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Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 
1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–
Guérin, does not confer lifelong protection against active TB. To date, development 
of an effective vaccine against TB has proven to be elusive, and devising newer 
approaches for improved vaccination outcomes is an essential goal. Insights gained 
over the last several years have revealed multiple mechanisms of immune manipulation 
by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that 
support disease progression and block development of protective immunity. This review 
provides an assessment of the known immunoregulatory mechanisms altered by Mtb, 
and how new interventions may reverse these effects. Examples include blocking of 
inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, 
immune mechanisms that strengthen immune cell effector functions may be enhanced 
by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification 
of the activity of key cell “immunometabolism” signaling pathway molecules, including 
mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine 
monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, 
and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-
derived suppressor cells) are powerful new approaches to improve vaccine responses. 
Interventions to favorably modulate these components have been studied primarily in 
oncology to induce efficient antitumor immune responses, often by potentiation of cancer 
vaccines. These agents include antibodies and a rapidly increasing number of small 
molecule drug classes that have contributed to the dramatic immune-based advances in 
treatment of cancer and other diseases. Because immune responses to malignancies and 
to Mtb share many similar mechanisms, studies to improve TB vaccine responses using 
interventions based on “immuno-oncology” are needed to guide possible repurposing. 
Understanding the regulation of immune cell functions appropriated by Mtb to promote 
the imbalance between protective and pathogenic immune responses may guide the 
development of innovative drug-based adjunct approaches to substantially enhance the 
clinical efficacy of TB vaccines.
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iNTRODUCTiON

Tuberculosis (TB) caused by the bacillus Mycobacterium tubercu
losis (Mtb), is the most common infectious cause of death world-
wide. In 2014, an estimated 1.5 million deaths were attributed 
to TB (1). Approximately one-third of the world’s population 
is infected with Mtb, and 90–95% of those will remain latently 
infected and asymptomatic. The other 5–10% will progress to 
active disease (2). Bacillus Calmette–Guérin (BCG) vaccine 
has been available for more than 90 years but is not sufficiently 
successful in preventing active TB (3). The efficacy of BCG 
vaccine efficacy in preventing pulmonary TB is limited, with 
studies showing 0–80% protective benefit (4). BCG is 70–80% 
efficacious against severe forms of TB in childhood, particularly 
in infant meningitis (5). The variations in BCG vaccine efficacy 
found in different studies have been attributed to geographical 
differences, exposure to certain endemic mycobacteria, and 
varied manufacturing facilities with inconsistent quality control 
(4, 6). The tremendous variability associated with its protective 
effects against TB, specifically the waning of protection in the 
adolescent and adult populations has resulted in intense efforts 
to improve its partial efficacy (7). Currently, more than a dozen 
vaccine candidates for TB are at different stages of clinical trial 
development. Recent developments of prime-boost TB candidate 
vaccines include subunit, multi-epitopic candidate vaccines with 
potentially broad immunological coverage consisting of Mtb-
secreted components (ESAT-6, the antigens 85A and 85B) and 
the PPE family members. Newer multistage subunit vaccine strat-
egies have included antigens from dormancy/starvation, early 
reactivating (resuscitation-promoting factors), and active bacilli 
stages (8). BCG replacement vaccines include live recombinant 
BCG, modified non-pathogenic mycobacteria (M. vaccae, RUTI, 
and M. smegmatis), and inactivated whole cell vaccine (WCV) 
candidates (9–11). Although successful in animal models, the 
viral vectored MVA85A, the first candidate TB vaccine to enter 
efficacy trials showed disappointing results in Phase II trials (12, 
13). The protein/adjuvant candidates including M72/AS01 and 
H4 and H56/IC31 have shown promising immunogenicity in 
Phase 1/II trials and are currently in efficacy trials with results 
awaited (14–16). The lack of known correlates of protection 
associated with different stages of TB infection and disease has 
been a barrier to the clinical evaluation of vaccine candidates, 
and the TB vaccine field is now redirecting its attention to basic 
discovery and preclinical development (17).

New strategies are needed to improve vaccine efficacy based 
on both a better understanding of the mechanisms mediating 
protective immunity and mechanism of subversion of host 
immune responses by immunopathogenic components of Mtb. 
Opinion on the balance between protective and destructive 
responses to Mtb infection in humans and animal models and 
the functional role of granuloma is still evolving (18, 19). A better 
understanding of the features that contribute to protective host 
responses to Mtb infection will aid in the identification of drugs 
that can be repurposed for use to potentiate current TB vaccina-
tion strategies. The Mtb-infected host-cell microenvironment is 
characterized by dysregulated immunoregulation and immuno-
metabolism signaling pathways, for example, Th1/Th17 versus 

Th2 balance, regulatory T (Treg) and suppressive myeloid cell 
populations, T cell anergy, and a shift from M1 to M2 polarized 
macrophages (20–24).

