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ABSTRACT

Small interfering RNAs (siRNAs) are promising new
active compounds in gene medicine but the induc-
tion of non-specific immune responses following
their delivery continues to be a serious problem.
With the purpose of avoiding such effects chemical-
ly modified siRNAs are tested in screening assay but
often only examining the expression of specific im-
munologically relevant genes in selected cell popu-
lations typically blood cells from treated animals or
humans. Assays using a relevant physiological state
in biological models as read-out are not common.
Here we use a fish model where the innate anti-
viral effect of siRNAs is functionally monitored as
reduced mortality in challenge studies involving an
interferon sensitive virus. Modifications with locked
nucleic acid (LNA), altritol nucleic acid (ANA) and
hexitol nucleic acid (HNA) reduced the antiviral pro-
tection in this model indicative of altered immuno-
genicity. For LNA modified siRNAs, the number and
localization of modifications in the single strands
was found to be important and a correlation
between antiviral protection and the thermal stabil-
ity of siRNAs was found. The previously published
sisiRNA will in some sequences, but not all, increase
the antiviral effect of siRNAs. The applied fish model
represents a potent tool for conducting fast but
statistically and scientifically relevant evaluations
of chemically optimized siRNAs with respect to
non-specific antiviral effects in vivo.

INTRODUCTION

Small interfering RNAs (siRNAs) program specific gene
transcripts for destruction via the cellular RNA interfer-
ence pathway (1). SiRNAs typically consist of two 21-nt
long strands annealed to generate 19 bp with a 2-nt
overhang at each 30-end (2,3). Upon delivery to the cell
cytoplasm, siRNA duplexes are taken up by the RNA
induced silencing complex (RISC) (4–6) in which the
Argonaute 2 component, cleaves one strand by its endo-
nuclease activity leaving the antisense strand (AS) to bind
and induce cleavage of the complementary mRNA tran-
scripts (7–10). As this enables down-regulation of specific
genes (11) siRNAs are both regarded as valuable tools in
functional genomics as well as potential therapeutic agents
(12). However, the occurrence of cellular immune recep-
tors capable of recognizing single and double-stranded
RNA species (13–22) complicates the interpretation of
siRNA experiments (23–25) as these receptors activate
innate immune defence mechanisms which can potentially
lead to physiological changes of the biological system
under investigation (26–28). Chemical modifications of
siRNA duplexes have been shown to affect the regulation
of genes involved in innate immunological response using
either cell cultures or specific cell types from treated or
non-treated mice or human blood cells typically peripheral
blood mononuclear cells (PBMC’s) or levels of immuno-
logically relevant proteins in serum (18,29–37) but still
little is known about the functional effects and conse-
quences of such regulation in animal model assays where
chemically modified siRNAs are applied. In this study,
we test a range of modified siRNAs for their ability
to induce a non-specific antiviral response in a small
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vertebrate model. We exploit our previous finding that the
activation of a functional innate immune mechanisms by
delivered siRNAs can delay and reduce the mortality of
small juvenile rainbow trout challenged with the fish
pathogenic rhabdovirus Viral Haemorrhagic Septicaemia
Virus (VHSV) (27). Our data indicate that the induced
immune effect of modified siRNAs in vivo is determined
by several factors such as nucleotide sequence of the
siRNA, modification chemistries, number and localization
of modifications and probably, as our results seem to
indicate, the thermal stability of RNA bindings.

MATERIALS AND METHODS

Synthesis, purification and annealing of duplexes

The synthesis of non-modified and chemically modified
siRNAs was performed as described in Bramsen et al.
(38,39) using previously published sequences designed
to target the reporter gene enhanced green fluorescent pro-
tein (EGFP) and the housekeeping gene Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) from mouse
(39; appendix 2). Locked nucleic acid (LNA; 40)
modified oligonucleotides were obtained by using com-
mercially available LNA phosphoramidite building
blocks (www.exiqon.com). The chemical synthesis of the
remaining modified phosphoramidites have previously
been described: HM (40-C-hydroxymethyl-DNA) (41),
OMe (20-O-methyl) (41), ANA (altritol nucleic acid)
(42), HNA (hexitol nucleic acid) (43) and AEM
(20-aminoethoxymethyl) (44). Their structures are shown
in Figure 1. Following annealing of strands the formation
of double-stranded siRNAs was verified by 12% PAGE.

