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Immune-mediated tissue damage or hypersensitivity can bemediated by autospecific IgG
antibodies. Pathology results from activation of complement, and antibody-dependent
cellular cytotoxicity, mediated by inflammatory effector leukocytes include macrophages,
natural killer cells, and granulocytes. Antibodies and complement have been associated to
demyelinating pathology in multiple sclerosis (MS) lesions, where macrophages predom-
inate among infiltrating myeloid cells. Serum-derived autoantibodies with predominant
specificity for the astrocyte water channel aquaporin-4 (AQP4) are implicated as inducers
of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating
disease where activated neutrophils infiltrate, unlike in MS. The most widely used
model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized
disease that can be transferred to naive animals with CD4+ T cells, but not with
antibodies. By contrast, NMO-like astrocyte and myelin pathology can be transferred to
mice with AQP4–IgG from NMO patients. This is dependent on complement, and does
not require T cells. Consistent with clinical observations that interferon-beta is ineffective
as a therapy for NMO, NMO-like pathology is significantly reduced in mice lacking the
Type I IFN receptor. In MS, there is evidence for intrathecal synthesis of antibodies as
well as blood–brain barrier (BBB) breakdown, whereas in NMO, IgG accesses the CNS
from blood. Transfer models involve either direct injection of antibody and complement
to the CNS, or experimental manipulations to induce BBB breakdown. We here review
studies in MS and NMO that elucidate roles for IgG and complement in the induction of
BBB breakdown, astrocytopathy, and demyelinating pathology. These studies point to
significance of T-independent effector mechanisms in neuroinflammation.

Keywords: antibody, complement, neuroinflammation, multiple sclerosis, neuromyelitis optica, autoantibody,
central nervous system

Introduction

Evolution and function of the immune system in mammals are driven by the need for protection
against pathogenic infection. The balance between the conflicting requirements for capacity to
recognize a universe of continually evolving microorganisms while avoiding deleterious responses
to self poses a challenge. Hypersensitivity responses are defined as disorders that are caused by the
immune response and include autoimmune responses. Three of the four classically described types
of hypersensitivity involve antibodies. Type I hypersensitivity involves IgE antibodies and atopy
and will not be discussed further. Types II and III hypersensitivity involve IgG antibodies and are
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implicated in immune pathology, especially the Type II hypersen-
sitivity response, which explicitly involves autospecific antibodies.
Type IV hypersensitivity involves T cell response, particularly
CD4 T cell responses.

Generation of the self-specific antibodies that underpin the
Type II hypersensitivity response occurs during B cell develop-
ment when IgH V, J, and D segments recombine with junctional
diversity, as well as IgL V–J recombination, resulting in over 1011

potential specificities. Selection against self-recognition occurs via
IgL receptor editing as well as deletion via apoptosis. Nonethe-
less, B cell receptors with specificity for autoantigens persist in
the adult repertoire. Protection against autoimmunity relies on
a number of regulatory mechanisms, including the requirement
for T cell help to generate a high affinity isotype-switched anti-
body response and that T cell activation is under separate and
complex control. Autoantibodies may contribute to clearance of
debris and effete cells as part of physiologically normal function,
and so may not always be intrinsically deleterious. The T cell
response that is required for IgG isotype switching does not itself
need to be autospecific, since B cells may present innocuous or
protective cross-reactive epitopes for T cell help (e.g., Molecular
Mimicry). Nevertheless, it is clear from the fact of antibody-
mediated autoimmune diseases that self-specific B cell clones can
become activated and undergo isotype switching, with deleterious
consequences. The degree towhich this plays a role in neurological
disease is of interest here.

Multiple sclerosis (MS) and neuromyelitis optica (NMO) are
both autoimmune inflammatory demyelinating diseases in the
central nervous system (CNS). The cause of MS is unknown, but
multiple factors are considered to be involved in pathogenesis
of MS. These include antibody-dependent mechanisms that con-
tribute to the demyelination observed in Pattern II lesion pathol-
ogy (1). Key features of Type II hypersensitivity that are relevant
to discussion of their role in MS are specificity for tissue anti-
gens (therefore autospecificity), recruitment of effector leukocyte
responses, and activation of complement. In NMO, autoantibody
binding to aquaporin-4 (AQP4) causes inflammation, astrocyte
damage, cytokine release, and demyelination (2).

This review will deal with the role of Type II hypersensitivity
autoantibody-driven responses in inflammatory demyelinating
disease, with particular relevance to MS and NMO.

