
Received: 15 June 2019; Revised: 15 November 2019; Accepted: 6 December 2019

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial-NoDerivs licence
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium,
provided the original work is not altered or transformed in any way, and that the work properly cited. For commercial re-use,
please contact journals.permissions@oup.com

Social Cognitive and Affective Neuroscience, 2020,

Health Neuroscience Special Issue

Multivariate neural signatures for health
neuroscience: assessing spontaneous regulation
during food choice
Danielle Cosme,1 Dagmar Zeithamova,1 Eric Stice,2 and Elliot T. Berkman1

1Department of Psychology, University of Oregon, Eugene, OR 97403-1227, USA, and 2Department of Psychiatry,
Stanford University, Stanford, CA 94305, USA

Correspondence should be addressed to Danielle Cosme, Department of Psychology, 1227 University of Oregon, Eugene, OR 97403-1227, USA. E-mail:
dcosme@uoregon.edu

Abstract

Establishing links between neural systems and health can be challenging since there is not a one-to-one mapping between
brain regions and psychological states. Building sensitive and specific predictive models of health-relevant constructs using
multivariate activation patterns of brain activation is a promising new direction. We illustrate the potential of this approach
by building two ‘neural signatures’ of food craving regulation (CR) using multivariate machine learning and, for comparison,
a univariate contrast. We applied the signatures to two large validation samples of overweight adults who completed tasks
measuring CR ability and valuation during food choice. Across these samples, the machine learning signature was more
reliable. This signature decoded CR from food viewing and higher signature expression was associated with less craving.
During food choice, expression of the regulation signature was stronger for unhealthy foods and inversely related to
subjective value, indicating that participants engaged in CR despite never being instructed to control their cravings. Neural
signatures thus have the potential to measure spontaneous engagement of mental processes in the absence of explicit
instruction, affording greater ecological validity. We close by discussing the opportunities and challenges of this approach,
emphasizing what machine learning tools bring to the field of health neuroscience.
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Introduction
A primary goal of health neuroscience is to identify links
between neural systems and health outcomes. Recent neu-
roimaging research has begun shifting from functional local-
ization to prediction of health-relevant outcomes (Yarkoni and
Westfall, 2017; Bzdok and Ioannidis, 2019). For example, ‘brain-
as-predictor’ approaches (Berkman and Falk, 2013) have found
connections between brain activity in regions of interest (ROIs)
and future health outcomes such as eating behavior, weight

gain and smoking (Falk et al., 2011; Demos et al., 2012; Lopez et
al., 2014; Giuliani et al., 2015; Hall et al., 2018). Yet, several barriers
limit the predictive utility of this approach.

First, functional neuroimaging yields massively multivariate
data, making it challenging to model using traditional predictive
modeling methods, which necessitate a limited set of predictors.
Second, selecting ROIs to reduce the number of predictors relies
on reverse inference that is rarely valid since brain regions are
seldom selective for a single psychological process (Poldrack,
2011). Instead, the vast majority of cognitive functions are
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achieved in a distributed fashion. Third, neural activation
recorded during fMRI tasks with low ecological validity is
unlikely to generalize to behavior outside the lab. Despite a
push to use more naturalistic stimuli (Burger and Stice, 2012;
Rapuano et al., 2016), the tradeoff between experimental control
and ecological validity makes it challenging to elicit engagement
in target psychological processes in unstructured contexts.

An alternative approach that overcomes these limitations is
to develop predictive models of health-relevant psychological
processes by examining distributed patterns of activity (Woo et
al., 2017). These ‘neural signatures’ can be defined as whole-
brain multivariate predictive models that are sensitive and spe-
cific predictors of a target psychological process. As described
below, the signatures are built using machine learning algo-
rithms that identify multivariate patterns of activation that
reliably discriminate between two or more conditions. They
are developed in standard space across subjects, allowing the
models to be applied to predict outcomes (e.g. picture-induced
negative emotion or pain) in new individuals (Wager et al., 2013;
Chang et al., 2015). Another benefit of these models is that they
can be shared, applied to new or existing data and iteratively and
collectively validated. Ultimately, these models might increase
sensitivity to detect within and between person differences as
a function of time, health status or health behavior change
intervention. Critically, they also enable measurement of sponta-
neous engagement in a psychological process absent instruction
(Doré et al., 2019), facilitating the use of more ecologically valid,
naturalistic paradigms.

However, the best method for developing neural signatures
remains unclear; some studies have used machine learning to
identify patterns of neural activity associated with psychological
processes (Wager et al., 2013; Chang et al., 2015), while oth-
ers have computed correspondence with meta-analytic maps
derived using univariate methods (Doré et al., 2017; Shahane et
al., 2019). Here, we compare these two approaches and illustrate
potential applications to health neuroscience focusing on crav-
ing regulation (CR) and food choice in overweight adults.