In vivo screening for the antiviral potential of duplexes

Duplexes were formulated in the liposome-formulated
polycationic transfection agent 1, 2-dioleoyl-3-trimethyl-
ammonium propane (DOTAP; Roche Diagnostics,
Basel, Switzerland), injected into the intraperitoneum
(IP) of 1 g large rainbow trout followed by challenge

with VHSV (27). Briefly, 1 mg siRNA was mixed with
2 mg DOTAP in 0.9% NaCl (physiological saline,
Nycomed, Denmark). Fish were anaesthetized in 0.01%
benzocaine (ethyl p-aminobenzoate, Sigma, Brøndby,
Denmark) and injected intraperitoneally with 20 ml of
the formulated siRNAs using a 27G needled syringe
before adding them to the respective aquaria’s containing
8 l of running tap water. A total of 2� 30 fish were
included in each group. The water flow was stopped 24 h
post-siRNA injection followed by addition of VHSV
isolate DK-3592B (45) to each of the experimental
aquaria giving an approximate titre of 105 TCID50/ml in
the water of each aquarium. After 2 h of exposure the
water flow was restarted. For the next 2 weeks, diseased
fish were daily registered and removed from each
aquarium, examined for external signs of the disease and
frozen down for later verification of VHSV infection.
Verification was carried out by testing material of
homogenized whole fish (without tail fin) by a VHSV
specific ELISA (46). Relative percent survival (RPS) at
Day 10–12 post-viral challenge was calculated from the
established mortality curves (Figures 2, 3 and 4) as RPS
(%)=100*[1� (mortality fish / mortality positive control
fish)]. The respective time points post-challenge for
calculating RPS were chosen because they corresponded
with nearly full mortality of non-treated positive control
fish challenged with virus as well as with near linearity of
the rest of the mortality curves.

Estimating the binding energy of annealed duplexes

The thermal stability of annealed siRNA duplexes was
estimated by analysis of dissociation curves generated in
a Stratagene Mx3000p RealTime PCR machine as has
been described for annealed strands of DNA and RNA
(47). Briefly 5 ml of the duplex dilution was added to a
mixture containing 19 ml physiological saline (0.9%
NaCl) and 1 ml SYBR Green (Molecular Probes,
Invitrogen, Denmark) pre-diluted 1:1000. A dissociation
curve was recorded while increasing the temperature from
25�C to 95�C at a temperature change of 1.8�C/min.
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Figure 1. Chemical structures of the oligonucleotides used to modify siRNA strands in this study. See text for explanation of acronyms. RNA,
ANA, HNA, 20-OMe, LNA, HM and AEM.
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Figure 2. The fish-virus model is able to distinguish between the levels of antiviral protection induced by chemically modified siRNAs. Variants of
one siRNA targeting the VHS virus irrelevant reporter gene EGFP were formulated in DOTAP and IP injected into small rainbow trout prior to
challenge with the fish pathogenic and interferon sensitive VHS virus (a). Sequences and modifications of strands used to generate the injected
siRNAs can be seen in Supplementary Table S1, but are shown here diagrammatically (b). All strands were chemically modified variants of the
siRNA sequence seen in the upper panel. Strand numbers used throughout the text are placed next to the diagrammatic representations of strands.
The chemistries used to modify RNA strands are shown in Figure 1 (the meaning of white, grey and black ball shapes as well as the lightning symbol
is explained in the diagram). In order to generate mortality curves (c) the dead fish from the challenge study were counted and monitored as mean
accumulated mortality±SD (error bars) of treated groups. Each group was run in duplicate with 30 fish per replicate. (d) Knock-down activity of
the modified siRNAs was examined by the use of an in vitro luciferase assay as explained in ‘Materials and Methods’ section. The colour coding used
for the various modified siRNAs in (b) is equal to the one used in the mortality curves (c) and in the figure on the in vitro knock-down effect (d).
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Emitted fluorescence from SYBR Green bound to
duplexes was recorded every 0.5 s. The FAM filter set
with excitation wavelength at 492 nm and emission wave-
length at 516 nm was used. MxPro software (Stratagene,
La Jolla, CA) was used for determining Tm by the –R0(T)
methods, where Tm is defined as the temperature where
the drop in fluorescence is maximal. As melting is per-
formed relatively fast we cannot expect equilibrium
between bound and unbound strands to be reached
during measurement which is why we do not regard
measured melting temperatures to be exact values but
rather relative approximations of thermal stability
between differently modified siRNAs. The approximated

thermal stabilities of siRNAs were correlated with the
RPS of fish treated with these siRNAs in the challenge
studies (see ‘Materials and Methods’ section above on
the in vivo screening of antiviral potential of duplexes).