Autoantibody in MS

Detection of IgG oligoclonal bands (OCB) in the cerebrospinal
fluid (CSF) is one of the clinical criteria supporting the diagnosis
of MS (3). CSF OCB occur in more than 90% of MS patients
(4). Other isotypes, such as IgM and IgA, can also be found in
CSF OCB (5, 6). Intrathecal IgM synthesis, presumed to be T
cell independent, has been detected in 55% of MS patients (7, 8).
OCB and polyspecific production of antibodies against measles,
rubella, and varicella zoster virus, the so-called “MRZ reaction,”
is associated with increased risk of converting from clinically
isolated syndrome to MS (9). Possible involvement of antibodies
in MS pathogenesis is suggested by beneficial response to thera-
peutic plasma exchange in MS patients retrospectively identified
as having Pattern II lesions (10). However, it is important to note,

that treatment with CD20-directed B cell-depleting therapeutics
reduced the relapse rate in MS patients without affecting the
presence of antibodies in the CSF (11).

Multiple sclerosis lesions have been classified on the basis of
pathological patterns. Pattern II lesions are defined by presence of
antibodies and activated complement product deposition. These
lesions have been described in over 50% of actively demyelinat-
ing MS lesions (1). The specificity of the autoantibodies in MS
remains largely unknown. MS lesions are mainly found in the
CNS white matter, so one might expect candidate autoantibodies
to be directed against antigen structures within this region. In
MS lesions, autoantibodies against the potassium channel KIR4.1,
myelin oligodendrocyte glycoprotein (MOG) and myelin basic
protein (MBP) have been identified (12–15). However, consensus
is lacking whether these autoantibodies are of pathogenic signif-
icance in patients with MS. A number of studies report failure to
detect KIR4.1-specific IgG in serum or CSF from all but a fraction
of patients with MS (16). Antibodies to MBP, although detectable,
are not considered a meaningful biomarker for MS, since they
have also been shown to be increased in response to neuronal
damage (17).

The occurrence of pathogenic anti-MOG Ab is very rare in
adult MS patients (18–20). Recent studies have described that
anti-MOG Ab is detected in pediatric MS, ADEM (21, 22), and
now in AQP4 seronegative NMO patients (23–27). During the
progression of pediatric MS, epitope spreading can increase the
number of CNS-reactive antibodies (28). This process of epitope
spreading can be driven by antigen-presenting cells that present
products of antibody-mediated breakdown of myelin and axonal
specific antigens to T cells in the CNS (28).

Some earlier confusion about anti-MOG IgG in MS derived
from use of assay techniques, such as ELISA and Western Blot,
which detected antibodies that recognize incorrectly folded and
denatured MOG, and therefore did not necessarily recognize
MOG expressed in the CNS. Implementation of techniques, such
as cell-based and tetramer assays (29), has improved discrim-
ination of pathogenic antibodies and B cells, and, for exam-
ple, allowed demonstration that axopathic and/or demyelinating
autoantibody responses can occur in some patients with MS (30).
However, anti-MOG antibodies are not considered to play amajor
role in adult MS, and at this time, no serum antibody specificity
in adult MS is considered to be of diagnostic value. This leaves
unanswered the question of what are the antigen specificities in
OCB and what is their role in MS. Lipids have been identified
among the autoantigens for OCB antibodies (31) and one study
showed that lipid-specific oligoclonal IgM antibodies, especially
for phosphatidylcholine, were prognostic for aggressive evolution
of MS (32).

The animal model experimental autoimmune encephalomyeli-
tis (EAE) can be induced by immunization with different myelin
peptides, e.g., from MBP and MOG. This model is generally con-
sidered to be a T cell-mediated disease and cannot be transferred
with antibodies (33). Nevertheless, co-transfer of IgG specific for
MOGconverted a non-demyelinating uniphasic EAE in Lewis rats
to a relapsing–remitting demyelinating disease (34, 35).

Choice of antigen is highly influential when inducing EAE
in mice (36). MOG–peptide-induced EAE has been shown to
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have no requirement for B cells, as it can be induced in animals
without B cells (36, 37). Depletion of B cells exacerbated the
clinical score in p35–55 MOG-induced EAE (38) indicating a
regulatory role for B cells in EAE. On the other hand, MOG-
specific TCR-transgenic mice that also expressed autoantibodies
against MOG showed an accelerated and exacerbated course of
EAE (39). Immunization of these or non-transgenic mice with
human recombinant MOG extracellular domain or a fusion pro-
tein of MBP and proteolipid protein (MP4) both induced EAE,
where activated B cells and antigen-specific antibodies played a
pathogenic role in association with T cell-mediated inflammation
(36, 40–43). Antigen-independent B cell infiltration and ectopic
germinal center formation have been shown in mice with EAE
induced by immunization with either a fusion protein incorporat-
ing the extracellular domain of mouse MOG or p35–55 peptide,
both beingT cell dependent (44). Thus, antibodies andB cells have
a role to play in the animal model for MS, though the specific role
is dependent on immunization strategy.

