvovirus, parvovirus type 2 (PPV2) was
originally identified in Myanmar in 2001 in a serum sample
(45), and since then, PPV2 has been detected in various pig
samples (46–48). There has been reports of a positive correlation

of PPV2 detection and poor performance in affected pigs (47) and
of presence of PPV2 in lung tissues from pigs with respiratory
clinical signs and PCR positive for PCV2. PPV2 was identified by
direct in in situ PCR in pulmonary lesions described as vascular
thickness caused by lymphocytic infiltration, reduced alveolar
spaces and epithelial damage, without a direct correlation
with PCV2 detection in the same tissues (49). Cases of poor
growth performance in nursery pigs associated with systemic
perivascular inflammation were studied for potential causative
agent at the UMN-VDL. Due to the lack of detection of known
pathogens in samples from the affected pigs, tissue samples were
submitted for NGS. The high proportion of PPV2 sequences
identified by NGS along with compatible histological findings
suggested the involvement of PPV2 in the cases. Samples were
then tested by RT-qPCR and positive tissues were submitted
to ISH. PPV2 ORF mRNA was chosen as the target for ISH
probes. ISH PPV2 signals were observed in an association
with the histological lesions in various tissues (lung, joint and
subcutaneous tissues) within the cytoplasm of endothelial cells
and in lymphoid follicles of the lymph nodes and broncho-
associated lymphoid tissues (50). These results represent an
important advancement for understanding the potential role
of PPV2 in emerging systemic syndromes in nursery and
finishing pigs.

Porcine Sapelovirus in Pigs With
Polioencephlomielitis
Outbreaks of atypical neurological disease were reported in
swine herds of the United States in the past few years. Clinical
signs of anorexia, compromised movement, decreased responso
se stimuli and mental dullness were associated with severe
lymphoplasmacytic and necrotizing polioencephalomyelitis with
multifocal areas of gliosis and neuron satellitosis, suggestive
of a neurotropic viral infection. Due to the lack of detection
of the most commonly viruses associated to neurological
diseases in pigs, such as pseudorabies virus and atypical porcine
pestivirus, porcine reproductive and respiratory syndrome virus
and porcine circovirus, samples of brainstem and spinal cords
from affected pigs were used NGS. NGS results identified porcine
sapelovirus and absence of other or novel pathogens. By ISH,
Sapelovirus A mRNA was detected in neurons and nerve roots
of the spinal cord of affected pigs (51).

FINAL CONSIDERATIONS

The incidence of swine emerging, and reemerging diseases
have increased in the past few years. Traditional ancillary
tests are routinely used to investigate the involvement of
known pathogens when samples from outbreaks are sent for
diagnostic investigation. However, one of the characteristics
of traditional ancillary tests is that they are designed to
detect known pathogens. The association of NGS-ISH has
been instrumental on the investigation of etiologic causes of
cases in which the traditional ancillary tests did not identified
involvement of known pathogens. The UMN-VDL, one of the
most important diagnostic laboratories for swine infectious
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diseases in the US, is a pioneer in using NGS-ISH as a tool
investigate possible emerging diseases. Nevertheless, as happens
to new technologies are being implemented and optimized,
NSG-ISH has its drawbacks. Although NGS is currently
cheaper, faster and more assessible to non-research purposes,
it is still a technology that requires structured laboratories,
equipment and, most importantly, qualified professionals to
interpret the relevance of the several microorganisms’ sequences
identified by the sequencing in the swine samples. ISH also
has its own limitations. By targeting mRNA, ISH helps to
determine whether the virus is metabolically active within
lesions. However, the approach relies on targeting a mRNA that
corresponds to the DNA sequence identified by the NGS. If
the chosen DNA sequence is not been translated in mRNA,
the absence of positive signals can mean a false negative.
In addition, ISH method used in combination with NGS it
is still relatively expensive due to dependency on a single
manufacturer that detains the intellectual property of the ISH
technique. Nevertheless, we anticipate that the in the next
few years both the demand for best diagnostic approaches
for emerging diseases will stimulate both methodologies to
evolve in regards of their feasibility and costs, making the
NGS-ISH an important tool for identifying pathogens in swine
emerging diseases.

In conclusion, the NGS-ISH diagnostic platform presented
here combines the comprehensive unbiased detection of nucleic
acid sequences with the morphological context shown in the
histological lesions. This characteristic has been specifically
important to diagnose infectious diseases in which the clinical
and laboratory findings are not able to specific determine the

primary pathogen involved in the clinical outcome. Additionally,
the ability to detect sequences from previously unknown agents
through NGS allows the design and subsequent identification of
emerging pathogens within tissue sections, by targeting mRNA
using ISH assay. This rapid diagnostic response is critical to
implement control measurements and mitigate economic losses
in the swine industry.
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