TNFa regulation in human PBMC treated with siRNAs

PBMCs from healthy volunteers (200 000/well) were
treated with 100 nM siRNA-targeting EGFP mRNA,
again using DOTAP as the delivery reagent. After 9, 12
and 18 h the supernatant from the cells was collected and
frozen in �80�C until use. The samples were then assayed
on human TNF-a ELISA MaxTM Deluxe Sets (Biolegend
#430205).
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Figure 3. The number and localization of LNA modifications in the siRNAs seems to determine their antiviral effect in the fish-virus model.
Screening of LNA modified variants of one siRNA-targeting EGFP (a) and of one targeting GAPDH (b) using the same pattern of modification
showed that there is also an effect of sequence. Right panel: diagrammatic representations of siRNAs with white ball shapes as RNA nucleotides and
black ball shapes as LNA. Counts below the siRNA diagrams are counts of LNA modifications inside the duplex part and in the overhangs
respectively. Challenge experiments and mortality curves were generated like explained for Figure 2. Colour codes were used to differentiate between
siRNAs. Detailed sequence information with annotation of modified bases can be found in Supplementary Table S2.
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Test of RNAi functionality of modified siRNAs in vitro

Test for siRNA silencing activity was done using a previ-
ously established protocol (48). Briefly, the human lung
cancer cell line H1299 was grown in RPMI-1640 contain-
ing 10% FBS, 1% penicillin/streptomycin. A stable
luciferase reporter H1299 cell line was created by transfec-
tion with a psiCHECK2 vector (Promega) modified to
contain a perfect target site for the EGFP specific
siRNA in the multiple cloning site (MCS) located in the
30-UTR of the Renilla luciferase gene. A puromycin resist-
ance cassette in the vector allowed for the selection of
stably transfected cells (1 mg puromycin/ml medium).
Evaluation of knock-down efficiency was performed
using this cell line and transfections with EGFP specific
siRNAs at 10 nm concentrations in triplicates.
Lipofectamine 2000 reagent (Invitrogen) was used in a
96-well format with 15 000 cells in 100ml serum-free

RPMI per well. After 4 h, the transfection mixture was
substituted with growth medium containing serum. Cell
lysates were harvested after 48 h and luciferase assays
were performed using the ‘Dual-luciferase reporter assay
system’ (Promega) according to the manufacturer’s
protocol on a FLUOstar luminometer (BMG labtech);
Renilla luciferase signals (sample) were normalized to
the firefly luciferase signals (transfection control).

RESULTS

Chemical modifications of siRNAs modulate their
antiviral effects in a viral challenge model

In the VHS virus challenge model, rainbow trout injected
with a non-modified siRNA targeting the virus-irrelevant
reporter gene EGFP (RNA/RNA-targeting eGFP duplex
in Figure 2) experienced a lower degree of virus induced
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Figure 4. A knick introduced in the SS increases antiviral effect in the fish-virus model. (a) Screening of the LNA modified siRNAs W209:W181,
AS:W181 and W006:W181 (from Figure 3a) against versions of the same siRNAs where the W181 strand was substituted with the two smaller
strands W178 and W179. (b) In the same way the LNA modified siRNAs from Figure 3b: id1715:W204, AS:204 and W203:W204 were compared to
siRNAs where W204 had been substituted with the two strands W214 and W216. Challenge experiments and mortality curves were generated using
two duplicate aquaria of 30 fish per treatment group. Mean mortalities±SD. Colour codes were used to differentiate between siRNAs. Sequence
information for these siRNA strands can be found in Supplementary Table S2. A nick in the SS is noted by a lightening symbol in the diagrammatic
representation of strands.
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mortality compared to buffer injected control fish (PosC
no siRNA in Figure 2c). Initial experiments using 1–2 mg
siRNA did not show signs of concentration dependence
upon mortality why we are probably working with a
saturated system (data not shown). We have previously
shown indirect evidence that the non-specific reduction
of mortality was due to induction of an interferon
response (27). In order to determine whether chemical
modification could influence the antiviral effect, we
screened a range of modified versions of this siRNA
(Figure 2b) for their ability to protect fish from viral
induced mortality (Figure 2c). Most of the modified
siRNAs induced a high antiviral protection equal to or
in some cases even stronger than that induced by the
non-modified siRNA indicative of a potent interferon
response. However, three of the modified siRNAs, con-
taining LNA, HNA or AEM nucleotides respectively
exhibited a reduced antiviral effect as revealed by an
increased and more acute mortality in the challenge
model (lighter red, orange and yellow curves in
Figure 2c). Especially the sisiRNA (40), which was LNA
modified in the stem part and where the passenger strand
[sense strand (SS)] was replaced by two shorter 10-nt and
12-nt strands, showed a dramatically reduced antiviral
effect compared to the non modified RNA/RNA duplex.
In contrast, the siRNA which was LNA modified only in
the overhangs (W208:W194), showed no abrogation of
antiviral response in our model. Except from the AEM
modified version, all the siRNAs retained knock-down
functionality in vitro (Figure 2d), although the sisiRNA
seemed less potent. Accordingly, our initial observations
show that it is possible to strongly reduce induction of
innate mechanisms while still retaining a significant
knock-down effect. Interestingly we did find a strong anti-
viral effect of our 20OMe nucleotide modified siRNA
despite that 20OMe has previously been shown to be a
potent antagonist of immunostimulatory RNA in the
mammalian systems where it was tested (32,35).