Autoantibody in NMO

In NMO, disease-specific NMO–IgG (primarily of the IgG1 sub-
class) is a biomarker. The predominant NMO-associated anti-
body specificity is for the water channel AQP4 (45). AQP4 is
densely localized in membranes of ependymal cells and astro-
cytes, to form the glia limitans of blood–brain barrier (BBB)
and the CSF–parenchymal barrier (46). NMO–IgG/AQP4–IgG is
thought to mediate pathogenesis by binding selectively to AQP4
on CNS astrocytes, causing complement fixation, generation of
chemotactic signals (e.g., C3a, C5a), immune cell infiltration, and
subsequent loss of AQP4 and glial fibrillary acidic protein (GFAP)
on the astrocytes (2). Lesions in NMO are frequently found in the
optic nerve and the spinal cord central graymatter as optic neuritis
and transverse myelitis; however, brain lesions are also found at
other sites of highAQP4 expression, such as the circumventricular
organs (47–50). NMO–IgG is pathogenic only when reaching
the CNS parenchyma as demonstrated in experimental animal
studies where direct administration of NMO–IgG into the CNS
or into the blood inmice with pre-established CNS inflammation-
induced NMO-like histopathology, whereas peripheral adminis-
tration into naïve animals had no effect (47, 51). In line with this
observation, AQP4–IgG may exist for years after the first NMO
attack without a relapse (52).

Other reported autoantibodies in NMO include anti-MOG as
mentioned above (23–27), NMDA-type glutamate receptor (e.g.,
CV2/CRMP5), and glycine receptor antibodies (53–55). These
and other autoantibodies may be useful biomarkers for NMO.
However, their pathogenic importance has not been clarified.
Future studies are required to establish this.

Leukocytes in MS and NMO

Although the distribution of actively demyelinating lesions differs
between MS patients, they are predominantly found within the
optic nerves, spinal cord, brainstem, and periventricular white
matter of the cerebral hemispheres (56). It has become clear in
recent years that graymatter is not spared, even during the earliest
phases of MS. Gray matter lesions show demyelination, neuronal

loss, and atrophy (57–59). Gray matter lesions can be localized in
or around the cortical and subcortical gray matter (60).

Inflammation is seen in both white and gray matter lesions at
different stages of disease. It consists mainly of T-lymphocytes
with a dominance of CD8+ T cells. However, B cells and plasma
cells are also found in lesions. Macrophages are mainly found in
white matter lesions, where they phagocytose myelin (56). The
infiltration of T and B cells in CNS lesions was more profound
in relapsing MS compared to progressive MS (61). Although
the global composition of inflammatory cells is similar between
relapsing-remitting and progressive disease (61), the relative num-
ber of plasma cells is higher in the progressive phase (61, 62).
Clonally expanded B cells are detected in the CSF (63), in the
meningeal lymphoid follicles, as well as in the parenchymal infil-
trates in MS patients (64–66). A high ratio of B cells to monocytes
in theCSFdetermined by flow cytometry correlatedwith rapidMS
progression (67). Furthermore, lesion activity on MRI correlated
with the numbers of plasmablasts in the CSF (68). These findings
support a role for B cells in MS pathology.

Comparing the inflammation in MS lesions with NMO lesions,
several studies have found that while the infiltrating cells in MS
mostly consist of mononuclear cells, such as macrophages and T
cells, inflammation in NMO include neutrophils, eosinophils, and
mononuclear cells (2, 69, 70). These infiltrating cells, in particular
macrophages, are implicated in Type II hypersensitivity through
antibody-dependent cell-mediated cytotoxicity (ADCC).

The role of neutrophils and eosinophils in NMO pathology
has been studied in animal models where NMO patient autoan-
tibodies have been transferred to the CNS of mice to induce such
pathology (51, 70, 71). When mice were made neutropenic, neu-
roinflammation was greatly reduced at 24 h and 7 days following
intracerebral injection of patient autoantibodies (70). The fact that
this had no effect on complement activation identified distinct
modes of antibody effect. Neutropenic mice did not show loss of
AQP4 or myelin, whereas intracerebral injection into neutrophil-
enriched mice increased the areas of AQP4 and myelin loss and
the number of inflamed cerebral vessels, thereby showing a role
for granulocytes in tissue damage (70). Consistent with this,
other studies showed that administration of a neutrophil protease
inhibitor decreased the loss of AQP4 and myelin (70). Note that
these studies would exclude either microglia or macrophages as
mediators of pathology, since those cells should not have been
affected by manipulations leading to neutropenia.