Cue-induced food craving is a major driver of unhealthy
eating behavior and weight gain (Boswell and Kober, 2016), so
we focus on CR as a promising intervention target (Stice et
al., 2015; Boswell et al., 2018). Specifically, we focus on cogni-
tive reappraisal, the process of reframing a stimulus to change
its affective meaning (Gross, 1998). Reappraisal can be used to
flexibly increase the perceived costs of food consumption (e.g.
negative health consequences) or benefits of abstinence (e.g.
positive health consequences) and decreases self-reported food
cravings and the subjective value of food (Hutcherson et al., 2012;
Boswell et al., 2018). Reappraising one’s responses to food cues
vs passive viewing of such cues, consistently engages regions in
the frontoparietal control network (Kober et al., 2010; Yokum and
Stice, 2013; Giuliani et al., 2014), making this task well suited for
developing a neural signature of CR.

Here, we take a step towards developing a neural signature
that is a sensitive and specific indicator of food CR and can
measure spontaneous regulation in unstructured contexts. We
explore opportunities and challenges of this approach by com-
paring two signatures of food CR—one created using machine
learning and one created using a univariate contrast—derived
from pooled data from four neuroimaging studies. We validate
these signatures in two independent samples of overweight
adults with healthy eating goals who completed two distinct
tasks. We assess trial-by-trial expression of the regulation sig-
natures during a CR task, where participants explicitly control
their cravings, as well as during an incentive-compatible food

valuation (FV) task, where they bid on healthy and unhealthy
foods. Bidding on actual food is expected to produce goal con-
flicts in these participants because they were strongly motivated
to change their eating behavior, and therefore provides an excel-
lent opportunity to assess spontaneous CR.

Our aims were to investigate the degree to which these signa-
tures (i) generalize to new samples completing the same CR task,
(ii) generalize to distinct, yet related task contexts and (iii) differ-
entiate individuals. Our purpose was to explore the feasibility of
this approach, so we focus on descriptive statistics and effect
size estimation and do not report null-hypothesis significance
tests (Cumming, 2014). We discuss the results in the broader
context of what predictive models offer health neuroscience. All
code is available online (https://osf.io/7jf82/).

Methods
Participants

We used data from 296 participants who completed a CR task,
divided into three samples: the neural signature development
sample (N = 166), a partial validation sample (N = 94), of which 50
participants were also included in the neural signature develop-
ment sample, and a complete validation sample (N = 86) (Table 1;
Figure 3A). The neural signature development sample included
adolescents and adults from four studies on CR; two are previ-
ously published (Giuliani et al., 2014; Giuliani and Pfeifer, 2015).
The partial validation sample (Cosme et al., 2019) included over-
weight and obese adults enrolled in a healthy eating interven-
tion who completed the CR task and FV task. Because some
of the participants (N = 50) in this sample were included the
development of the neural signature, it allowed us to test an
‘upper’ bound for generalizability within, and most interestingly,
between tasks, due to the sample overlap. Participants in the
complete validation sample (N = 86) were also overweight and
obese adults enrolled in an ongoing healthy eating interven-
tion. They completed the CR and FV tasks at baseline, prior to
intervention. Because no data from this sample were used in
signature development, it offers an estimate of a ‘lower’ bound
for within- and between-task signature generalizability.

All participants were right-handed, MRI-eligible, native
English speakers. Participants were excluded per task if
they exhibited excessive motion (defined below; CRpartial = 2,
CRcomplete = 4, FVpartial = 1, FVcomplete = 6), had low data quality due
to visual artifacts (CRcomplete = 2, FVcomplete = 1), were missing
responses due to a technical error (CRpartial = 2, CRcomplete = 3,
FVpartial = 1, FVcomplete = 2), did not comply with task instructions
(CRpartial = 2, FVpartial = 2), had structural abnormalities (CRpartial = 1,
FVpartial = 1) or did not complete a given task (FVcomplete = 1). All
available data were used when participants were missing a
task run or trials. This yielded the total sample sizes listed
in Table 1. These studies were approved by the University of
Oregon Institutional Review Board and participants gave written
informed consent (or had parental consent for minors) and were
compensated for participation.

CR task

Participants completed a CR task while undergoing functional
MRI. On each trial, participants either responded naturally
(‘look’) or reappraised their desire (‘regulate’) by visualizing the
negative consequences of eating that food (e.g. risk for diabetes,
weight gain, stomachache). The task consisted of 80 trials
(Figure 1). Craved and not-craved food categories were selected
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Table 1. Sample characteristics

Neural signature development sample Partial validation sample Complete validation sample

CR task N = 166 N = 87 N = 77
FV task N = 89 N = 76

M s.d. M s.d. M s.d.
Age 30.00 9.54 39.22 3.53 36.47 12.10
BMI 27.78 8.05 31.48 3.92 31.40 4.91

Females Males Females Males Females Males
Sex 146 20 76 15 48 31
Race/ethnicity
American Indian or Alaskan Native 0% 1.1% 1.3%
Asian 2.4% 1.1% 1.3%
Black or African American 0.6% 3.3% 2.5%
Hispanic or Latinx 4.2% 7.7% 5.0%
More than one race 1.8% 0% 6.3%
Unknown or no response 2.4% 3.3% 8.8%
White 88.6% 83.5% 75.0%

Note: The sample sizes (N) reported here are the final ns after exclusions.