LNA modifications in the siRNA stem reduces
antiviral effect

The effect of introducing LNAs into siRNAs was
investigated by varying the number and positions of modi-
fications in the EGFP-targeting siRNA (Figure 3a). In
order to control for sequence related effects we also
included non-modified and modified versions of a previ-
ously published GAPDH-targeting siRNA using the same
modification patterns as for the EGFP-targeting siRNA
(Figure 3b). The setup included native strands, strands
with four LNAs in the stem and two LNAs in the
overhang and finally strands with only two LNAs in the
overhang (only AS). Pairing of AS and SS containing six
LNAs in both strands strongly reduced the antiviral effect
of both the EGFP and the GAPDH specific siRNA seen
as a higher mortality compared to the non-modified
siRNAs (compare the siRNAs W209:W181 and
id1715:W204 with the non-modified siRNAs called
AS:SS in Figure 3a and b respectively). When shifting
strands to ones containing a lower number of LNA
residues in the stem part of siRNAs these again resumed

their antiviral induction to different levels seen as varying
degrees of reduction in the mortality curve. Duplexes con-
taining an AS strand with only 30-end LNA modification
(W006:W181, W006:SS and W203:W204, W203:SS in
Figure 3a–b) showed no abrogation of antiviral response
compared to the siRNA composed only of RNA. This
was also seen when LNA substitutions where placed
in both overhangs (W208:W194 in Figure 2) and
did not seem to be related to whether the overhang was
3- or 2-nt long.

A knick in the SS (sisiRNA) increases the antiviral effect
in some siRNAs

As LNA nucleotide substitutions are known to increase
the thermal stability of RNA and DNA duplexes (40,49)
we checked whether a reduction of duplex stability
through introduction of a destabilizing break in the pas-
senger strands would be able to increase their antiviral
effect (Figure 4a and b). This was the case, but the effect
was most pronounced for the GAPDH siRNA where the
sisiRNA design led to decreased mortality for all modifi-
cation patterns.

A high LNA load reduces knock-down efficiency but can
be partly restored by the sisiRNA design

We checked the knock-down efficiency of our siRNAs in
an in vitro assay using human cells and found that all
worked as potent inhibitors except for the highly LNA
modified W209:W181 double-strand (Figure 5). On the
other hand, the sisiRNA design of this duplex
(W209:W178/W179) increased the knock-down efficiency
from 0% to 65%, which shows that we can, as previously
postulated, increase the knock-down efficiency of these
modified siRNAs by pre-cleaving the passenger strand
(39). The interesting finding here was that whereas this
cleaving in many cases resulted in higher antiviral effect
(lower mortality in the challenge study) such an effect was
not significant for the W209:W178/W179 duplex
(Figure 4a) indicating that it might be possible in some
cases to design LNA modified siRNAs causing none or
only insignificant side effects while still retaining their
knock-down efficiency.