Eosinophils and neutrophils infiltrated NMO lesions in mice,
after continuous infusion of patient autoantibodies (72). These
granulocytes correlated to increased lesion size and both ADCC
and complement-dependent cell-mediated cytotoxicity (CDCC)
were involved (72). In addition, inhibition of eosinophil degran-
ulation protected against ADCC and CDCC (72). Organotypic
slice cultures were used to analyze synergy between antibody
and leukocytes in induction of pathology. These transwell-based
vibratome tissue slices from spinal cord, optic nerve, or hip-
pocampus allowed analysis of an intact neuronal–glial network
in vitro, and of effects of complement or leukocytes independently
of infiltrating blood-derived cells or mediators. Pathology was
complement dependent and under circumstances of suboptimal
NMO–IgG, could be enhanced by addition of leukocytes, or
pro-inflammatory cytokines (73), or eosinophils or their granule
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toxins (72). These studies also indicated that granulocytes play
a role in formation of NMO lesions through both ADCC and
CDCC. Addition of macrophages to slice cultures exacerbated
pathology, dependent on complement, whereas natural killer
(NK) cells caused loss of GFAP, AQP4, and myelin loss indepen-
dent of complement (74). However, no evidence was found to
support a role for NK cells in pathology in biopsy material from
either MS or NMO patients (69), and granulocytes are the more
likely effector cell.

Mechanism of action of pathogenic IgG in conjunction with
leukocytes, or ADCC, involves Fc receptors (FcR). These are
membrane glycoproteins expressed by leukocytes that have spe-
cific affinity for the Fc portions of immunoglobulin molecules,
and thus link leukocytes via IgG to specific targets while sig-
naling via the FcR. These are essential for a wide spectrum of
biological activities, including transport of antibodies across cell
membranes, induction of phagocytosis, and regulation of leuko-
cyte function. Cross-linked FcR-bound antibody can initiate a
signal transduction cascade that induces immune cell activation,
resulting in cytokine production, immune cell proliferation, and
degranulation of neutrophils, eosinophils, and mast cells (75, 76).

All of the effector mechanisms thus far described are compo-
nents of the peripheral immune response. There is thus interest
in the extent to which antibody entry from blood contributes to
demyelinating pathology.

BBB Integrity in Hypersensitivity
Autoimmune Diseases in the CNS

Inflammation during disease activity in MS and NMO is fre-
quently associated with BBB leakage, suggesting infiltration of
the brain by inflammatory cells or immunoglobulin entering the
CNS from the circulation (77). Studies of lesion pathology suggest
that inflammation drives demyelination and neurodegeneration
in MS patients (78). The BBB disruption in MS is primarily
caused by infiltration of T cells responding to augmented expres-
sion chemokines and adhesion molecules at the luminal vascular
endothelium, leading to migration of macrophages and dendritic
cells, further increase of BBB permeability and leakage of inflam-
matory cytokines in the CNS to amplify the cascade of events (61).
Complement components generated via the complement cascade
are implicated in altered BBB permeability, further promoting
inflammatory cell recruitment and Ig extravasation. Importantly,
there can also be a role for antibody in BBB breakdown.

The BBBmay be impaired before the occurrence of demyelinat-
ing foci and T-cell infiltration around small vessels (78). Distur-
bance of the BBB can be visualized bymagnetic resonance imaging
(MRI) through leakage of the magnetic marker gadolinium (Gd)
diethylenetriamine pentaacetic acid (contrast enhancement) (79–
81). An abnormal intra-BBB IgG synthesis rate was reported to
correlate to the total area of MRI abnormality in the cerebrum
(82). Elevated CSF/serum albumin ratio is evidence of BBB dam-
age (83, 84). MS lesions are characterized by centrally placed
inflamed veins, and fingerlike extensions of periventricular lesions
(so-called Dawson’s fingers) (78). Collectively, the diagnostic
implications of intra-BBB IgG synthesis and formation of OCB

are well-established in MS, but how intra-BBB IgG production
influences BBB integrity is not known.