Fig. 1. CR task design for the neural signature development and partial validation samples. Each trial consisted of a 2 s instruction period, a 5 s image presentation

and a 4 s craving rating period (1 = no desire to eat the food, 5 = strong desire to eat the food). Participants in the complete validation sample had 2.5 s to rate foods and

used a 4-point scale with the same anchors. Between trials, participants viewed a jittered fixation cross (M = 1 s for neural signature development and partial validation

samples, M = 4.1 s for the complete validation sample).

by each participant prior to the task, and each participant
viewed a unique set of food images during the task to maximize
generalizability (Westfall et al., 2016). Participants reappraised
images of craved foods or responded naturally to images of
high-calorie craved and not-craved foods, or neutral low-calorie
foods (20 trials each). The analyses reported here include only
craved food trials.

FV task

Participants in both validation samples completed an incentive-
compatible willingness-to-pay task to assess subjective valua-
tion of snack foods (Figure 2). The task is an economic auction
where participants view images of healthy and unhealthy foods
(60 total in the partial validation sample and 64 in the complete
validation sample) and bid on each. Participants in the partial
validation sample viewed the same images, whereas complete
validation participants saw unique images based on pre-session
ratings. They rated the palatability of 100 food images and their
top 16 healthy and 16 unhealthy images became their ‘liked’
foods, whereas their bottom 16 healthy and 16 unhealthy images
became their ‘disliked’ foods. Participants were given $2 ($1.50
in the complete validation sample) to buy a snack. One trial
was randomly selected and enacted. Participants received the

foods if their bid was greater than or equal to the randomly
selected bid value. Otherwise, they only received the money. The
optimal strategy is to bid the true amount one is willing to pay for
each item.

Neuroimaging data acquisition and preprocessing

Neuroimaging data were acquired on either a 3T Siemens Alle-
gra or Skyra scanner at the University of Oregon Lewis Cen-
ter for Neuroimaging. Both validation samples were collected
on the Skyra. Sequence parameters appear in Supplementary
Material. Neuroimaging data were preprocessed using fMRIPrep
1.1.4 (Esteban et al., 2019). Preprocessing details appear in Sup-
plementary Material, but briefly, anatomical images were seg-
mented and normalized to MNI space using FreeSurfer (Fis-
chl, 2012); functional images were susceptibility distortion cor-
rected, realigned and coregistered to the normalized anatomical
images. Normalized functional data were then smoothed (6mm3

FWHM) in SPM12.

Neural signatures of CR

Event-related condition effects were estimated in first-level
analyses using a fixed-effects general linear model and a
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Fig. 2. FV task design for the partial validation sample. Each trial consisted of a 4 s snack food presentation, followed by a 4 s bid period. Snack foods were either healthy

(e.g. carrot sticks, yogurt) or unhealthy (e.g. candy, chips). In the complete validation sample, the bid period lasted 2.5 s and they made bids ranging from $0 to $1.50.

All trials ended with a jittered fixation cross (M = 4.38 s).

Table 2. Classification accuracy for candidate multivariate neural signatures

Classifier Accuracy [95% CI] Sensitivity Specificity AUC PPV

Logistic regression 0.82 [0.74, 0.90] 0.81 0.83 0.90 0.83
Ridge regression 0.82 [0.74, 0.90] 0.81 0.83 0.90 0.83
Support vector machine 0.83 [0.73, 0.93] 0.86 0.80 0.90 0.81

Note: AUC = area under the curve, PPV = positive predictive value.

canonical hemodynamic response function. Regressors modeled
each experimental condition (regulate craved, look craved,
look not-craved, look neutral) during image presentation.
Additional regressors of no interest were added for the
instruction and rating periods. Five motion regressors were
modeled as covariates of no interest. Realignment parameters
were transformed into Euclidean distance for translation
and rotation separately; we also included the displacement
derivative of each. Another ‘trash’ regressor marked images
with motion artifacts (e.g. striping) identified via automated
motion assessment (Cosme et al., 2018) and visual inspection.
Data were high-pass filtered at 128 s, and temporal autocor-
relation was modeled using FAST (Corbin et al., 2018). The
resulting contrast maps for regulate craved > baseline and look
craved > baseline were then used to develop two predictive
models (Figure 3).

Multivariate machine learning signature. We trained three
machine learning algorithms (logistic regression, ridge regres-
sion and support vector machine) to distinguish look from
regulate using NLTools (https://github.com/cosanlab/nltools).
Inputs were average effects for each instruction condition for
each participant, and we used 5-fold cross-validation. These
classifiers had equivalent accuracy (Table 2); we selected the
logistic regression classifier to facilitate interpretability.

Univariate contrast signature. One aim was to begin to iden-
tify the conditions under which maps derived using classifiers
yield different predictions from those derived using univariate
methods. The group-level regulate > look contrast serves as the
univariate analysis-based neural signature (Figure 3). We also
compare these neural signatures to one created from the group-
level regulate > baseline contrast in Supplementary Material.

