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Abstract

Motor imagery (MI) based brain-computer interface (BCI) is an important BCI paradigm which 

requires powerful classifiers. Recent development of deep learning technology has prompted 

considerable interest in using deep learning for classification and resulted in multiple models. 

Finding the best performing models among them would be beneficial for designing better BCI 

systems and classifiers going forward. However, it is difficult to directly compare performance 

of various models through the original publications, since the datasets used to test the models 

are different from each other, too small, or even not publicly available. In this work, we 

selected five MI-EEG deep classification models proposed recently: EEGNet, Shallow & Deep 

ConvNet, MB3D and ParaAtt, and tested them on two large, publicly available, databases with 

42 and 62 human subjects. Our results show that the models performed similarly on one dataset 

while EEGNet performed the best on the second with a relatively small training cost using the 

parameters that we evaluated.
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I. Introduction

Brain-computer interface (BCI) is an emerging technology which can measure brain activity 

and convert it into artificial outputs that can replace, restore, enhance, supplement, or 

improve natural CNS outputs [1]. Among different BCI tasks, motor imagery (MI) is one of 

the commonly used paradigms [2], [3], [4], [5], [6], and is typically defined as imagining the 

movement of a body part without actual motor execution. This has been shown to share a 

similar mechanism as real motor execution [7], [8], and enabled human subjects to control a 

computer cursor [2], drone [9], and robotic arm [6], [10]. It has shown potential in helping 
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patients with motor disabilities interact with the environment by controlling devices such as 

computer cursors, prostheses, and wheelchairs [11]. Electroencephalography (EEG) based 

BCI is one type of commonly used BCI techniques due to its non-invasive nature that 

does not require any surgical procedure for use. One of the main components of these BCI 

systems is the classification of circumscribed and transient EEG changes like event-related 

synchronization (ERS) or event-related desynchronization (ERD) during different types of 

motor imagery [3]. Developing a robust decoding algorithm is one of the important things 

in improving BCI research and user experiences [12]. There are lots of successful feature 

extraction methods, such as common spatial patterns (CSP) methods [13], [14]. Among the 

CSP methods, filter bank common spatial pattern (FBCSP) [15] is one of the most popular 

algorithms which uses a group of band-pass filters to extract the optimal spatial features, and 

has achieved robust performance in MI classification tasks. However, this kind of traditional 

framework requires that the process of feature extraction/selection and feature classification 

are separated, which requires manual work and prior knowledge by the operator, which 

could lead to bias and inefficiencies.

Recently, with the rapid development of high-powered computing devices, deep learning 

has become increasingly popular in many fields. A major advantage of bringing in deep 

learning technology into BCI systems is that feature extraction and classification steps can 

be jointly learned directly from data, also known as ‘end-to-end’ learning [16]. Several 

groups have been working on deep neural networks for MI classification [17] and published 

several models. Schirrmeister et al. [18] explored deep neural network structures for MI 

classification. They presented four different models: shallow CNN, deep CNN, hybrid 

shallow+deep CNN and a residual network and showed that their shallow CNN and deep 

CNN substantially outperformed the traditional method while the other two did not. Sakhavi 

et al. reported an envelope representation for EEG-based motor imagery classification and 

combined it with a 5-layer convolutional neural network, which increased the classification 

accuracy by 7% on BCI competition dataset IV [19]. EEGNet [20] is another successful 

network which combined different basic convolutional layers together and achieved good 

performance on multiple datasets. Several other CNN-based structures have also been 

explored in motor imagery classification, showing that it is a popular architecture choice 

[21], [22], [23]. In addition, other studies have tried to combine traditional CNN layers 

with other tools to improve performance, such as self-attention modules [24] or stacked 

autoencoders [25]. Amin et al. designed a fusion model, which fuses multiple CNN 

networks to extract different levels of feature characteristics, and achieved substantial 

improvements of classification accuracy on multiple datasets [26].