Immunologic responses to malignancies and TB have many 
similarities in terms of persistent inflammation and innate and T 
cell-mediated responses (20). In this review, some of the key path-
ways regulating the function of Mtb-infected antigen-presenting 
cells (APC) are explored. Improved understanding of the funda-
mental mechanisms of immune cell suppression and downregu-
lation of protective immune responses by Mtb may lead to the 
introduction of novel interventions to promote vaccine-induced 
anti-Mtb immunity. The relevant immune cellular pathways are 
well known in various other diseases, but a cohesive picture of the 
affected immunoregulatory and immunometabolism machinery 
is yet to be established for TB vaccinology.

Potential adaption of the following two key strategies will be 
delineated:

 1. Immuno-oncology: immune cell coreceptor checkpoints that 
determine the intensity of T-cell responses to particular anti-
gens and imbalances in the numbers and activity of immune 
regulatory cells.

 2. Immunometabolism: a relatively new concept developed in 
oncology, which refers to manipulation of checkpoints caus-
ing changes in cell metabolism that are required for and/or 
direct immune cell differentiation and function.

This review will focus on the potential of these interventions 
to be tested as adjunct strategies to shift the balance of TB vac-
cines toward protective responses and potentiate host responses 
induced by vaccines.

TARGeTiNG CeLL ReGULATORY 
PATHwAYS AND iMMUNe CHeCKPOiNTS 
AS ADJUNCT STRATeGieS FOR TB 
vACCiNATiON

Targeting Autophagy Regulation Pathways
Autophagy is a process for maintaining cellular homeostasis, 
particularly during stress conditions, by continual degradation 
of damaged organelles, protein aggregates, and intracellular 
pathogens through the autophagosome. Autophagic processes 
also contribute to the activation of innate and adaptive immune 
responses (25–27). During Mtb infection, pro-inflammatory 
cytokines positively regulated by autophagy induction control 
intracellular Mtb proliferation, and both TLR (TLR2, TLR4, 
and TLR9) and non-TLR pathways are triggered to degrade the 
bacteria (28–35). Nevertheless, Mtb in autophagosomes can 
escape elimination by autophagy by preventing lysosomal fusion 
and acidification though the underlying mechanisms of escape 
remain poorly understood (27, 36–38).

Experimental evidence suggests that vaccine efficacy can be 
improved through enhanced antigen presentation to T cells by 
boosting autophagy-mediated antigen presentation (39–41). 
Inhibition of the mechanistic target of rapamycin (mTOR) is 
a well-known mechanism for inducing autophagy (Table  1). 
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TABLe 1 | Agents that target immune checkpoints, immune regulatory cells, and key pathways involved in Mtb pathogenesis.

Target Drug examples Probable therapeutic mechanism Preclinical studies Preclinical studies 
in TB vaccination

Autophagy modulation

Direct mechanistic target of 
rapamycin (mTOR) inhibitors

Sirolimus, everolimus,a 
ridaforolimusa

Reversal of mTOR-mediated inhibition of 
autophagy

TB infection and 
cancer models

Improved Bacillus 
Calmette–Guérin 
(BCG) vaccine efficacy

mTOR-independent agents Imatinib/other tyrosine kinase 
inhibitors (TKIs), metformin (MET), 
and carbamazepine

Increase autophagy: improve pathogen 
killing and processing of antigenic 
material for T-cell presentation

TB infection and 
cancer models

ND

immune checkpoint modulation

Programed death-1/CTLA-1 
inhibitors

Ipilimumab, pembrolizumab, and 
nivolumab

Checkpoint blockade removes inhibitory 
coreceptor initiated signaling (including 
reversal of T cell exhaustion)

TB infection and 
cancer models

ND

OX40 stimulator OX40 agonist monoclonal antibody Expansion of effector T cells and 
generation of memory T cells

Cancer models Improved BCG 
vaccine efficacy

A2A coreceptor  
inhibitor

Istradefyllineb Reversal of T cell exhaustion Cancer models, 
Parkinson’s disease

ND

Modulation of immune regulatory cells: Tregs and myeloid-derived suppressor cells

Damage-associated molecular 
patterns inhibitor

Tasquinimod Inhibition of induction/activity  
of regulatory/suppressor cells

Cancer models ND

Indoleamine 2,3-dioxygenase 
inhibitor

Epacadostat Same TB infection ND

Tyrosine kinase inhibitors Sunitinib, dasatinib,  
imatinib

Same TB infection  
(for imatinib)