Neuroimaging first-level analysis in the validation
samples

First-level statistical analyses for the tasks were conducted
in MNI space in SPM12. For each task, trials were entered
in the models as separate regressors (rather than grouped
by condition). For the CR task, trial duration was the image
presentation duration (5 s); for the FV task, trial duration
was image onset to bid response. All task runs with >10%
unusable volumes were excluded (CRpartial = 3, CRcomplete = 3,
FVcomplete = 3). Participants with two or more runs excluded were
excluded completely. All data were high-pass filtered at 128 s,
and temporal autocorrelation was modeled using FAST. The
resulting statistical maps for each trial were concatenated to
create a beta-series for each task (Rissman et al., 2004). Because
motion artifacts may persist in the beta-series, we calculated
the mean global intensity for each beta map and excluded trials
that were more than 3 s.d. from the grand mean across partic-
ipants within each sample and task separately (CRpartial = 2.3%,
CRcomplete = 1.3%, FVpartial = 1.2%, FVcomplete = 1.1%). We also visu-
ally inspected each image and excluded trials with visible
striping artifacts (CRpartial = 3.8%, CRcomplete = 1.0%, FVpartial = 2.1%,
FVcomplete = 1.6%).

Pattern expression values

To assess the degree to which participants expressed the neural
signatures, we treated each neural signature and the trial-level
beta maps as vectors of weights and took the dot product for
each trial, task and participant (Doré et al., 2017; Shahane et al.,
2019). This process yields one scalar ‘pattern expression value’
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Fig. 3. Samples and analytic overview. (A) The neural signature development sample included participants from four different neuroimaging studies who completed

the CR task. One of these studies included participants (n = 50; dotted rectangle) from the partial validation sample. Participants in the partial validation sample and

the complete validation sample completed the CR task as well as the FV task. (B) Average instruction effects (i.e. mean look > baseline and regulate > baseline) from

participants in the neural signature development sample were used to create two neural signatures. The multivariate signature was developed using a machine learning

classifier and 5-fold cross-validation to decode instruction; the univariate signature was created using the group-level regulate > look contrast. (C) The resulting neural

signatures were applied to trial-level data from the partial validation and complete validation samples for the CR and FV tasks by taking the dot product of each

signature and each trial beta image. This process yielded scalar pattern expression values for each trial for each participant and task.

for each trial. We standardized the pattern expression values by
dividing by the s.d. within participant and neural signature to
account for different variances across participants. This main-
tains the decision or contrast boundary, such that values above 0
indicate evidence for ‘regulate’, whereas values below 0 indicate
evidence for ‘look.’

Specification curves

We conducted a series of specification curve analyses (Simon-
sohn et al., 2015) to determine (i) which neural signatures (if
any) explained additional variance in trial-level criterion vari-
ables (i.e. craving ratings or bids) beyond task condition and
(ii) whether multivariate and univariate signatures account for
unique or overlapping variance. For each sample and task, we
specified 13 unique nested multilevel models regressing crite-
rions on the fixed effects of condition (instruction in the CR
task, health in the FV task), pattern expression value from each
signature and the interactions between condition and each sig-
nature. Participant intercepts were treated as random effects. We
compared model fit to a base model including condition only
using the Akaike Information Criterion (AIC). We then organized
the models by AIC, plotted each model and which variables were
included in it, and visualized which models had lower AIC values
than the base model.

Results and discussion
Aim 1: construct validity and generalization to new
individuals in the CR task

Participants reported lower cravings when regulating via cogni-
tive reappraisal than when just viewing (Table 3). This is con-
sistent with other evidence that instructed cognitive reappraisal
reduces craving (Giuliani et al., 2014; Boswell et al., 2018).

We applied the neural signatures to each trial for each par-
ticipant in the validation samples, and coded the standardized
pattern expression values >0 as relative evidence for regulation
and values <0 as relative evidence for the control condition (i.e.
look). Classification accuracy was greater for the multivariate
signature than the univariate signature, but both correctly clas-
sified instruction (look or regulate) above chance (Table 4; see
Supplementary Material for empirically derived chance accuracy
estimates). Accuracy was higher in the partial validation sample
than in the complete validation sample for the multivariate
classifier but not the univariate contrast. Receiver operating
characteristic curves depicting sensitivity and specificity are
visualized in Figure 4.

When averaged across trials, regulation pattern expression
(i.e. the relative evidence for regulation) was higher in the reg-
ulate than in the look condition for the multivariate [partial
validation Mdiff = 1.09, 95% CI (1.03, 1.15); complete validation
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Table 3. Descriptive statistics for craving ratings in the CR task

Instruction Partial validation sample Complete validation sample

n M s.d. n M s.d.

Look 1688 3.64 1.15 1460 3.25 0.86
Regulate 1668 2.39 1.08 1425 2.28 0.83

Note: n = number of trials. The partial validation sample used a 1–5 rating scale; the complete validation sample used a 1–4 rating scale.

Table 4. Prediction accuracy as a function of sample and neural signature type

Sample Signature type Sensitivity Specificity Accuracy [95% CI]

Partial validation Multivariate 0.77 0.73 0.75 [0.74, 0.77]
Univariate 0.71 0.50 0.60 [0.59, 0.62]

Complete validation Multivariate 0.63 0.76 0.69 [0.67, 0.71]
Univariate 0.62 0.60 0.61 [0.59, 0.63]

Note: Chance accuracy is 0.5.

Fig. 4. Receiver operating characteristic curves as a function of signature type (multivariate classifier or univariate contrast) and sample (partial validation or complete

validation sample).