A common approach to using EEG signals as inputs to these models is to represent the 

signal as a two-dimensional (2D) array where each row is a timeseries recording of a single 

EEG channel, and each column represents signal from different channels at a time. This 

method is convenient for visualizing the EEG signal and mimics the 2D structure of images 

in image processing where CNNs have been used extensively. However, this representation 

loses the spatial relationship among channels in the EEG montage, which may contain 

information useful for MI classification. To deal with this problem, some studies have 

explored a 3D representation of EEG data instead [27], [28].
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The variety of deep learning architectures proposed in the recent publications shows 

the field’s effort to improve MI-EEG classification by using new tools. Comparing the 

performance of these architectures offers a strategy for improving future BCI classifiers 

by further exploring the models and tools that lead to higher accuracies. However, a 

major difficulty in comparing the proposed architectures is that the datasets used to train 

and test these models are usually different between studies, or may not even be publicly 

available. The differences in the datasets may account for some of the differences in 

published accuracies, where some models may perform better on some datasets over others. 

In addition, the most commonly used motor imagery dataset is the BCI competition dataset 

IV [29], which includes only 9 subjects and does not include feedback. The small number 

of subjects could lead to a large variance in evaluation because the generalizability of a 

model may be questioned. This will lead to a strong need of comparing existing models 

on a larger, publicly available database, which will help in selecting deep learning models 

and design choices to build better MI classifiers in the future. In this study, we selected 5 

MI-EEG deep learning models with released code from 4 recent studies: EEGNet [20], Deep 

& shallow ConvNet [18], Multi-branch 3D CNN [28] and parallel self-attention network 

[24]. We designed a group of experiments to test these models on two large publically 

available motor imagery databases: MBT-42 [30] with 42 human subjects and Med-62 [31], 

[32] with 62 human subjects, each of which contains multiple BCI sessions with online 

feedbacks. We evaluated each model both on its classification accuracy of L/R (left/right) 

motor imagery tasks and on its model training cost. Our results are as follows: Among 

the five models we selected, all of the models performed similarly on the first dataset, 

while EEGNet performed the best on the second in terms of classification accuracy and 

training time for the hyperparameters and training choices we tested. We also show that a 

simple preprocessing step is important to deep learning model training, and its magnitude of 

improvement depends on the dataset.

II. Material and Methods

A. Datasets

Two large, publicly available datasets were used in this study to compare the performances 

of several recently published deep learning neural networks for MI classification. More 

information on these datasets is available in the original publications [30], [31].

1) MBT-42: This dataset was recorded during a series of MI-BCI training [30]. A total 

number of 42 healthy human subjects took part in this L/R cursor moving task. Here, the 

subjects’ goal is to perform left/right motor imagery and to direct the cursor to reach the 

target, which appears randomly at either side of the screen (Figure 1). The complete dataset 

consists of three experiments involving 16, 12, and 14 subjects respectively. All the subjects 

participated in three sessions of online control tasks. In the first experiment, there are 125 

trials within each session. In the second and third experiment, there are 120 trials. The EEG 

signals are recorded using a 62 channel Neuroscan system in the first two experiments, and 

a 64 channel Biosemi Active Two system in the third experiment. The trial structures of the 

three experiments are similar, each including 4 stages. A trial will start with a relaxation 

stage, which is considered as the rest time between two trials. Next is the cue stage, where 
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two square targets are placed on the left and right of the screen. One of these targets is 

made visible as a yellow square to provide a goal for the subject. The left and right trials 

are randomly distributed and balanced within sessions. After that, the feedback stage will 

start. A round pink cursor appears and starts moving based on the control signal provided by 

the classifier. This will give subjects the feedback about the effects of their motor imagery 

performance. If the cursor reaches the visible target the trial ends and results in a “hit”. If 

the cursor reaches the invisible target on the opposite side of the screen the trial also ends 

and results in a “miss”. If neither target is hit before the time limit, the trial ends and results 

in an “abort” trial. The last stage is the post-feedback stage, where the cursor will be frozen 

for one second. Subjects are only explicitly instructed to perform motor imagery during the 

feedback stage, though they may opt to perform it during other stages as well. In the first 

two experiments, the EEG signals had gone through a bandpass filter between 0.5 and 200 

Hz and a notch filter of 60 Hz, and was down-sampled to 100 Hz. In the third experiment, 

the EEG signals had gone through a bandpass filter between 0.16 and 100 Hz and a notch 

filter of 60 Hz, and was down-sampled to 128Hz.

MBT-42 dataset is openly available at the following URL/DOI: http://dx.doi.org/10.6084/

m9.figshare.7959572.