ND

PDE5 inhibitors Sildenafilc Same Cancer models ND

Fatty acid oxidation inhibitor Etomoxird Same Cancer models ND

Arginase inhibitor Nor-NOHAe Same Cancer models ND

immunometabolism regulation

Adenosine monophosophate-
activated protein kinase 
activators

MET, AICARf Anti-inflammatory, increase autophagy, 
and improve DC, TH1 CD4 cell, and 
CD8 memory cell development

TB infection and 
cancer models

ND

Sirtuins

Activators Resveratrol, pterostilbene,g 
Sirt1 activator compounds in 
development

Anti-inflammatory and increase 
autophagy

Cancer models and 
viral infections

ND

Inhibitors Sirtinol, cambinolh Increase Th1/Treg ratio Cancer models and 
viral infections

ND

Core signaling pathway modulators

Wnt inhibitors Tankyrase inhibitors, flavonoids, 
monensin, and resveratrol

Reversal of activation of multiple 
inhibitory signaling pathways

TB infection and 
cancer models

ND

(Continued )
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Rapamycin (sirolimus) is a well-characterized inhibitor of mTOR 
(33, 42). The efficacy of BCG vaccine is improved in a murine 
model, and antigen presentation by DCs in  vitro is enhanced 
by rapamycin with an increase in Th1 responses (39, 43). As 
inhaled drug and vaccine delivery platforms gain recognition 
and prolonged use of autophagy inducers can result in immu-
nosuppression, rapamycin delivered in poly lactide-  co-glycolide 

nano particles can maintain high localized intracellular drug 
concentration and minimize systemic side effects (40, 44). 
Coadministration of a DNA vaccine composed of the immu-
nodominant mycobacterial antigen Ag85B and incorporating an 
autophagy-inducing mTOR-KD plasmid induced primarily a Th1 
immune response (33, 39). This DNA vaccine was delivered by 
chitosan particles to enhance mucosal immunity.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Target Drug examples Probable therapeutic mechanism Preclinical studies Preclinical studies 
in TB vaccination

Notch inhibitors (gamma-
secretase inhibitors)

RO4929097i Same TB infection and 
cancer models

ND

Sonic hedgehog inhibitors Vismodegib, sonidegib Same TB infection and 
cancer models

ND

Glycogen synthase kinase-3β 
inhibitors

Tideglusib Same TB infection and 
cancer models

ND

epi-drugs

Histone deacetylase inhibitors Sodium butyrate Histone deacetylation, inducing 
transcription of, e.g., antimicrobial 
peptides

Cancer models ND

ND, not done.
References for table not provided in the text: aHuang et al. (100); bLeone et al. (101), Muller (102); cSerafini et al. (103), Weed et al. (104); dByersdorfer (105); eRodriguez and 
Ochoa (106); fYang et al. (107); gKala et al. (108); hHu et al. (109); and iXu et al. (110).

TABLe 1 | Continued
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Inducing autophagy by mTOR-independent methods is also 
being pursued. Microtubule-associated protein light chain-3 
(LC3) transports Mtb lipoprotein (LpqH) to autophagosomes and 
is involved in autophagy activation via TLR1/2/CD14 receptors. 
A LC3–LpqH DNA vaccine enhanced protective efficacy against 
Mtb in mice (45). Screening of FDA-approved drugs has identi-
fied compounds stimulating autophagic killing of mycobacteria 
at therapeutic concentrations though none of these agents have 
been tested preclinically in conjunction with TB vaccine can-
didates. Carbamazepine triggers autophagy independently of 
mTOR and effectively targets multidrug-resistant Mtb in vivo by 
stimulating both innate and adaptive immunity (46). Regulation 
of the acidification of intracellular compartments has also shown 
potential to enhance host defense against pathogens. Imatinib, 
a tyrosine kinase inhibitor (TKI), promotes lysosome acidifica-
tion and anti-mycobacterial activity in macrophages in a mouse 
model, and is being further tested as a potential complementary 
therapy for TB (47–49). TKI inhibition is a strategy for improv-
ing autophagy but may also have other mechanisms of action, 
including suppression of myeloid-derived suppressor cells 
(MDSCs) and Tregs. Statins, HMG-CoA reductase inhibitors, 
and autophagy-inducing agents have shown immunomodula-
tory properties in TB models, resulting in increased bacterial 
clearance and improved efficacy of first-line TB drugs with a 
substantial decrease in inflammation (Table 1) (50, 51).

