Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-N'-(4-Nitrobenzylidene)-2-(8quinolyloxy)acetohydrazide methanol solvate

Chun-Yan Ren

College of Chemistry and Pharmacy, Qingdao Agricultural University, Shandong 266109, People's Republic of China Correspondence e-mail: furbear01@163.com

Received 1 April 2009; accepted 28 April 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.195; data-to-parameter ratio = 12.8.

In the title compound, $C_{18}H_{14}N_4O_4$ ·CH₃OH, the mean planes of the benzene ring and the quinoline ring system make a dihedral angle of 15.5 (2)°. The methanol solvent molecule forms an O-H···N hydrogen bond to the quinoline ring system and accepts an N-H···O hydrogen bond from the hydrazide NH group. The molecules lie in layers approximately parallel to (101) and C-H···O interactions exist between molecules within the layers.

Related literature

For the coordination chemistry of 8-hydroxyquinoline and its derivatives, see: Chen & Shi (1998); Mona & Wageih (2002). For a related structure, see: Tan (2009).

Experimental

Crystal data

 $C_{18}H_{14}N_4O_4 \cdot CH_4O$ $M_r = 382.37$ Monoclinic, $P2_1/c$ a = 11.345 (10) Å b = 11.559 (11) Å c = 16.234 (12) Å $\beta = 120.06$ (5)°

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.980, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 255 parameters $wR(F^2) = 0.195$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.21 \text{ e } \text{ Å}^{-3}$ 3258 reflections $\Delta \rho_{min} = -0.26 \text{ e } \text{ Å}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5···N1	0.82	2.02	2.817 (4)	164
$N2-H2 \cdot \cdot \cdot O5$	0.86	2.08	2.919 (4)	164
$C17 - H17 \cdots O3^{i}$	0.93	2.53	3.287 (5)	139
$C18-H18\cdots O4^{i}$	0.93	2.48	3.329 (5)	152
$C3-H3\cdots O2^{ii}$	0.93	2.58	3.233 (5)	128

V = 1843 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.16 \; \mathrm{mm}$

9196 measured reflections

3258 independent reflections

1872 reflections with $I > 2\sigma(I)$

Z = 4

T = 295 K

 $R_{\rm int} = 0.050$

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y + 1, z.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2363).

References

Chen, C. H. & Shi, J. M. (1998). Coord. Chem. Rev. 171, 161–174.
Mona, M. M. & Wageih, G. H. (2002). J. Coord. Chem. 55, 439–457.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments

Inc., Madison, Wisconsin, USA.

Tan, J. (2009). Acta Cryst. E65, 0651.

supplementary materials

Acta Cryst. (2009). E65, o1212 [doi:10.1107/81600536809015992]

(E)-N'-(4-Nitrobenzylidene)-2-(8-quinolyloxy)acetohydrazide methanol solvate

C.-Y. Ren

Comment

8-Hydroxyquinoline and its derivatives are well-known ligands in coordination chemistry (Chen & Shi, 1998; Mona & Wageih, 2002). In our search for new extractants of metal ions and biologically active materials, the title compound has been synthesized. In the crystal structure, all bond lengths and angles are normal and comparable to those in the related compound (*E*)-*N*-[1-(4-hydroxyphenyl) ethylidene]-2-(quinolin-8-yloxy)acetohydrazide methanol solvate (Tan, 2009). The mean planes of the benzene ring and the quinoline rings make a dihedral angle of 15.5 (2)°. The methanol molecule is linked to the C₁₈H₁₄N₄O₄ molecule *via* intermolecular O—H···N and N—H···O hydrogen bonds (Fig. 1). The molecules lie in layers approximately parallel to (101) and C—H···O interactions exist between molecules.

Experimental

2-(Quinolin-8-yloxy)acetohydrazide (2.18 g, 10 mmol), 4-nitrobenzaldehyde (1.51 g, 10 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 3 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone-methanol (1:2, v/v) solution over a period of 3 d.