2) Med-62: This dataset is collected to explore the effect of meditation on motor imagery 

performance [31], [32]. In this dataset, 62 subjects participated in cursor movement control 

tasks of three types: left/right (LR) movement only, up/down (UD) only, and combined 2D 

movement (2D). Each subject completed a total number of 7–11 sessions of online BCI 

tasks. Each session is comprised of 450 trials counting all of the three tasks, 150 trials for 

each task. The EEG data is recorded by a 64-channel EEG Neuroscan cap. The data are 

sampled at 1,000 Hz and have already been bandpass-filtered between 0.1 to 200 Hz, with 

a notch filter at 60 Hz as well. The trial structure is similar to the first dataset, including a 

relax stage, cue stage, feedback stage and post-feedback stage. The length of feedback stage 

varies from 0–6s depending on if and how quickly a target was hit. The online decoders of 

both datasets are similar, which including spatial filtering using Laplacian filter, estimating 

mu rhythm power by fitting an autoregressive model, and operating cursor movement based 

on lateralized mu rhythm power (C4-C3) for left/right movement tasks.

Here, we only use the first three sessions and only LR trials of this dataset to keep 

comparable between the two datasets. Med-62 dataset is openly available at the following 

URL/DOI: https://doi.org/10.6084/m9.figshare.13123148.

B. Deep Learning Models

We chose to compare the following models which are specifically designed for motor 

imagery classification tasks and have released their codes for the models. This makes it 

easier to replicate the original authors’ work by testing their models in a new dataset. The 

released codes allow us to use the models most accurately as the way the authors intended. 

This framework can also be used in the future to compare more models as they are released. 

These models all adopt convolutional layers in their structures, which are widely used in 

processing temporal signals.
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1) EEGNet [20]: EEGNet is a compact convolutional neural network combining 

depthwise and separable convolutions. It consists of 3 convolutional layers and 1 fully-

connected layer, trying to encode several EEG feature extraction concepts like optimal 

spatial filtering and filter-bank construction.

2) Deep & Shallow ConvNet [18]: In this work, 4 different DNN structures, including 

shallow convolutional network, deep convolutional network, hybrid network and residual 

network, are explored and carefully compared to state-of-the-art methods. According to their 

results, shallow and deep ConvNet outperformed traditional FBCSP method while the other 

two did not, and we include both of shallow and deep network in our study.

3) Multi-Branch 3D CNN [28]: A typical deep learning model takes in a C × T matrix 

as input. In this situation, each channel will be treated equally and independently in the 

model, which will lose the spatial correlation among different channels. The novelty of this 

model is converting this 2D input into a 3D tensor, putting data from each channel into 

matrix entries arranged by its spatial position on the scalp. The channel arrangement in 

our experiment can be found in Supplementary Table S1. After that, the model uses 3D 

convolutional layers instead of 2D convolutional layers to generate its prediction.

4) Parallel Self-Attention Network [24]: ParaAtt introduced the popular self-attention 

concept in deep learning models [33] into EEG classification. Attention modules can 

automatically capture global relationships among input entries. With the parallel spatial-

temporal self-attention mechanism, high-level distinguishable spatial-temporal features of 

raw signal data can be captured.

The detailed structures and parameters of these models we used in our experiment can be 

found in the supplementary Information.

C. Data Analysis

In our study, we included both within-subject analysis and cross-subject analysis. Within-

subject training will train a model specifically for each subject. For both datasets, we use 

the first two sessions as training set, and test on the third session. Within the training set, 

we split 20% of data samples for validation. For data pre-processing, following [24], we first 

perform exponential moving standardization to the raw data. For a signal vector x = x1:T, 

this standardization process can be formularized as:

dt = xt −
∑i = 1

t (1 − α)t − ixi
∑i = 1

t (1 − α)t − i

vt =
∑i = 1

t (1 − α)t − idi2

∑i = 1
t (1 − α)t − i
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xt′ =
dt

max vt, ϵ

where α = 0.001 is the exponential factor, and ϵ = 0001 is a small number to avoid division 

by zero. To keep the length of two datasets comparable, we then down-sampled Med-62 

dataset to 100Hz. Since we can only assure that subjects are performing motor imagery 

during the feedback stage, we generate data samples from only the first 3 seconds of the 

feedback stage. Since the length of feedback stage in both datasets are variable, and some 

of them are shorter than 3 seconds, we pad the data samples with zeros if trial is too short. 