A particular case in point that may help answer this ques-
tion is provided by studies in NMO. Intrathecal AQP4–IgG is
detectable in the CSF of the majority of AQP4–IgG seropositive
NMO patients who have acute disease relapse with AQP4–IgG
serum titers >1:250 (85, 86). The AQP4–IgG present in the CSF
has been correlatedwith astrocyte damage, a primary pathological
process in NMO (87, 88). Intrathecal IgG synthesis in NMO only
occurs rarely and does not persist over time, and serum-derived
AQP4–IgG is probably of major pathogenic importance (89).
Taken together, these findings suggest entry of serum-derived
AQP4–IgG to CNS during disease activity in NMO, which may
further be deposited on astrocytic foot processes at the BBB, sub-
pial, and subependymal regions. Thus, the destruction of the BBB
may be an important step in the development of NMO because
circulating AQP4–IgG has to pass through the BBB to reach the
astrocytic endfeet, where AQP4 is localized. Astrocytes interact
with endothelial cells to maintain the CNS BBB. We have very
recently evaluated the pathogenic impact of AQP4–IgG in the CSF
and find that intrathecal injection of AQP4–IgG together with
human complement into the CSF of mice results in pronounced
deposition of AQP4–IgG along subarachnoid space and subpial
spaces, which initiated perivascular astrocyte-destructive lesions
and consequently BBB breakdown (Figure 1) (90). These data
suggest a model whereby a small amount of AQP4–IgG initially
is spilled over to the CSF, and then initiates a pathogenic process,
giving the characteristic CSF data and radiological features of
human NMO. Thus, AQP4–IgG in CSF is a significant element in
NMOpathogenicity and can be a critical element, which promotes
perivascular astrocyte pathology and consequently BBB disrup-
tion. Whether these principles can apply to other antibody speci-
ficities, such as MOG-IgG, and to MS where there are intrathecal
antibodies as well as BBB disruptions now become important
questions.

Factors indicative of BBB integrity may serve as surrogate
markers of NMO disease activity. Matrix metalloproteinase-9
(MMP-9) participates in the degradation of collagen IV, a major
component of the cerebral vascular endothelial basement mem-
brane (91), and of dystroglycan that anchors astrocyte endfeet
to the basement membrane (92). MMP-9 is upregulated in MS
lesions (93) and elevated serum levels of MMP-9 were reported in
NMO and MS patients (91), interestingly higher in NMO than in
MS (94), and likely increase BBB permeability in both diseases via
effect on CNS microvascular endothelial cells. Intercellular adhe-
sion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) play important roles in lymphocyte migration into the
CNS. Higher levels of ICAM-1 and VCAM-1 have been reported
in relapsing NMO patients and in MS compared to patients with
non-inflammatory neurological disorders (95, 96). Furthermore,
levels in NMO were higher than in MS and correlated with CSF
albumin quotient (96). Another NMOmarker of BBB breakdown,
vascular endothelial growth factor-A (VEGF-A), has been impli-
cated in promoting BBB breakdown in demyelinating disorders
(97). Interestingly, an in vitro study demonstrated that AQP4–IgG
binding to astrocytes alters AQP4 polarized expression leading
to increased permeability of the astrocyte/endothelial barrier,
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FIGURE 1 | Perivascular astrocyte-destructive lesions in the brain parenchymal vessels associated with breakdown of the blood–brain barrier.
Schematic presentation of subpial vasculature in relation to subarachnoid space and brain parenchyma showing relevant anatomical structures, including the pial
vessel, subarachnoid space, the Virchow–Robin space, and the subpial glia limitans surrounding penetrating vessels into the brain. The intrathecal distribution
pattern of aquaporin-4-immunoglobulin G from cerebrospinal fluid (CSF) into the brain parenchyma via a paravascular route leads to perivascular
astrocyte-destructive lesions and blood–brain barrier breakdown [modified after Asgari et al. (90)].

reversed by application of an anti-VEGF-A blocking antibody,
suggesting the potential role of VEGF-A in NMO pathology (98).
Studies in AQP4 knock-out mice have highlighted important
functional roles for AQP4 in the maintenance of BBB integrity as
indicated by tight junction opening in brainmicrovessels, swelling
of perivascular astrocytic processes, and BBB hyperpermeability
(99). These data suggest that the pathogenic significance of serum-
derived AQP4–IgG in NMO include BBB dysfunction. Whether
astrocyte specificity of antibodies is required for analogous effects,
in NMO as well as MS, is not known.

Central nervous system proteins are detected in sera andCSF of
NMOpatients, likely as part of compromised BBB and tissue dam-
age. Neurofilament (NF) heavy chain levels have been implicated
in optic neuritis associated with NMO, with high serum NF levels
correlating with poor clinical outcome (100). In addition, astro-
cytic markers, including GFAP and S100B, are detected in the CSF
in several inflammatory CNS disorders, including MS and NMO,
and both are elevated in AQP4 IgG seropositive patients. CSF
and serum levels of S100B correlated with active NMO disease,
suggesting S100B may be a potential biomarker of acute relapse in
seropositive NMO (87, 101).