Refinement

All H atoms were visible in a difference Fourier map, but were placed in calculated positions with C—H = 0.93 Å for aryl, 0.97 Å for methylene and 0.96 Å for the methyl H atoms, O—H = 0.82 Å and N—H = 0.86 Å, and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C/N)$, or $1.5U_{eq}(C)$ for the methyl groups, and $1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms. The dashed lines indicate hydrogen bonds.

Fig. 2. Intermolecular C—H \cdots O interactions (dashed lines). H atoms have been omitted for clarity.

(E)-N'-(4-Nitrobenzylidene)-2-(8-quinolyloxy)acetohydrazide methanol solvate

Crystal data

$C_{18}H_{14}N_4O_4{\cdot}CH_4O$	$F_{000} = 800$
$M_r = 382.37$	$D_{\rm x} = 1.378 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1871 reflections
a = 11.345 (10) Å	$\theta = 2.3 - 22.8^{\circ}$
b = 11.559 (11) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 16.234 (12) Å	T = 295 K
$\beta = 120.06 \ (5)^{\circ}$	Block, colorless
V = 1843 (3) Å ³	$0.20\times0.18\times0.16~mm$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	3258 independent reflections
Radiation source: fine-focus sealed tube	1872 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.050$
<i>T</i> = 295 K	$\theta_{\text{max}} = 25.1^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 10$
$T_{\min} = 0.980, \ T_{\max} = 0.984$	$k = -12 \rightarrow 13$
9196 measured reflections	$l = -17 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H-atom parameters constrained
$wR(F^2) = 0.195$	$w = 1/[\sigma^2(F_o^2) + (0.1106P)^2 + 0.0143P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3258 reflections	$\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$
255 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y 01 0.0547 (6) 0.1624 (2) 0.23691 (14) 1.11105 (14) 02 0.1325 (2) -0.07065(16)1.10099 (16) 0.0694 (7) O3 0.4318 (3) -0.4685(3)0.7787(2)0.1065 (10) 04 0.5020(4)-0.3368(3)0.7175(2)0.1177(12)05 0.2556 (3) 0.27429 (19) 0.9641 (2) 0.0938 (9) Н5 0.2540 0.141* 0.3180 1.0033 N1 0.2147 (3) 0.45024 (19) 1.06723 (17) 0.0541 (7) N2 0.2130 (3) 0.05140 (19) 1.02969 (17) 0.0547(7) H2 0.2310 0.1214 1.0219 0.066* N3 0.2403 (3) -0.0398(2)0.98661 (17) 0.0538(7) N4 0.4508 (3) -0.3671 (3) 0.7651 (2) 0.0834 (9) C1 1.0457 (2) 0.2366(3)0.5556(3)0.0621(9)H10.2848 0.5621 1.0135 0.075* C2 0.1921 (4) 0.6582(2)1.0679 (2) 0.0652 (9) H2A 0.2101 0.078* 0.7298 1.0504 C3 0.1227 (4) 0.6509(2) 1.1152 (2) 0.0602 (9) H3 0.0909 0.072* 0.7176 1.1296 C4 1.14255 (19) 0.0985 (3) 0.5417(2) 0.0510(8) C5 0.0322 (3) 0.5278 (3) 1.1966 (2) 0.0605 (9) H5A 0.073* -0.00140.5924 1.2123 C6 0.0173 (3) 0.4215 (3) 1.2255 (2) 0.0618 (9) H6 -0.02210.4141 1.2635 0.074* C7 0.0611 (3) 0.3223 (2) 1.1981 (2) 0.0569 (8) H7 0.0483 0.2498 0.068* 1.2172 C8 0.1224 (3) 0.3306(2) 1.14367 (19) 0.0474 (7) C9 0.1459 (3) 0.4422 (2) 1.11638 (18) 0.0456 (7) C10 0.1252 (3) 0.1263 (2) 1.1307 (2) 0.0564 (8) H10A 0.0283 1.1084 0.068* 0.1263 H10B 0.1728 0.1145 1.1990 0.068* C11 0.1570(3) 0.0270(2) 1.0849(2) 0.0521 (8) C12 0.2988 (3) -0.0149(2)0.9392 (2) 0.0543 (8) H12 0.3186 0.0619 0.9339 0.065* C13 0.3350(3) -0.1051(2)0.89341 (19) 0.0511 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C14	0.2917 (3)	-0.2196 (2)	0.8882 (2)	0.0602 (8)