Mdiff = 0.93, 95% CI (0.87, 0.99)] and univariate signatures in both
samples [partial validation Mdiff = 0.49, 95% CI (0.43, 0.54); com-
plete validation Mdiff = 0.51, 95% CI (0.44, 0.57)]. These data are
visualized in Figure 5; descriptive statistics are reported in Sup-
plementary Material.

We next examined whether the neural signatures were
related to trial-level craving ratings. Collapsing across instruc-
tion, higher mean regulation pattern expression was associated
with lower mean craving, for the multivariate [partial validation
b = −0.26, 95% CI (−0.29, −0.23); complete validation b = −0.35,
95% CI (−0.39, −0.31)] and univariate signatures [partial
validation b = −0.08, 95% CI (−0.11, −0.06); complete validation
b = −0.15, 95% CI (−0.19, −0.11)] in both samples. This effect
was strongest for the multivariate signature (Figure 6A and C).

However, in the partial validation sample, this relationship was
moderated by instruction (Figure 6B and D). When regulating,
greater regulation pattern expression was associated with
higher, rather than with lower, cravings [multivariate b = 0.12,
95% CI (0.06, 0.18); univariate b = 0.07, 95% CI (0.00, 0.14); see
Table S5 for all model parameter estimates].

The specification curves revealed that neural signatures
accounted for additional variance in trial-level craving ratings
beyond the base model (instruction only) across both samples
(Figure 7). Of these five better fitting models, 100% included
the multivariate signature and 80% included the univariate
signature. Eighty percent included both, suggesting that the
signatures account for unique variance. Consistent with this,
the neural signatures were moderately correlated (Table 5).
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Fig. 5. (A) Mean difference in standardized regulation pattern expression values as a function of instruction (look or regulate), signature type (multivariate classifier

or univariate contrast) and sample (partial validation or complete validation sample). (B) Group means are overlaid on individual participant means; each thin line

represents a single participant. Higher positive values represent relatively higher evidence for regulation, whereas lower negative values represent relatively higher

evidence for viewing; zero is the decision boundary between conditions. Error bars are 95% confidence intervals across trials. Pattern expression values are standardized

within participant and signature type. PEV = pattern expression value.

With respect to the interaction between instruction and
neural signature expression, 40% included the multivariate
signature interaction and 20% included the univariate signature
interaction.

Discussion. These results collectively establish the initial con-
struct validity for the multivariate and univariate signatures.
Both signatures clearly differentiated CR from viewing and clas-
sified conditions on a trial-by-trial basis across both samples.
These signatures also generalized to new individuals, confirm-
ing the viability of cross-subject classification of CR. Overall,
the multivariate signature was more reliable, indicating that
models based on multivariate patterns might contain additional

information beyond univariate activation models. Though the
signatures clearly differentiated regulation from viewing and
tracked with craving ratings across instruction conditions, they
were not strongly associated with ratings in the regulation con-
dition and were modestly negatively associated in the look con-
dition. It may be useful to develop neural signatures that incor-
porate cravings (e.g. with support vector regression) to max-
imize differentiation between ratings, and indeed, this is the
approach taken by Chang et al. (2015) and Wager et al. (2013).
It is notable that these signatures were created using aver-
age effects for each participant, so trial-level accuracy may be
improved by developing machine learning signatures using all
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Fig. 6. The relationship between craving ratings and mean standardized regulation pattern expression values as a function of signature type (multivariate classifier

or univariate contrast) and sample (partial validation or complete validation sample). Top panel: continuous craving ratings (A) collapsed across instruction (look or

regulate), scaled by the number of observations in each rating category, represented by the size of the point, and (B) as a function of instruction. Bottom panel: mean

dichotomized craving ratings (low = lower than scale midpoint, high = higher than scale midpoint) (C) collapsed across instruction and (D) as a function of instruction.

In (D), group means are overlaid on individual participant means; each thin line represents a participant. Error bars are 95% confidence intervals across all trials. The

partial validation sample used a 1–5 craving rating scale, whereas the complete validation sample used a 1–4 craving rating scale. PEV = pattern expression value.

available trials rather than averages to increase variability during
training.

Aim 2: generalization to the FV task and assessment of
spontaneous CR

Participants bid lower on unhealthy foods than healthy foods
(Table 6), which is expected given participants were enrolled in
healthy eating programs. We tested whether participants spon-
taneously regulated their cravings during this task by examining
regulation pattern expression during valuation.

In contrast to the distinct differences in regulation pattern
expression for instruction in the CR task, pattern expression
differences for healthy and unhealthy foods during valuation
were smaller. Though small, they were reliable across samples

for the multivariate signature, with higher expression on
unhealthy than healthy foods [partial validation Mdiff = 0.15,
95% CI (0.11, 0.20); complete validation Mdiff = 0.13, 95% CI
(0.08, 0.18)]. This pattern was observed for the univariate
signature, but only within the complete validation sample
[partial validation Mdiff = −0.02, 95% CI (−0.08, 0.03); complete
validation Mdiff = 0.09, 95% CI (0.04, 0.14)]. These effects are
visualized in Figure 8A and B; descriptive statistics are reported
in Supplementary Material.