Blood–brain barrier breakdown is thus a potentially important
pathogenic element in inflammatory demyelinating diseases, and
may be driven by antibodies as part of hypersensitivity processes
in the CNS.

Cytokines and Chemokines in
Hypersensitivity Disorders in CNS

Cytokines and chemokines are involved in the control of inflam-
matory processes associated with demyelinating diseases in the
CNS (102). They can be protective, but may also have deleterious
effects. Changes in the microenvironment of the CNS follow-
ing injury trigger an innate immune response, which involves
germline-encoded pattern recognition receptors, such as toll-
like receptors (103). These receptors recognize endogenous ago-
nists released from damaged tissue as well as molecular patterns
expressed by pathogens. This innate immune response includes
induction of soluble products such as cytokines and chemokines
that are critical for priming the antigen-specific adaptive immune
response (104). Infiltrating cells and glial cells are both sources of
cytokines and chemokines in the CNS.
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Recruitment of leukocytes to tissue in hypersensitivity
responses is driven by chemokines and by some cytokines. A
number of studies support their involvement in NMO and MS,
including that their levels in serum and CSF change dramatically
compared to in healthy individuals. The role of inflammatory and
anti-inflammatory cytokines in the pathogenesis of MS and in
EAE has been broadly studied. Many of them have pathological
and clinical significance in the context of autoantibody-mediated
demyelination, although this has received less attention. Similarly,
although the list of studies that have focused on cytokine and
chemokine profiles in NMO is growing (105–110), there is still
limited information about their functional significance in the
pathogenesis of NMO.

Cytokines and chemokines that are classically implicated in
recruitment and activation of B cells and leukocytes in a Type II
hypersensitivity response would potentially include B-cell activat-
ing factor (BAFF), IL-1β, IL-6, TNFα, type I IFN, CXCL1/CXCL2
(and other CXCR2-binding chemokines), CXCL10 (IFN-induced
protein-10), CXCL13 (B lymphocyte chemoattractant), CCL2
(macrophage chemotactic protein-1), and CCL11 (eotaxin). This
is by no means a complete list but represents the principal can-
didate mediators that would be important in antibody-mediated
pathology in MS and NMO. Evidence for their involvement is
summarized in Table 1. Additionally, the role of selected enti-
ties, such as IL-1, IL-6, type I IFN, and certain chemokines, are
separately discussed.

IL-1
Increased levels of IL-1β have been reported in serum and CSF
from MS and NMO patients (110, 139, 140). Increased expression

of IL-1β bymicroglia/macrophageswas detected inNMOpatients
with active lesions (characterized by AQP4 loss, astrocyte injury,
immunoglobulin and complement deposition, and granulocyte
infiltration). This likely depended on complement activation and
granulocyte infiltration, since it was not shown in MS lesions or
in advanced NMO lesions, which lacked complement activation
and granulocyte infiltration (114). It was also shown that IL-1
enhanced formation of NMO lesions in spinal cord slice cul-
tures treated with NMO–IgG and complement, but not in culture
without NMO–IgG (73).

IL-6
IL-6 levels in the CNS are normally undetectable, but increase
during neuroinflammation, indicating their involvement in CNS
diseases (141). Astrocytes and microglia are both sources of IL-6
(119, 141, 142). Elevated levels of IL-6 in the serum and CSF of
NMO patients have also been reported (106, 140, 143). The sever-
ity of NMO–IgG and complement-induced lesions was increased
when spinal cord slice cultures were treated with IL-6 (73). In
another study, IL-6 was injected into the CNS of rats, and at the
same time NMO–IgG was administered intraperitoneally. The
results showed that IL-6 did not trigger formation of perivascu-
lar lesions with AQP4 loss distant from the needle track (114).
Such findings suggest that IL-6 contributes to the pathogenesis
of NMO as a secondary factor by facilitating the formation of
NMO lesions. IL-6 also induces plasmablasts to produce autoan-
tibody (144). IL-6 may also affect BBB integrity and has been
implicated in BBB disruption (145, 146). All of these activities
would potentially contribute to antibody-mediated pathology in
MS and NMO.

TABLE 1 | Cytokines, chemokines, and soluble mediators in CNS hypersensitivity.