Discrepancies between the fish model and a mammalian
in vitro system

We investigated whether the innate immune response
to the siRNA variants, as observed in the fish model,
could be recapitulated in human PBMCs using the level
of the proinflammatory molecule TNF-a as read-out
(Supplementary Figure S1). We saw the tendency of
decreased immune stimulation with increased LNA load,
but whereas the immune stimulatory effect of siRNAs
containing LNA modifications in the overhang only
(siRNA harbouring the W006 strand) resembled that of
the unmodified RNA duplex in the fish model this was not
as clear in the human PBMC’s where only the W006:SS
duplex was highly stimulatory.
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Antiviral effects of LNA modified siRNAs in the fish
model are correlated with their thermal stability

The suggested relationship between duplex stability and
immune stimulatory properties was further analysed by
plotting estimated melting temperatures of siRNAs with
their corresponding effect on mortality in the infection
trials. For LNA modified siRNAs (presented in
Figures 3 and 4) we found a positive correlation between
the relative thermal stabilities of LNA modified siRNAs
and their antiviral effect seen in our infection model
(Figure 6b–c). Such a relationship should probably not
be expected for all types of modifications as indicated by
our initial screening experiments where thermal stability
could not explain differences in immunestimulation across
different types of modifications (Figure 6a; siRNAs from
screening shown in Figure 2).

LNAs in the siRNA stem can abrogate the effect of a
previously published immune stimulating motif

To investigate the generality of our observations in the fish
model, we tested an siRNA previously found to contain
a mammalian immune stimulatory motif (‘GUCCUU
CAA’) in the SS and compared this to a modified
siRNA containing four LNA substitutions inside the
motif as a means of abrogating the stimulatory effect
(18). Using our in vivo model, we found that four LNA-
modifications within the immune stimulatory motif
reduced the antiviral effects significantly (Figure 7a) in
agreement with the mammalian study (18). Notably, a
similar reduction in antiviral effect was seen when the
LNA substitutions were placed in the AS of the region
complementary to the immune stimulatory motif. For
these siRNAs melting temperature and %RPS was also
negatively correlated (Figure 7b). In the human PBMCs

using TNF-a as a measurement of immune induction we
found nearly similar results (Supplementary Figure S2).

Single strands induce the antiviral response which can be
abrogated by LNA modification

We tested whether the single strands used to generate our
siRNA duplexes could themselves induce the antiviral
response in the fish model as has previous been shown
in mammalian cells (18,21,33). This was also the case in
the fish model where our results indicated that the anti-
viral effect of the duplexes could be explained by the effect
of the strongest inducer of the two strands [Figure 8a–b;
AS from the AS:SS (non-modified RNA duplex), W006
from W006:W181 and SS from W006:SS]. This indicated
strand competition for receptors rather than an additive
effect of strands although this should be further
investigated by using a larger set of sequences. The same
was seen when using two strands of the same orientation
which are not expected to hybridize (Figure 8c;
Combinations of the AS, which is the non-modified
RNA AS, the W006 strand which was only end modified
by LNA and the W010 strand containing six LNA
modifications).

DISCUSSION

Viral diseases of rainbow trout are well studied due to the
use of this species in aquaculture. Good infection models
exist making this an interesting animal model for the study
of antiviral medicines. Recently, the use of siRNA knock
down for targeting viral diseases has been tested in
rainbow trout (27), but given the strong non-specific anti-
viral effect, which are under some circumstances induced
by siRNAs, it can, like in the mammalian studies (23), be
difficult to get a relevant read-out of the specific effect
(26,27). In rainbow trout we have previously shown that
IP injected siRNAs, when formulated by the effective
liposomal delivery reagent DOTAP, are first taken up by
macrophage-like cells in the intraperitoneum followed by
an antiviral immune response which is able to protect the
fish against VHS virus induced mortality (27). Previously
IP injected mice were shown to take up DOTAP
formulated siRNAs by the same route, but unfortunately
the absence of an interferon response in this model was
only studied in intravenously (IV) injected mice (50). It has
previously been reported that introduction of chemical
modifications into siRNAs were able to reduce their in-
duction of innate immune mechanisms in mammalian
systems (17,18,22,23,28–35). Here we used the fish-virus
model to screen for types of modifications which reduce
the ability of siRNAs to acts as antiviral stimulants in vivo
without compromising their knock-down efficiency as
evaluated in vitro in a mammalian system. The initial
screenings clearly demonstrated that the fish-virus model
could differentiate between different modified versions of
the siRNA based on their antiviral effect towards the VHS
virus. Notably, the antiviral effect of the LNA modified
sisiRNA, the HNA and the AEM modified siRNAs were
significantly reduced compared to the effect seen when
using the non-modified siRNA (Figure 2c), but only the