To compare the deep learning model performance with online performance and to ensure 

the fairness, we used only the first 3 seconds of feedback stage data to calculate the online 

accuracy. For each trial, if a decision was made before 3 seconds of feedback, then that 

decision is used as the result. Otherwise, if the trial lasts more than 3 seconds, then the 

target closer to the cursor at 3 seconds is taken as the result. The average length of feedback 

stage is: 5.16s in MBT-42 dataset and 5.74s in Med-62 dataset. The percentage of trials 

with feedback stage less than 3 seconds is: 21.4% in MBT-42 dataset and 5.9% in Med-62 

dataset.

We performed cross-subject analysis on Med-62 dataset. Since MBT-42 dataset is recorded 

by different system for different subjects with different sampling frequency and number of 

channels, it was not included for cross-subjects analysis. We partitioned the data as follows: 

For each evaluation round, one out of 62 subjects was selected as the test set, and samples 

from all other 61 subjects are used for training and validation. Within the 61 subjects, 

training set and validation set are split at an 80:20 ratio. We trained each model using the 

training set, and select the best training epoch and parameters on the validation set. After 

that, we evaluated the trained model on the test subject and obtained an accuracy. This 

process was repeated for each of 62 subjects being used as the test subject. Similar to the 

within-subject analysis, we only used the data from the first three sessions for all subjects.

Full details of model and training parameters we used in our study can be found in the 

supplementary Information.

III. Results

A. Within-Subject Analysis

Under our analysis setting, all of the deep learning models achieved higher accuracies 

compared to the online accuracy in both datasets (Table I, Figure 2). The complete accuracy 

results can be found in Appendix. The Friedman test for repeated measurements show 

that there exist significant differences among the five models in both datasets (P<0.05 in 

MBT-42, P<0.001 in Med-62). In MBT-42, all of the models performed relatively similarly 

and no model significantly outperformed the others (P>0.05 on each pair, one-sided 

Wilcoxon signed-rank test, FDR adjusted). Note that although the difference of average 

accuracy between EEGNet and online experiment is larger (73.65% vs 70.90%), they 

perform similar under Wilcoxon test (P>0.2). In Med-62, EEGNet performed significantly 

better than each other models (P<0.001 compared to Shallow ConvNet, P<0.01 to others). 
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All other model pairs do not have significant difference on performance. All of the P values 

have gone through adjustment of false-discovery-rate.

Figure 3 shows the distribution of model accuracies from different subjects. Each black point 

represents the model accuracy of one subject and the width of the colored area represents the 

density distribution of the accuracies. Here we can see a slight difference in the distributions 

between deep learning models and the online decoder, while the deep learning models are 

similar to each other.

B. Effects of Preprocessing

To explore the role of data preprocessing on model accuracy, we performed another group of 

experiments, which train deep learning models on the original data instead of preprocessed 

data using the same model structure. Figure 4 shows the comparison of the deep learning 

model classification accuracies training on preprocessed data and original data. We can 

see the preprocessing step has different effects on different datasets. On MBT-42 dataset, 

preprocessing only achieves limited improvement on deep learning model performance. 

None of the models shown have significant improvement when training on preprocessed 

data (P<0.05). However, on Med-62 dataset, each model achieved significant improvement 

by preprocessing (P<0.001). All of the P values have gone through adjustment of false-

discovery-rate. In comparison with the online performance denoted by red dash line, we 

can see that most of the deep learning models training on original data cannot beat online 

performance, which indicates that simple steps of data preprocessing are necessary for the 

training of deep learning models under these conditions.

C. Across-Subject Analysis

The cross-subject classification results of different deep learning models on Med-62 dataset 

are shown in Figure 5. The Friedman test for repeated measurements show that there exist 

significant differences among the five models (P<0.001). EEGNet performed significantly 

better than each other models (P<0.001 to all other models, one-sided Wilcoxon signed-rank 

test, FDR adjusted). All other model pairs do not have significant difference on performance. 

All of the P values have gone through adjustment of false-discovery-rate.

D. Computational Cost

Except from model accuracy, training cost is also an important criterion to evaluate a model. 

Table II compares the average training time of deep learning models on one subject. The 

timing tests are all operated on the BRIDGES-2 server at the Pittsburgh Supercomputing 

Center (PSC) [34] deployed with 40-thread Intel(R) Xeon(R) Gold 6248 CPU and one 

single core of Tesla V100 GPU. For EEGNet, Shallow & Deep ConvNet and ParaAtt, we 

trained 30 epoches for eacb subject, while for MB3D, we adjusted the epoch number to 15 

since this model had a longer training time than the others. The result shows that MB3D’s 

unique structures of 3D convolution layers will lead to longer training time. Shallow & Deep 

ConvNet have the least training cost to achieve a fairly good performance.