Mediator Cell source Role in hypersensitivity related process in CNS

BAFF Astrocytes, leukocytes (111, 112) Survival and maturation of B cells (111, 112)

IL-1 Microglia, astrocytes, neutrophils (113, 114) Recruitment of leukocytes (115)
Enhance C3 expression by astrocytes (116–118)
T cell survival and effector functions (113)

IL-6 Microglia and astrocytes; virtually all immune cells (110, 119, 120) Recruitment of leukocytes (120)
Survival of plasmablasts, production of antibody (110)

TNFα Microglia, astrocytes, and ependymal cells (121, 122) Possible role in recruitment of leukocytes (122)
Enhance C3 expression by astrocytes (117, 123)
Cytotoxic for oligodendrocytes via TNFR1 cells (122)

Type I IFN Glial cells, neurons, and leukocytes (124) Proposed to reduce leukocyte migration across the BBB (124)
Possible influence on complement induction (125, 126)

CXCL1 Astrocytes (127, 128) Recruitment of neutrophils and T cells (129)

CXCL10 Astrocytes (121) Recruitment of macrophages, neutrophils, and B cells (130)

ROS/RNS Activated macrophages, granulocytes (131) Influences leukocyte recruitment by affecting BBB permeability, and
causing vasodilation (131)
Cytotoxic to oligodendrocytes (131)

CXCL13 Microglia (132); follicular dendritic cells (133) B cell recruitment (133)
IgG affinity maturation (133)

CCL2 Glial cells, especially astrocytes (119) Recruit monocytes through CCR2 (134)
Promotes cytotoxic granule release by NK cells (135)

CCL11 Lymphocytes, macrophages, endothelial cells, and eosinophils (136–138) Recruit eosinophils through CCR3 (137)
Activation of basophils and T lymphocytes (136)
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Type I IFN
Type I IFNs, including IFN-α and IFN-β, are known to play a
crucial role in immune responses by activating JAK/STAT signals
through their common receptor (IFNAR) (124). Unlike MS, IFN-
β therapy has been reported to have very poor efficacy or to even
exacerbate NMO (147) [reviewed in Ref. (124)]. IFN-β treatment
in a NMO patient was associated with increased relapses and
AQP4 antibody titers (147). Type I IFN signaling via the IFNAR
receptor is required for NMO-like pathology in a mouse model
(148). IFN-β therapy induced elevated serum levels of BAFF
(111), which may facilitate autoantibody production in NMO
(149). Elevated levels of IL-17, IFN-β, and neutrophil elastase
were reported in serum from NMO patients, and the same study
showed that IFN-β increased the formation of neutrophil extra-
cellular traps (NETs) (150). Together, these findings suggested
the severe exacerbation and increased relapses in NMO might
be associated with IFN-β induced BAFF as well as degranulation
and NETs formation by granulocytes (151). The fact that IFN-β
had no effect on the development of NMO lesion in spinal cord
slice culture, when it is treated with NMO–IgG and complement
may reflect lack of neutrophil involvement (73). Lack of effect of
IFNAR1-deficiency on cuprizone-induced de- and remyelination
or glial cell response (152) may also reflect lack of neutrophil
involvement.

Cytokine Regulation of Complement
in CNS

The complement system is an essential part of innate immunity
and is important for protection against pathogens. The comple-
ment system is implicated in the pathogenesis of both MS and
NMO(153, 154). Complement is activated by classical, alternative,
and lectin pathways. All three pathways lead to activation of C3
convertases, release of C3b opsonin, C5 conversion, and, finally,
membrane attack complex (MAC) formation. The activation of
the complement pathway yields also C3a and C5a anaphylatoxins,
potent inflammatory mediators, which target a broad spectrum of
immune and non-immune cells. C3a andC5a are strong leukocyte
chemoattractants, including neutrophils and B cells (75, 155).
The classical pathway plays a major role in antibody-mediated
pathology, and is activated when IgG or IgM antibodies bind to
cell surface antigens.

Biosynthesis of complement in the human brain is reported
to be generally low or non-detectable under normal health con-
ditions (153). Complement activity presents a potent threat to
the body’s own cells that are tightly protected by complement
regulatory proteins, including decay-accelerating factor (DAF)
and CD59. These complement regulatory proteins exist to protect
the body’s own cells from damage caused by the activation of
the complement pathway by blocking the formation of the C3
convertase and the MAC, respectively. DAF prevents the forma-
tion of C3 convertase by accelerating dissociation of C4b2a and
C3bBb (classical and alternative C3 convertase). The complement
regulator CD59 blocks the formation of the MAC by binding to
C8, and thereby preventing further assembly of MAC. Therefore,
the regulation of the expression of CD59 is a potentially important

factor in protecting against MAC-mediated cytopathology (153).
It has been shown that NMO–IgG and complement caused more
severe longitudinally extensive spinal cord pathology in mice that
lacked the complement regulator protein CD59 (156). However,
themechanism responsible for regulation of CD59 remains largely
unknown.