In the complete validation sample, which contained both
liked and relatively disliked foods, these effects were not mod-
erated by palatability. Unhealthy foods were associated with
stronger regulation pattern expression for both liked and rela-
tively disliked foods (Figure 8C and D). We expected that liked
foods would elicit greater pattern expression than relatively
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Fig. 7. Specification curves of 13 unique models regressing trial-level craving ratings on predictors ordered based on model fit (AIC) for (A) the partial validation sample

and (B) the complete validation sample. Each column corresponds to a single model specification. The AIC value for each model specification is plotted in top panels,

and the variables included in each model are visualized in the bottom panels. Because each panel is ordered based on AIC, specification numbers do not necessarily

correspond to the same model specifications in each panel. The base model, which included instruction (look or regulate) as the only predictor, is highlighted in blue

and the dotted blue line represents the AIC for this model. Models with AIC values lower than the base model are highlighted in red. Potential variables in each model

included: intercept, instruction (look or regulate), standardized pattern expression values for the multivariate and univariate signatures, and the interaction between

instruction and each signature type.

Table 5. Repeated measures correlations in the CR task between
neural signatures as a function of sample

Sample df r [95% CI]

Partial validation 3084 0.59 [0.57, 0.62]
Complete validation 2736 0.59 [0.56, 0.61]

Note: 95% confidence intervals are bracketed. Repeated measures correlations
include all trial-level data and adjust for trials nested within participant using
multilevel modeling.

disliked foods, but only observed this for the univariate signa-
ture [multivariate Mdiff = −0.00, 95% CI (−0.05, 0.05); univariate
Mdiff = 0.14, 95% CI = (0.09, 0.20)].

We next turned to the bids. We anticipated stronger
regulation pattern expression would be associated with lower
bids to the extent that participants spontaneously regulate their
cravings. Because relatively disliked foods (included in the com-
plete validation sample only) are unlikely to produce regulatory
goal conflicts, we expected to observe greater regulation pattern
expression for liked foods only in the complete validation sam-
ple. This was the case for the multivariate signature. Stronger
regulation pattern expression was indeed associated with lower
bids (Figure 9; Table S10) across trials in the partial validation
sample [b = −0.19, 95% CI (−0.22, −0.15)] and for liked food trials
in the complete validation sample [b = −0.07, 95% CI (−0.15, 0.01)].

Surprisingly, the opposite pattern was observed for the univari-
ate signature; stronger regulation pattern expression was associ-
ated with higher bids in both samples [partial validation b = 0.08,
95% CI (0.03, 0.12), complete validation liked trials b = 0.16, 95%
CI (0.06, 0.25)].

Food type moderated the relationship between bid value and
pattern expression, but only in the complete validation sample
(Figure 9B and D). As expected, for liked foods, the difference
between expression for high and low bids was stronger for
unhealthy foods for the multivariate signature [b = 0.07, 95%
CI (−0.10, 0.24)]. The opposite was observed for the univariate
signature. This difference in bids was stronger for healthy foods
rather than for unhealthy foods [b = −0.13, 95% CI (−0.32, 0.06);
Table S11 for all results].

The specification curves for the FV task (Figure 10) mirrored
the results for the CR task. The neural signatures accounted for
additional variance in trial-level bids beyond the base model
(food type only) across samples. Of these 14 better fitting mod-
els, 79% included the multivariate signature, 86% included the
univariate signature and 64% included both. As with the CR
task, this suggests they account for unique variance, which
is supported by the moderate correlations between signatures
(Table 7). With respect to the interaction between food type
and neural signature expression, 36% included the multivariate
signature interaction and 36% included the univariate signature
interaction and 14% included both.

Table 6. Descriptive statistics for bids in the FV task

Instruction Partial validation sample Complete validation sample

n M s.d. n M s.d.

Healthy 2623 0.96 0.65 2314 0.69 0.54
Unhealthy 2627 0.65 0.63 2314 0.57 0.53

Note: n = number of trials. The bid range for the partial validation sample was $0–$2 and $0–$1.50 for the complete validation sample.
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Fig. 8. Mean standardized regulation pattern expression values as a function of food type (healthy or unhealthy), signature type (multivariate classifier or univariate

contrast) and sample (partial validation or complete validation sample). Top panel A shows group-level means, whereas panel B shows group-level means overlaid on

individual participant means; each thin line represents a participant. Panels C and D visualize this relationship within the complete validation sample only as a function

of pre-session palatability ratings (relatively disliked = ratings 1–2, liked = ratings 3–4). Higher positive values represent relatively higher evidence for regulation, whereas

lower negative values represent relatively higher evidence for viewing; zero is the decision boundary between conditions. Error bars are 95% confidence intervals across

trials. Pattern expression values are standardized within participant and signature type. PEV = pattern expression value.

Table 7. Repeated measures correlations in the FV task between
neural signatures as a function of sample

Sample df r [95% CI]

Partial validation 5006 0.51 [0.49, 0.53]
Complete validation 4336 0.54 [0.52, 0.56]

Note: 95% confidence intervals are bracketed. Repeated measures correlations
include all trial-level data and adjust for trials nested within participant using
multilevel modeling.