H14	0.2367	-0.2386	0.9135	0.072*
C15	0.3289 (3)	-0.3049 (3)	0.8461 (2)	0.0630 (9)
H15	0.2996	-0.3808	0.8429	0.076*
C16	0.4108 (3)	-0.2748 (3)	0.8090 (2)	0.0604 (8)
C17	0.4521 (3)	-0.1636 (3)	0.8101 (2)	0.0663 (9)
H17	0.5048	-0.1452	0.7828	0.080*
C18	0.4146 (3)	-0.0785 (3)	0.8526 (2)	0.0610 (9)
H18	0.4427	-0.0026	0.8539	0.073*
C19	0.3321 (4)	0.3241 (3)	0.9278 (3)	0.0858 (12)
H19A	0.2805	0.3851	0.8845	0.129*
H19B	0.3535	0.2664	0.8948	0.129*
H19C	0.4149	0.3552	0.9791	0.129*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0850 (16)	0.0254 (10)	0.0755 (13)	-0.0023 (9)	0.0564 (13)	-0.0003 (9)
02	0.1058 (19)	0.0270 (11)	0.1018 (17)	-0.0034 (10)	0.0717 (16)	0.0019 (10)
03	0.121 (3)	0.069 (2)	0.136 (3)	0.0176 (17)	0.069 (2)	-0.0199 (19)
04	0.142 (3)	0.125 (3)	0.131 (3)	0.015 (2)	0.102 (3)	-0.0246 (19)
05	0.158 (3)	0.0435 (14)	0.135 (2)	0.0016 (14)	0.115 (2)	0.0028 (14)
N1	0.0780 (19)	0.0345 (13)	0.0612 (15)	-0.0063 (11)	0.0433 (15)	0.0001 (11)
N2	0.0777 (19)	0.0262 (12)	0.0716 (16)	-0.0015 (11)	0.0458 (15)	-0.0002 (11)
N3	0.0709 (18)	0.0345 (13)	0.0654 (15)	0.0027 (11)	0.0412 (15)	-0.0025 (11)
N4	0.080 (2)	0.092 (3)	0.082 (2)	0.0172 (19)	0.0434 (19)	-0.016 (2)
C1	0.089 (3)	0.0418 (18)	0.070 (2)	-0.0116 (16)	0.050 (2)	0.0019 (15)
C2	0.098 (3)	0.0310 (17)	0.0654 (19)	-0.0110 (15)	0.040 (2)	0.0003 (14)
C3	0.087 (3)	0.0307 (16)	0.0627 (19)	-0.0032 (14)	0.037 (2)	-0.0045 (14)
C4	0.068 (2)	0.0328 (16)	0.0490 (16)	-0.0031 (13)	0.0269 (16)	-0.0067 (12)
C5	0.077 (2)	0.0457 (19)	0.069 (2)	0.0000 (15)	0.0442 (19)	-0.0144 (15)
C6	0.082 (3)	0.0512 (19)	0.072 (2)	-0.0057 (16)	0.053 (2)	-0.0076 (16)
C7	0.083 (2)	0.0366 (16)	0.0660 (19)	-0.0038 (14)	0.0488 (19)	0.0007 (14)
C8	0.065 (2)	0.0309 (15)	0.0525 (16)	-0.0004 (12)	0.0337 (16)	-0.0022 (12)
C9	0.062 (2)	0.0324 (15)	0.0469 (15)	-0.0053 (12)	0.0306 (15)	-0.0034 (12)
C10	0.088 (2)	0.0266 (14)	0.0736 (19)	-0.0052 (14)	0.0549 (19)	0.0000 (13)
C11	0.069 (2)	0.0314 (16)	0.0642 (19)	-0.0019 (13)	0.0396 (18)	-0.0020 (13)
C12	0.069 (2)	0.0382 (17)	0.0608 (18)	-0.0017 (14)	0.0365 (18)	0.0021 (13)
C13	0.060 (2)	0.0408 (17)	0.0543 (17)	-0.0012 (13)	0.0301 (16)	0.0014 (13)
C14	0.077 (2)	0.0435 (17)	0.080 (2)	-0.0036 (15)	0.054 (2)	-0.0005 (16)
C15	0.074 (2)	0.0431 (18)	0.079 (2)	-0.0003 (15)	0.044 (2)	-0.0031 (16)
C16	0.062 (2)	0.059 (2)	0.0636 (19)	0.0077 (16)	0.0339 (18)	-0.0069 (16)
C17	0.071 (2)	0.074 (2)	0.069 (2)	-0.0113 (17)	0.046 (2)	-0.0087 (18)
C18	0.069 (2)	0.0535 (19)	0.070 (2)	-0.0128 (15)	0.0422 (19)	-0.0046 (16)
C19	0.100 (3)	0.083 (3)	0.086 (3)	-0.002 (2)	0.055 (3)	0.005 (2)
<i>c</i> .						