Complement binding receptors are expressed on the surface
of leukocytes and contribute to their response. The complement
receptor 1 (CR1) is expressed on both neutrophils and B cells. It
blocks the formation of C3 convertase by preventing its associ-
ation with C2a. In addition, complement receptor 2 (CR2) par-
ticipates with the B cell co-receptor complex in B cell activation.
Complement receptors 3 and 4 (CR3 and CR4) are expressed
on neutrophils and stimulate phagocytosis of bacteria and other
particles that have complement components bound to their sur-
face. CR3 is also important for leukocyte adhesion and migration
processes (75, 153).

Complement was suggested to play a role in IL-6-induced CNS
pathology (123). However, in contrast to IL-1β, IL-6 had no effect
on the induction of complement by astrocytes in cell culture (157).
The induction of complement seen in GFAP–IL-6 transgenic
mice (123, 158), therefore, might not reflect the action of IL-6
alone, but rather of IL-6 acting in concert with other cytokines,
including IL-1β. IL-1 is involved in regulation of complement
component C3 in astrocytes (157, 159). Whether and how IL-1
influences complement-mediated astrocyte damage remains to be
addressed.

Type I IFN can also influence complement in the CNS. The
level of terminal complement complex, C1-inh, C4, and C3bc
increased in IFN-α2a-treated MS patients during the initial part
of the treatment (125, 126). It was shown that IFN-α and IFN-
β, in a dose-dependent manner, stimulated the synthesis of C2,
C1-inh, and factor B, but not C3 in human monocytes in vitro
(160). It was earlier noted that IFN-α/β selectively stimulated
the synthesis of factor B and C1 inh, but reduced C3, and had
no effect on C2 (161). The results from these studies suggest
the involvement of type I IFN in the induction of selective com-
plement components, but how the increased complement level
is directly mediated by IFNAR signaling was not determined.
In antibody-mediated pathology, such as in NMO, where the
complement system is known to play a significant role and there
is evidence for the involvement of type I IFN, it is tempting to
speculate that the induction of complement by type I IFN is one of
the underlying mechanisms that facilitate the formation of NMO
lesion.

Regulatory Role for Microglia in
Antibody-Mediated Pathology

Microglia are considered to play a critical role in regulation
of inflammatory processes within the CNS. In this regard, IL-
6 also exerts a protective function and has anti-inflammatory
activities (162, 163). Administration of human rIL-6 dramatically
reduced demyelination and inflammation, which was induced
by TMEV in the spinal cord of mice (164). A fusion protein of
the soluble IL-6 receptor to IL-6 (IL6RIL6) prevented neuronal
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FIGURE 2 | Type II hypersensitivity responses in the CNS. Schematic summarizing key aspects discussed in the text. TLR, toll-like receptor.

and oligodendrocyte degeneration in organotypic hippocam-
pal slices (165). This is in line with in vivo results that
showed administration of IL6RIL6 to rats after sciatic nerve
transection-stimulated remyelination (166) as well as -accelerated
regeneration of axotomized peripheral nerve in transgenic
mice expressing both IL-6 and IL-6R (167). However, IL-6-
activated microglia produced NO, resulting in neural injury
in vitro (168).

Chemokine and Cytokine Involvement in
Leukocyte Recruitment
The cytokine IL-6 is implicated in extravasation of leukocytes
into the CNS (168–172). Injection of IL-1β into CNS caused
the formation of perivascular lesions with granulocytic infil-
tration and AQP4 loss distant from the injection site (114),
also suggesting a role for IL-1β in leukocyte extravasation. The
level of CXCL10, a downstream chemokine of type I IFN sig-
naling (173–175), is elevated in NMO (105, 109). Astrocytes
(119) and neutrophils (176) both produce CXCL10. Although
CXCL10 is primarily associated with recruitment of T cells,
it can also induce neutrophil recruitment (177, 178). One
mechanism by which type I IFN signaling exacerbates NMO
may involve induction of CXCL10 and thereby recruitment of
neutrophils.

Concluding Remarks

We have here reviewed evidence for a role for antibody-mediated
hypersensitivity mechanisms in MS and NMO. It must be empha-
sized that these mechanisms do not normally occur in isolation
fromeffector T cell-mediated responses, whetherCD4+ orCD8+.
Also, direct pathology mediated by activated leukocytes may also
contribute along with the ADCC mechanisms that we have high-
lighted. Nevertheless, the studies that we have reviewed demon-
strate that antibody and especially IgG are powerful mediators in
neuroinflammation and that they must be given equal weight in
consideration of design of therapies for MS and NMO (Figure 2).
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