Discussion. These results suggest it is possible to use these
signatures to index spontaneous regulation in an ecologically
valid FV task without explicit regulation instructions. Critically,
this enables health neuroscientists to assess regulation in con-
texts that more closely resemble the real world. Since this task is
substantially different from the CR task (e.g. the former requires
complex decision-making), these results support the general-
izability of the neural signature approach. Overall, the multi-
variate signature was more reliable across samples and seemed

to index CR in expected ways. Within the complete validation
sample, the univariate signature differentiated food type, palata-
bility and scaled with bid value, but in the opposite direction-
greater expression was associated with higher and not with lower
bids. One possibility is that this signature may have indexed
engagement in unsuccessful CR. Combined with the specifi-
cation curve analysis showing that the signatures account for
unique variance in bids, results suggest that they might best
be used together to improve prediction. Additional research
is needed to disentangle precisely what information is being
represented by each signature. The task design in the complete
validation sample enabled more fine-grained analyses of palata-
bility; future studies might use this trial-by-trial approach to test
neurocognitive theories of self-control within trials that require
self-control for dieters (e.g. specifically for healthy disliked and
unhealthy liked foods). These efforts would be bolstered by
using strongly disliked (rather than relatively disliked) foods and
explicitly asking about task goals (e.g. avoiding unhealthy foods,
choosing healthy foods, avoiding all foods) to better control for
individual differences in goal conflicts.
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Fig. 9. The relationship between bid values and mean standardized regulation pattern expression values as a function of signature type (multivariate classifier

or univariate contrast) and sample (partial validation or complete validation sample). Top panel: continuous bid values (A) collapsed across food type (healthy or

unhealthy), scaled by the number of observations in each rating category, represented by the size of the point, and (B) as a function of food type. Bottom panel: mean

dichotomized bid (low = lower than scale midpoint, high = higher than scale midpoint) (C) collapsed across food type and (D) as a function of food type. The complete

validation sample in A includes both liked and relatively disliked foods, whereas in panels B–D, it includes liked foods only (i.e. pre-session palatability ratings >2 on

a 1–4 scale). In (D), group means are overlaid on individual participant means; each thin line represents a single participant. Error bars are 95% confidence intervals

across all trials. The partial validation sample used a $0–$2 bid value scale, whereas the complete validation sample used a $0–$1.5 bid value scale. Pattern expression

values are standardized within participant and signature type. PEV = pattern expression value.

Aim 3: individual differences within each task

The third aim of this study was to assess the degree to which
the CR signatures differentiated individuals. We calculated mean
regulation pattern expression and craving rating/bid value for
each participant and task condition (Figures 11 and 12) and dif-
ference scores between conditions. Correlations between mean
regulation pattern expression and craving ratings (Figure S4)
or bid values (Figure S5) for each condition separately were
relatively weak and tended to be higher for difference scores.
Individuals with relatively greater regulation pattern expression
when regulating vs looking in the CR task had larger decreases in
craving ratings when regulating, but this effect was only stable
for the multivariate signature [rpartial = 0.24, 95% CI (0.03, 0.43),
rcomplete = 0.33, 95% CI (0.11, 0.52)]. This pattern was also observed
in the FV task for the multivariate signature: relatively greater
regulation pattern expression for unhealthy vs healthy foods

was associated with higher bids on healthy foods relative to
unhealthy foods [rpartial = 0.46, 95% CI (0.28, 0.61); rcomplete = 0.24,
95% CI (0.01, 0.44); rcomplete–liked = 0.28, 95% CI (0.06, 0.48)]. These
effects were unrelated for the univariate signature.

Discussion. The data presented in this section indicate
there is individual variability in CR signature expression and
that it relates to individual differences in regulation success
and relative value of healthy over unhealthy foods. These
moderate correlations were most reliable for the multivariate
signature and were stronger for difference measures than
condition measures, perhaps reflecting individual differences
in flexible behavioral modulation between conditions. Although
we explored the relationship between signature expression
and individual differences in task behavior (and age, sex and
BMI in Supplementary Material), future research should extend
these findings to assess potential relationships with individual
factors such as dieting goals, motivation and self-control.
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Fig. 10. Specification curves of 13 unique models regressing trial-level bid values on predictors ordered based on model fit (AIC) for (A) the partial validation sample

and (B) the complete validation sample. Each column corresponds to a single model specification. The AIC value for each model specification is plotted in top panels,

and the variables included in each model are visualized in the bottom panels. Because each panel is ordered based on AIC, specification numbers do not necessarily

correspond to the same model specifications in each panel. The base model, which included food type (healthy or unhealthy) as the only predictor, is highlighted in

blue and the dotted blue line represents the AIC for this model. Models with AIC values lower than the base model are highlighted in red. Potential variables in each

model included: intercept, food type (healthy or unhealthy), standardized pattern expression values for the univariate contrast and the multivariate classifier, and the

interaction between food type and each signature type.