Geometric parameters (Å, °)

O1—C8	1.378 (3)	C6—C7	1.407 (4)

O1—C10	1.431 (3)	С6—Н6	0.930
O2—C11	1.222 (3)	С7—С8	1.375 (4)
O3—N4	1.232 (4)	С7—Н7	0.930
O4—N4	1.227 (4)	C8—C9	1.431 (4)
O5—C19	1.394 (4)	C10-C11	1.506 (4)
O5—H5	0.820	C10—H10A	0.970
N1—C1	1.324 (4)	C10—H10B	0.970
N1—C9	1.371 (4)	C12—C13	1.455 (4)
N2—C11	1.362 (4)	C12—H12	0.930
N2—N3	1.383 (3)	C13—C18	1.395 (4)
N2—H2	0.860	C13—C14	1.399 (4)
N3—C12	1.275 (4)	C14—C15	1.380 (4)
N4—C16	1.476 (4)	C14—H14	0.930
C1—C2	1.406 (4)	C15—C16	1.381 (4)
C1—H1	0.930	C15—H15	0.930
C2—C3	1.350 (5)	C16—C17	1.366 (4)
C2—H2A	0.930	C17—C18	1.385 (4)
C3—C4	1.411 (4)	С17—Н17	0.930
С3—Н3	0.930	C18—H18	0.930
C4—C9	1.421 (4)	C19—H19A	0.960
C4—C5	1.422 (4)	C19—H19B	0.960
C5—C6	1.355 (4)	С19—Н19С	0.960
С5—Н5А	0.930		
C8—O1—C10	115.2 (2)	O1—C10—C11	113.6 (2)
С19—О5—Н5	109.5	O1—C10—H10A	108.8
C1—N1—C9	116.9 (2)	C11—C10—H10A	108.8
C11—N2—N3	118.1 (2)	O1-C10-H10B	108.8
C11—N2—H2	121.0	C11-C10-H10B	108.8
N3—N2—H2	120.9	H10A—C10—H10B	107.7
C12—N3—N2	116.6 (2)	O2—C11—N2	124.3 (3)
O4—N4—O3	124.4 (3)	O2-C11-C10	117.5 (3)
O4—N4—C16	117.1 (4)	N2-C11-C10	118.2 (2)
O3—N4—C16	118.5 (3)	N3—C12—C13	120.8 (3)
N1—C1—C2	124.7 (3)	N3—C12—H12	119.6
N1—C1—H1	117.6	C13—C12—H12	119.6
C2—C1—H1	117.6	C18—C13—C14	118.1 (3)
C3—C2—C1	118.7 (3)	C18—C13—C12	120.0 (3)
С3—С2—Н2А	120.7	C14—C13—C12	121.9 (3)
C1—C2—H2A	120.7	C15-C14-C13	121.4 (3)
C2—C3—C4	119.8 (3)	C15—C14—H14	119.3
С2—С3—Н3	120.1	C13-C14-H14	119.3
С4—С3—Н3	120.1	C14—C15—C16	118.3 (3)
C3—C4—C9	117.9 (3)	C14—C15—H15	120.8
C3—C4—C5	122.8 (3)	C16—C15—H15	120.8
C9—C4—C5	119.3 (3)	C17—C16—C15	122.3 (3)
C6—C5—C4	120.8 (3)	C17—C16—N4	120.0 (3)
С6—С5—Н5А	119.6	C15—C16—N4	117.8 (3)
C4—C5—H5A	119.6	C16—C17—C18	119.0 (3)
C5—C6—C7	120.3 (3)	С16—С17—Н17	120.5