Figure 5. Highly LNA modified siRNAs show low knock-down effi-
ciency which is possible to regain by introducing a knick in the SS.
Such findings have previously been shown (29) but we tested it again on
the specific strands used in this study. The cell culture assay is described
in ‘Materials and Methods’ section. Data are mean values for triplicate
wells and error bars represent SDs. All values were normalized to the
mean signal from cells treated with a mismatched siRNA not expected
to target the luciferase expression. An expression value of 1 is equal to
no target reduction (100% luciferase signal). The strand numbers in the
left panel are the same as used throughout the text and Figures 3 and 4.
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LNA modified sisiRNA and the HNA modified siRNA
without abrogating the knock-down potential (Figure 2d).
We further investigated the role of LNA modification.

Our results indicated the importance of the modification
pattern in our siRNAs. Introduction of LNAs inside the
stem part generally reduced the antiviral stimulation in the
fish as compared to modifications in the overhangs. A role
of LNA modifications in siRNA overhangs on cellular
stress has previously only been described with respect to
reduced viability in HeLa cells (38; Here using the same
strands W006 and W203 as we used in our study).
This could potentially be due to the innate response we
saw as a functional antiviral protection in our model. But

we were not able to show the same general effect of
including the W006 strand in our human PBMC cell cul-
ture experiments where only the W006:SS siRNA strongly
induced the expression of TNFa (Supplementary
Figure S1). Discrepancies between the results from the
mammalian in vitro models including our own and our
fish in vivo model systems could result from the former
using human PBMC’s in in vitro systems and only
assaying the regulation of a specific stress or immunologic-
ally relevant gene. One other interesting difference
between the innate response in our model and previous
mammalian models included the absence of an effect by
our 20-OMe modified siRNA. As we only included one
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20-OMe modified duplex in our initial experiments we
cannot safely say whether this is a general finding in the
fish model or whether a different pattern of modification
would have behaved different.

LNA modifications in the stem part of double-stranded
nucleic acids are known to increase their thermal stability
which could change the siRNAs ability to react with
cellular receptors. For our in vivo model we found indica-
tions that the thermal stability of LNA modified siRNAs
could be a determinator of the degree of antiviral effect
induced. First, we demonstrated that fish injected with
siRNAs containing more LNA modifications in the stem
experienced a higher mortality following viral infection
indicative of a lower innate antiviral stimulation.
Secondly, the introduction of destabilizing nicks in the
stem part (the sisiRNA design) had the opposite effect.
Thirdly, the relative thermal stability between strands as
estimated by the dissociation curve method (47) was nega-
tively correlated with the RPS in the viral challenge studies.

Furthermore, we found a correlation between thermal
stability and antiviral effect of a previously published
siRNAs harbouring an immunostimulatory motif (18).
One possible explanation for the influence of thermal

stability of siRNAs upon antiviral activation when de-
livered by DOTAP comes from recent findings that this
cationic liposome based delivery reagent promotes effi-
cient delivery via uptake into endosome compartments
of the vertebrate cell (21,51). Here they allow for the rec-
ognition of both double-stranded RNA and single-
stranded RNA species by TLR receptors 3, 7 and 8 all
signalling the initiation of the interferon response
(19; 51). At least in isolated mouse leucocytes the single
strands of siRNAs have been shown to act as ligand for
TLR-7 and 8 (18). This could explain the correlation
between thermodynamic stability and antiviral effect in
our in vivo model. Importantly, fish also have TLR3, 7
and 8 although two forms of TLR8 are present in the
rainbow trout (52–54).