We also compared model inference time of deep learning models. Inference time is the 

amount of time a trained model takes to generate an output from the input signal. The 
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results are shown in Table III. We fixed all data input length to 300, and tested the model 

inference time on 125 samples and one single sample. Due to parallel computation, models 

can process faster on a batch of samples. Generally, the model inference time should be 

shorter than the update interval of real BCI systems, and 40ms is a commonly used value. 

All five models are able to decode one single sample shorter than this time, which means 

they all reserve the potential to put into real use.

IV. Discussion

In this study, we have tested five previously reported BCI deep learning models on two 

large and publicly available left/right motor imagery classification datasets. There have been 

research testing deep learning algorithms on motor imagery tasks. Schirrmeister et al. [18] 

compared the performance of novel DL models against a traditional BCI classifier in an 

offline setting to show the potential benefits of using DL models for BCI decoding. In their 

work, ShallowConvNet and DeepConvNet achieved 85.3% and 84.0% accuracy respectively 

on two datasets, outperformed FBCSP baseline (82.1%). Lawhern et al. [20] compared 

EEGNet with ShallowConvNet, DeepConvNet and traditional approaches on both ERP and 

Oscillatory-based BCIs, and found that which model performs the best will change with 

datasets. MB3D network achieved 75.0% accuracy on BCI competition IV dataset in their 

original work [28]. Liu et al. [24] reported ParaAtt and compared it to multiple models. 

In their original work, ParaAtt achieved 78.5% accuracy on BCI competition IV dataset, 

which outperformed EEGNet (65.4%), DeepConvNet (70.3%), FBCSP baseline (67.4%) 

and several other networks. Stieger et al. [35] previously examined the Shallow ConvNet 

[18], on the Med-62 dataset and reported that DL-based decoders can outperform online 

performance, and that using all of the available electrodes provides additional benefit to 

using just the electrodes around the sensorimotor cortex. The classification accuracy of 

ShallowConvNet can reach near 79% on session 3 of Med-62 dataset. This cannot be 

directly compared to our results, since we are using different training and test set and 

different data clipping strategies. These works, along with several others, show the promise 

of DL-based decoders for MI-BCI. However, while there are several successful DL models 

that have already been proposed for BCI, and more are certainly being developed, it is still 

unclear which, if any, of these models perform the best in a general setting.

Previous works have also compared different basic generic deep learning architectures on 

motor imagery tasks [36], [37]. These results may provide some guidance for improving 

DL-based BCI decoders, but still do not look at state of the art models. Here, we aim 

to address this by comparing multiple state-of-the-art deep learning networks that were 

specifically designed for BCI motor imagery tasks. From the experiment results, we have 

shown that EEGNet has the best performance on one dataset under these selected conditions 

among the models we have investigated and outperforms online accuracy on average as well. 

The depth of the network does not seem to be the most important factor in predicting a 

model’s performance. Though the models we tested have varying depths, they all performed 

similarly on the MBT-42 dataset. In addition, though EEGNet and Shallow ConvNet have 

similar depths, EEGNet outperforms the other models on the Med-62 datasets. The way 

to deal with inputs from different channels are also similar among these three models, 

since they all applied a depthwise convolutional layer to mix data from all channels in the 
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early part of models. A possible reason for the high performance of EEGNet on Med-62 

dataset might come from their special design of separable convolutional layers, which 

may potentially be capable of extracting more strong features related to this task. The 

Shallow and Deep ConvNets had the lowest training cost which may be an important factor 

for performing offline data analysis on lowered powered machines or in a time sensitive 

environment.