supplementary materials

С5—С6—Н6	119.9	С18—С17—Н17	120.5
С7—С6—Н6	119.9	C17—C18—C13	120.9 (3)
C8—C7—C6	121.3 (3)	C17—C18—H18	119.6
С8—С7—Н7	119.4	C13—C18—H18	119.6
С6—С7—Н7	119.4	O5-C19-H19A	109.5
C7—C8—O1	124.2 (2)	O5-C19-H19B	109.5
C7—C8—C9	119.6 (2)	H19A—C19—H19B	109.5
O1—C8—C9	116.2 (2)	O5-C19-H19C	109.5
N1	122.0 (2)	H19A—C19—H19C	109.5
N1—C9—C8	119.3 (2)	H19B—C19—H19C	109.5
C4—C9—C8	118.7 (3)		
C11—N2—N3—C12	-176.7 (3)	O1—C8—C9—C4	175.8 (3)
C9—N1—C1—C2	-1.3 (5)	C8—O1—C10—C11	173.7 (3)
N1—C1—C2—C3	0.4 (5)	N3—N2—C11—O2	2.0 (5)
C1—C2—C3—C4	1.1 (5)	N3—N2—C11—C10	-179.0 (3)
C2—C3—C4—C9	-1.7 (5)	O1-C10-C11-O2	177.6 (3)
C2—C3—C4—C5	176.8 (3)	O1-C10-C11-N2	-1.4 (4)
C3—C4—C5—C6	-176.6 (3)	N2—N3—C12—C13	178.4 (3)
C9—C4—C5—C6	1.9 (5)	N3-C12-C13-C18	-171.6 (3)
C4—C5—C6—C7	-3.3 (5)	N3-C12-C13-C14	8.8 (5)
C5—C6—C7—C8	1.5 (5)	C18—C13—C14—C15	1.6 (5)
C6—C7—C8—O1	-177.1 (3)	C12-C13-C14-C15	-178.7 (3)
C6—C7—C8—C9	1.8 (5)	C13-C14-C15-C16	0.1 (5)
C10-O1-C8-C7	5.2 (4)	C14-C15-C16-C17	-2.0 (5)
C10—O1—C8—C9	-173.7 (3)	C14-C15-C16-N4	179.4 (3)
C1—N1—C9—C4	0.6 (4)	O4—N4—C16—C17	-11.5 (5)
C1—N1—C9—C8	-178.4 (3)	O3—N4—C16—C17	168.2 (4)
C3—C4—C9—N1	0.9 (4)	O4—N4—C16—C15	167.1 (3)
C5-C4-C9-N1	-177.7 (3)	O3—N4—C16—C15	-13.2 (5)
C3—C4—C9—C8	179.9 (3)	C15—C16—C17—C18	2.1 (5)
C5—C4—C9—C8	1.4 (4)	N4—C16—C17—C18	-179.3 (3)
C7—C8—C9—N1	175.9 (3)	C16—C17—C18—C13	-0.3 (5)
O1—C8—C9—N1	-5.1 (4)	C14—C13—C18—C17	-1.5 (5)
C7—C8—C9—C4	-3.2 (4)	C12-C13-C18-C17	178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O5—H5…N1	0.82	2.02	2.817 (4)	164
N2—H2…O5	0.86	2.08	2.919 (4)	164
C17—H17····O3 ⁱ	0.93	2.53	3.287 (5)	139
C18—H18····O4 ⁱ	0.93	2.48	3.329 (5)	152
C3—H3···O2 ⁱⁱ	0.93	2.58	3.233 (5)	128

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x, y+1, z.