Fig. 11. The relationship between participant mean standardized regulation pattern expression values and mean craving ratings during the CR task as a function of

instruction (look or regulate), signature type (multivariate classifier or univariate contrast) and sample (partial validation or complete validation sample). Condition

outliers are visualized as grey dots, but were excluded when computing linear effects. PEV = pattern expression value.
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Fig. 12. The relationship between participant mean standardized regulation pattern expression values and mean bids values during the FV task as a function of food

type (healthy or unhealthy), signature type (multivariate classifier or univariate contrast) and sample (partial validation or complete validation sample). The bottom

panel shows correlations within the complete validation sample for liked snack foods items only (i.e. they were rated as 3 or 4 during the pre-session palatability rating

task on a 1–4 scale). No liking ratings were collected for the partial validation sample. PEV = pattern expression value.

Conclusions, limitations and future directions

This study establishes the construct validity for the multivariate
and univariate signatures as measures of food CR, demonstrates
their generalizability to out-of-sample individuals and identifies
conditions when they provide divergent information. The neural
signatures tracked with FV in an untrained bidding task, sug-
gesting that they might also index spontaneous regulation. The
multivariate signature was overall the most reliable across both
tasks and thus has the greatest promise for further development.
Interestingly, this signature did not scale with ratings during
explicit regulation. This result may be an artifact of the modeling

approach or it might indicate that variation within cognitive
reappraisal may not be reflected in the same neural pattern as
its mere presence vs absence. Future studies can compare signa-
tures trained using classification and regression incorporating
ratings to better understand this process.

The application of machine learning tools to multivariate
patterns of brain activation can add reliability and predictive
validity beyond univariate contrasts. The relatively lower accu-
racy of neural signatures developed using average condition
effects for each suggests that trial-level training may increase
accuracy by incorporating greater variability during training.
Variability might also be increased in the sample itself. We
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used data from four studies collected on two scanners, from
adolescents and adults with varying body mass indices. The
variance in the development sample and therefore the gener-
alizability of the results could have been increased even further
by accounting for demographics (e.g. race/ethnicity) and other
individual factors.

We focused on neural signatures of CR, but our general
approach has clear implications for health neuroscience more
broadly. First and foremost, using whole-brain multivariate
signatures may improve the ability to predict health-relevant
outcomes using functional neuroimaging data. We did not
assess incremental validity, for example compared to ROIs,
but others have shown that they outperform ROIs (Chang et
al., 2015; Doré et al., 2017). Future research might identify cases
where multivariate representations and ROIs can collectively
predict outcomes to a greater degree than either on its own.
The ability to model individual differences in spontaneous CR
should allow future studies to test whether deficits in this
capacity increase risk for future weight gain and poorer response
to obesity prevention and treatment interventions. A similar
approach might be used to assess individual differences in other
appetitive disorders, such as modulation of cravings for alcohol
or drugs, and test whether deficits in spontaneous craving for
such substances predict outcomes for these health problems.

Second, there are cases when multivariate neural signatures
have greater sensitivity than univariate signatures to detect
within and between person differences as a function of time,
health status or intervention. Greater levels of sensitivity can be
achieved by training classifiers on increasingly specific process-
level distinctions. As such, multivariate signatures have the
potential to deliver stronger and more precise tests of mech-
anistic models of change. Multivariate approaches can benefit
health neuroscience by enabling researchers to test theoretical
predictions about mental processes that are believed to be tar-
geted by interventions. That is, the ability to model individual
differences in CR signatures and change in these signatures may
be a useful measure of target engagement for craving modula-
tion interventions (e.g. cognitive reappraisal training for high-
calorie foods, alcohol or drugs). This is a particular advantage
over univariate approaches, which are not typically optimized
to allow inferences about mental processes from neural data
(Poldrack, 2010).

Third, the evidence presented here regarding spontaneous
regulation enables researchers to assess evidence for engage-
ment in target psychological processes without their explicit
elicitation (Doré et al., 2019). The ability to measure a process
in this way affords the use of more naturalistic paradigms
in the scanner. Several neural signatures can be deployed
simultaneously to index multiple processes that are each
expected to be engaged. For example, assessing expression of
indices of craving, CR and self-relevance together might capture
more variance in health-relevant choices or receptivity to health
messages than any single process alone. This combination
approach might enable elucidation of the relative contributions
of various psychological constructs in behavior.

It is important to emphasize that all of these implications
require that the multivariate neural signatures are valid,
sensitive and specific indicators of relevant psychological con-
structs. Rigorously establishing validity across heterogeneous,
representative samples is a data-intensive process that can be
greatly facilitated by open practices and data sharing (Woo et al.,
2017). Convergent and divergent validity can be tested across
labs by making neural signatures publicly available online.
Through such collaborative efforts, we can improve our ability

to predict outcomes, rigorously test psychological theory and
further our understanding of the relationships between the
brain and health behavior.

Summary
Researchers in social, cognitive and affective neuroscience
have increasingly combined multivariate and machine learning
approaches to generate new insights into a range of psycholog-
ical phenomena. We argue that health neuroscience, too, can
benefit from these innovative approaches. Neural signatures are
complementary to existing tools used in health neuroscience,
adding predictive utility to our models and uncovering new
information in existing data. Health neuroscience will benefit
to an even greater extent in the future as researchers develop
additional uses of multivariate machine learning and find new
ways to apply them to health-relevant data.
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