A. The Role of Preprocessing

The performance of deep learning model is greatly influenced by its input scale. Without 

data scaling, a deep learning model will learn larger weight parameters, which can cause 

instability and undermine the performance [38]. Figure 6 shows an illustration of different 

preprocessing methods on a real data snippet of 5 seconds length from Med-62 dataset. Here 

the term ‘original data’ refers to the data we directly obtained from the released dataset, 

which has already been minimally preprocessed by the authors. The orange line is the signal 

after going through a highpass filter with a cutoff frequency of 1 Hz. The data scale of this 

highpass-filtered data is almost the same as the original data, which is the blue line, since 

it only removes the low frequency component of the signal. On the other hand, exponential 

moving standardization (green line) and the normal standardization (red line) can rescale 

the data to a range which is suitable for model training, and the preprocessed data using 

these two methods are almost the same. From Figure 4, the accuracy improvement from 

preprocessing is much higher in Med-62 dataset. We checked the average standard deviation 

of original EEG recordings of two datasets, which is a rough reflection of input scale. The 

standard deviation averaged over all subjects is 28.2 in MBT-42 dataset, and 1335.0 in 

Med-62 dataset. Although there is not a clear threshold to discriminate ‘normal scale’ and 

‘abnormal scale’, this indicates that Med-62 dataset is far from normal distribution, so that 

it can benefit more from preprocessing. The MB3D model is the one which was affected 

the least by input scale. One possible explanation for this may be its multi-branch structure. 

If one branch died out because of abnormal inputs and its subsequent consequence like 

gradient vanishing, the other branches still reserve the chance to fit well so that the model 

can still classify correctly.

B. Subject-Wise Clustering

In addition to comparing the overall performances of the various deep learning architectures, 

we also wanted to explore subject-specific performance between the models. Although 

some models reached higher accuracies than others on average, it could be the case that 

specific models work well for some subjects and not others. To test if this is the case, we 

plotted the subjects’ performance in a five-dimensional space where the accuracy from each 

model is a single dimension. Since the differences in average accuracy between subjects 

was much larger than any differences between models for a single subject, we needed 

to center the subjects’ accuracies in order to focus on any model-specific differences. To 

remove the effects of the subject’s average performance, we zero-centered their accuracies: 

(x−mean(x) is the zero-centered vector of x). Here, subjects that performed similarly among 

the various models are closer together in space (ex. if subject A and B both performed better 

with Shallow Net than with EEGNet they would be closer together). Using t-distributed 

stochastic neighbor embedding (t-SNE) [39], [40], a statistical method for visualizing high-
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dimensional data, this five-dimensional space can be visualized in two-dimensions, shown in 

Figure 7.

Deep learning models with different connective structures might have different preference 

on special EEG features of certain subjects. In other words, there might exist a kind of 

phenomenon that: within a subset of subjects with a common EEG feature, or MI strategy, 

a group of deep learning models perform better, while within another subset of subjects 

with a different EEG feature, another group of deep learning models perform better. This 

difference might be expected due to the differences in architectures of the models, and 

the abilities of the various layers to extract different features. The t-SNE plots in Figure 7 

explore how similarly subjects perform among the different models. Here, distinct groups 

of subjects, or clusters, would signal that there are sub-populations of subjects with unique 

features that result in them reaching higher performance with some models rather than 

others. The results of Figure 7 show that subjects are relatively spread out across this space. 

This suggests that if the models are extracting different features, then these features are 

relatively distributed across different subjects. Future work could further explore this idea by 

comparing the electrophysiology between subjects that are the furthest away from each other 

in this space to extract the features causing the difference in accuracies between models. 

Including different types of models in this analysis, such as RNNs, may also yield even more 

stark differences as the architectures extract different features from the data.

Since the clusters are not clear from the two plots in Figure 7, this kind of model preference 

is weak based on our experiment result. However, we believe it’s still a good direction to 

explore if we can have more data samples and more models to compare in the future.

C. Future View of Deep Learning

Deep learning has shown success on improving the power of BCI systems. We believe 

deep learning has further potential on evolving BCI systems. EEG is one of the most 

commonly used non-invasive BCI inputs, which has low signal-noise ratio (SNR). As a 

result, extracting features from such a noisy signal is harder for traditional methods in 

processing EEG signals. As mentioned, the feature extraction step requires lots of manual 

work and prior knowledge, and may cause information loss. From deep learning, we can 

have a better option to automatically generate useful features from noisy data.