60%

80%

100%
(a)

(b)

m
o

rt
al

it
y

PosC no siRNA
5´- UUGAAGGACAGGUUAAGCU dTdT -´3

3´- dTdT AACUUCCUGUC CAAUUCGA -´5

5´- UUGAAGGACAGGUUAAGCU dTdT -´3

3´- dTdT AACTUCCUGUC CAAUUCGA -´5

Immune stim. Motif (Hornung et al, 2004)

0%

20%

40%

1 3 5 7 9 11 13 15 17 19 21

%
 a

cc
. m

days post VHSV challenge

5´- UTGAAGGACAGGUUAAGCU dTdT -´3
3´- dTdT AACUUCCUGUC CAAUUCGA -´5

3´- dTdT AACTUCCUGUC CAAUUCGA -´5
5´- UTGAAGGACAGGUUAAGCU dTdT -´3

Underlined = LNA

90

50

70

R
P

S
 d

ay
 1

0

10

30

75 80 85 90

%
R

Relative thermal stability of 
siRNAs

in fysiological saline

Figure 7. The relation between thermal stability and antiviral effect in vivo was also found using LNA modifications of a previously published
siRNA containing an immune stimulatory motif (13). Challenge experiments (a) and estimation of siRNA thermal stability was carried out as
described in the text. The immune stimulating motif is boxed in grey in the sequence diagrams in (a). The first siRNA from the top is the
non-modified siRNA. The second from the top is also a sequence from the Hornung et al. study where the immune stimulatory effect of the
siRNA was reduced by substituting four RNA nucleotides with LNA nucleotides in the motif (LNA residues are underlined). The next siRNA was
our own design and included LNA modifications only in the strand opposite to the proposed motif. In the last siRNA (lower row) modifications
were introduced into both strands. (b) We show that RPS and thermal stability of these siRNAs are negatively correlated. Methods are as described
in the ‘‘Materials and Methods’ section’ section as well as in the text for Figure 5. Mortality curves were made from mean values for duplicate
groups of fish with the same treatment. Error bars represent SDs of duplicates.

Nucleic Acids Research, 2012, Vol. 40, No. 10 4661



In line with this hypothesis single strands were able to
induce the innate mechanisms and explain the antiviral
effects of siRNAs in the fish. But, our finding that LNA
modification of single strands could also reduce the anti-
viral effect outside a duplex context shows that the effect
of LNA can at least not exclusively be assigned to the
strengthening of the siRNA duplex. As the number of
LNAs in nucleic acid duplexes is strongly correlated
with their stability, the correlation we initially found
between thermal stability and antiviral effect could
partly be due to a secondary correlation between lower

innate induction by LNA nucleotide chemistry on the
one side and higher thermal stability introduced through
LNA modification on the other side. But, this does not
explain why breaking the passenger strand as in the
sisiRNA design also increased the antiviral effect of
siRNAs. Breaking one of the strands in a duplex would
mean that three new strands would be responsible for
increasing the antiviral effect and we have no evidence
of smaller strands being better at stimulating cellular re-
ceptors for inducing an interferon response. In fact the
opposite is usually proposed (17,55).
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An alternative explanation is that by cleaving the strand
we destroy either a motif or a secondary structure of the
single-stranded RNA which could have an impact on its
ability to react with cellular receptors. We speculate
whether the effect of LNA modification upon the antiviral
effect of siRNAs could be caused by strengthening of sec-
ondary structures in the single strands thereby making
them less fit for reaction with receptors and we suggest
that the stability of potential RNA structures should be
investigated as one factor involved in determining the
strength of the immune response induced by siRNAs. It
should be mentioned here that a correlation between the
thermal-binding stability between the two strands of
non-modified siRNAs and their antiviral effect when
formulated in DOTAP has previously been described for
human PBMC’s in vitro (56). It is also important to note
that a possible relationship between thermal stability and
antiviral effect should not be expected to hold true for all
types of modifications as there may be differences in the
immune stimulatory potential of different chemistries
as also evidenced by our results in the first screening
(Figure 2).

A quite different possibility why increasing the LNA
content of siRNAs could render them less immun-
estimulatory is related to the number of uracil residues
which is one factor which has been suggested to be of
importance for immune induction (56). The most antiviral
of our two non-modified siRNAs (the GAPDH-targeting
duplex) contained 15 uracils compared to the less antiviral
EGFP-targeting duplex containing 12 uracil residues
(Figure 3 and Supplementary Table S2). This relationship
was also seen for the single strands as the AS of the
EGFP-targeting siRNA (containing eight uracil residues)
was more immune stimulating than the RNA SS contain-
ing only four uracils residues (Figure 8a). The number of
uracils in our siRNAs changed when RNA uracils were
substituted with LNA thymidines. This could have been
the reason for the sequence specific LNA induced changes
in innate immune induction we saw even when using the
same pattern of LNA substitutions because the two dif-
ferent sequences contained different number and patterns
of uracil bases. There was indeed some evidence in our
results that LNA based changes of U’s to T’s could have
had influence on reducing the antiviral effect. As an
example this could explain the reduction in antiviral
protection in fish injected with the highly LNA modified
siRNA’s W209:W181 (number of U’s reduced to 5
compared to the non-modified EGFP-targeting siRNA
containing 12 U’s; Figure 3a) and ID1715:W204
(number of U’s reduced to 8 compared to 15 U’s in the
non-modified siRNA-targeting GAPDH; Figure 3b) and
it also gives us an explanation on why the second of these
sisiRNA’s was more immune stimulating than the first.
But this could not explain the increase in the antiviral
effect upon breakage of the passenger strand as seen for
the sisiRNA design.