There are still issues to be addressed to drive deep learning further to the online system. First 

is how to deal with different format of data. Compared to the easy data collection process 

in most of the computer science fields due to the prosperity of Internet, the human EEG 

data collection is much more harder because of the tedious routines, time-consuming process 

of recruiting subjects and conducting experiments. EEG data are collected from different 

research groups using different systems. Given this, building a unified model which can be 

trained on various types of data and serve for multiple purposes, can increase the utilization 

rate of limited EEG data and may become an important issue in the future. The ideal case 

is that a user can start using BCI system without any pre-training/calibration trials. Through 

the early stage of interacting, the DL model can perform gradual adjustment along uses by 

the user.
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Most of the current models treat each trial equally, which means we can arbitrarily shuffle 

the order of trials and sessions. However, in real scenario, a subject may generate gradually 

varied features during BCI training, which might be an additional challenge for decoding. 

We believe that future investigations can be extended to look into effects of training of 

MI-BCI using deep learning.

In our work, the performance distribution among subjects in two datasets are not identical. 

The distribution in MBT-42 dataset is like pear-shaped, while that in Med-62 dataset is 

much like a spindle. In this case, we can find that different dataset may include different 

proportion of ‘poor performers’, ‘moderate performers’, and ‘good performers’. Future 

investigation should be extended to examine effects of deep learning on various performance 

sub-groups.
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Fig. 1. 
Trial structure of two datasets. A trial starts from a relax stage, shown as the blank screen. 

Then a rectangle target will appear at either side of the screen, giving subject the hint of 

direction to perform motor imagery. At feedback stage, a circle cursor will appear on the 

center of the screen and will move towards either side based on motor imagery of the 

subject. After the cursor reach or miss the target, or the time exceeds the limit, the cursor 

will be frozen at the post-feedback stage. The length of each stage is summarized in the 

table.
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Fig. 2. 
Box-plots of classification accuracies of deep learning models and online performance. 

Lower and upper box boundaries denote 25th and 75th percentiles, respectively. Lines inside 

box denote median. The “whiskers” extend to points that lie within 1.5 interquartile ranges 

(IQRs) of the lower and upper quartile, and then observations that fall outside this range 

are displayed independently. Red dashed lines denote the chance level. Stars denotes the 

statistically significant differences between model pairs (P values from Wilcoxon signed-

rank test, **: P<0.01, ***:P<0.001). All P values have gone through adjustment of false-

discovery-rate.
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Fig. 3. 
Distribution of model accuracies from different subjects. Each black point represents an 

accuracy from a single subject. The violin plot outlines illustrate the density of accuracies, 

i.e. the width of the colored area represents the proportion of subjects achieving accuracies 

at that level. Red dashed lines denote the chance level.
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Fig. 4. 
Comparison of models training on preprocessed data (using exponential moving 

standardization) and original data. Red dash lines mark the online accuracies. There is nearly 

no improvement in MBT-42 dataset, but significant improvement of all models in Med-62 

dataset (P values from Wilcoxon signed-rank test, ***:P<0.001).
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Fig. 5. 
Box-plots of cross-subject classification accuracies of deep learning models over all subjects 

on Med-62 dataset. Lower and upper box boundaries denote 25th and 75th percentiles, 

respectively. Lines inside box denote median. The “whiskers” extend to points that lie within 

1.5 interquartile ranges (IQRs) of the lower and upper quartile, and then observations that 

fall outside this range are displayed independently. Red dashed lines denote the chance level. 

Stars denotes the statistically significant differences between model pairs (P values from 

Wilcoxon signed-rank test, ***:P<0.001). All P values have gone through adjustment of 

false-discovery-rate.
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Fig. 6. 
Example of different preprocessing methods on a data snippet. The scale of highpass-filtered 

data with a cutoff frequency of 1 Hz is almost the same as original data. The scale of data 

after exponential moving standardization and normal standardization is similar to each other, 

far smaller than original data, which may benefit deep model training.
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Fig. 7. 
Visualization of zero-centered accuracy vectors on two datasets using t-SNE. No clear 

subject clusters can be found.
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TABLE II

Average Model Training Time per Subject of Deep Learning Models on Two Datasets in Seconds

EEGNet ShallowConv DeepConv MB3D ParaAtt

MBT-42 3.336 2.621 2.768 17.896 4.457

Med-62 3.990 3.076 3.051 20.037 5.196
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TABLE III

Average Model Inference Time of Deep Learning Models for a Batch of Samples and One Single Sample in 

Milliseconds. All Input Samples Are Fixed to Time Length of 300

EEGNet ShallowConv DeepConv MB3D ParaAtt

125 samples 16.4 20.1 21.2 117.3 28.1

1 sample 1.8 1.6 1.9 15.4 2.4
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