While our study and a some previous studies have
shown that LNA substitutions could reduce toxicity (38)
and antiviral effects (18) of siRNAs we have also show
that a high load of LNA substitutions reduces siRNA ef-
ficiency. A nick in the passenger strand is able to partly

rescue knock-down efficiency of such highly LNA
modified siRNAs [Figure 5 and (39)] for some siRNA se-
quences even without increasing the antiviral effect signifi-
cantly (Figure 5a). The sisiRNA design could therefore be
relevant in allowing us to design efficient siRNA se-
quences with reduced side effects.
When using in vitro assays for testing immune stimula-

tion by delivered chemically modified siRNAs usually
regulation of a single stress gene in a selected cell type is
measured. Accordingly, the reductions seen in cellular
stress or immune stimulation is seldom related to
pathologies or physiological stress disturbing the system
of interest. In this study we use a test where modified
siRNAs are screened in a biological system where a
given advantageous method of delivery induces a strong
cellular stress disturbing a potential specific read-out and
imposing side-effect on the fish (inflammation in the fish
was strong causing muscle haemorrhages). A different
example of such a model for the non-specific effect of
siRNAs was shown in a recent study of innate response
induced by siRNAs through TLR3 activation which
was shown to inhibit blood and lymphatic vessel growth
in the eyes of mice (28). It was therefore difficult to ascer-
tain the specific effect of siRNAs used to target the
vascular endothelial growth factor-A (VEGFA) in this
model (17), but it makes the model relevant for testing
chemical modifications in a specific relevant system.
Small animal models make it possible to increase the stat-
istic reliability of assays through including several
animals. In our experiments we used two groups of 30
fish thereby making it possible to study variability
between individuals.

CONCLUSION

Using an in vivo fish model we assay the functional innate
immune stimulation by IP injected siRNAs as an antiviral
response against a deadly viral disease. We find that some
modification types are able to abrogate siRNA stimula-
tion at a relevant functional level. We find both general
and siRNA sequence related effects of chemical modifica-
tion. We therefore conclude that optimization on the type
and number of modifications as well as on their location in
the strands should be done for each new siRNA sequence.
Using our model it seemed that the non-specific innate

effect of LNA modified siRNAs was determined by many
factors and that both nucleotide chemistry and stability
caused by LNA modifications may be such determinants.
Furthermore, our results on LNA modified single strands
indicated that the innate antiviral effect was non-additive
but dictated by the strongest inducing strand although
final proof of this point would require further experi-
ments. We found some interesting discrepancies between
our in vivo model and the previously published mamma-
lian models where the regulation of specific immune genes
is measured on cells purified from siRNA treated animals.
Whereas specific silencing in vitro is reduced by heavy

LNA modification, this can to some degree be circum-
vented by introduction of a nick in the passenger strand
(sisiRNA design) and we show that this does in some cases

Nucleic Acids Research, 2012, Vol. 40, No. 10 4663

http://nar.oxfordjournals.org/cgi/content/full/gks033/DC1


but not necessarily increase the innate immune induction
of siRNAs in vivo why this could be a viable strategy for
balancing the edge of the sword between potent silencing
and induction of an innate immune response.
The results are useful for the future design of efficient

siRNAs with low side effect and in the continuing studies
of RNAs acting as immune stimulating PAMPS in verte-
brates. As the basic immune components of the innate
system recognizing RNAs were already developed in the
fish (57–61) the basal triggers of the system in the fish may
in most respects be functionally equivalent with those
found in higher vertebrates. Besides its usefulness in aqua-
culture research our model may therefore be interesting
as a small animal model for initial tests of antiviral
side-effects of RNA based drugs before carrying on the
testing in more expensive mammalian models.
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