immune Checkpoint Modulation
Modulation of Programed Death-1 Pathway
The programed death-1 (PD-1) receptor is a member of the 
CD28 superfamily that negatively regulates T cell responses 
to antigen stimulation and enhances tolerance, triggered by 
interaction with its ligands PD-L1 and PD-L2 (52, 53). PD-1 is 
expressed on Tregs, natural killer (NK) cells, follicular T and B 
cells, and APCs (53). PD-1 has recently emerged as an important 
co-inhibitory molecule and “immune checkpoint” in a number 
of chronic intracellular infections, including TB, and overex-
pression of PD-1, cytotoxic T-lymphocyte antigen (CTLA-4) 
receptor, and TIM3 has been associated with T-cell exhaustion 

(54–56). In human TB infection, PD-1 activity induces Tregs 
and immunomosuppressive cytokines such as interleukin (IL)-
10 and TGF-β (57, 58). HIV–TB coinfection is associated with 
increased expression of PD-1 on Mtb-specific cytokine-secreting 
CD4+ cell subsets (59).

Checkpoint blockade, i.e., removal of inhibitory coreceptor 
initiated signaling, is a strategy used successfully in cancer treat-
ment for vaccine potentiation. Monoclonal antibodies (mAbs) 
that modulate inhibitor signaling by CTLA-4 and PD-1, e.g., 
ipilimumab, pembrolizumab, and nivolumab, are now in wide 
clinical use for several cancers (Table  1) (60). Combination of 
checkpoint blockade with PD-1 and CTLA-4 inhibition enhances 
response rates in patients with minimal responses to single 
checkpoint blockade with lesser toxicity compared to previous 
immunotherapies, e.g., IL-2 (60, 61). PD-1 blockade with the can-
cer vaccine TEGVAX in mice showed regression of established 
tumors, providing a rationale using vaccines combined with 
immune checkpoint blockade (62).

The overall role of PD-1 blockade in TB remains a complicated 
issue. PD-1-deficient mice have shown dramatically reduced 
survival compared with wild-type mice post-Mtb infection. 
Increased levels of pro-inflammatory cytokines and uncontrolled 
bacterial proliferation were seen in the lungs of these mice (63). 
These observations indicate that control of Mtb infection requires 
a carefully balanced immune response that contains the infection 
without causing pathology (64).

Interestingly, the specific role of PD1–L2 is currently of inter-
est as a therapy for malaria. Blockade of PD1–L1 binding resulted 
in unfavorable outcome in a malaria mouse model, but blockade 
of PD1–L2 did not, suggesting different functions of the two PD-1 
ligand functions in malarial infections (65). Administration of 
soluble multimeric PD-L2 outcompeted PD-L1 for PD-1 binding 
and improved CD4+ T cell responses in mice with lethal malaria, 
dramatically improving survival (66). The results also suggest that 
PD-L2 not only competes with PD-L1 but also has a stimulatory 
action via interaction with a different coreceptor.

Additional studies are needed to further investigate these 
issues that might allow tuning of TB vaccine responses to be 
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more effective. Energy supply insufficiency due to cell metabolic 
alterations directed by PD-1 signaling leads to exhaustion and 
begins early in CD8+ T cell responses in chronic lymphocytic 
choriomeningitis virus infection (67). Downregulation of the 
glycolytic and peroxisome proliferator-activated receptor c coac-
tivator 1α (PGC-1a) pathways leads to reduced mitochondrial 
energy availability. Additionally, mTOR signaling drives anabolic 
metabolism of effector T cells, exacerbating energy deficiency, 
further contributing to cell exhaustion. The reversion of these 
changes in a subset of exhausted CD8+ T cells by anti-PD-1 
therapy suggests that targeted agents to directly inhibit these 
metabolic changes should be explored (67). The nuclear factor of 
activated T cells (NFAT) proteins is also primary in the establish-
ment of T cell exhaustion in mouse models of tumor growth and 
bacterial infection (68). During persistent antigen stimulation, 
NFAT promotes T cell exhaustion by binding directly to regula-
tory regions of PD-1 and TIM3 (68). Targeting NFAT isoforms 
or their associated signaling molecules is being actively pursued 
in cancer therapy (69).

Stimulation through Coreceptors: OX40
The various checkpoint co-inhibitors may need to be combined 
with T-cell co-stimulators (or stimulators could be used alone), 
for effective CD4+ Th1 and CD8+ T-cell development and 
subsequent sustained T-cell memory responses (70). CD134 
(OX40), a TNF-α receptor superfamily member, is expressed 
transiently on newly activated T cells and NK cells (71, 72). 
CD134–CD134 ligand interactions are crucial for the expansion 
of effector T cells and generation of memory T cells (73). OX40 
agonist mAb administration results in a Th1-cytokine-driven 
response enhancing IL-2 production by effector T cells and 
preventing the expression of CTLA-4, FoxP3, and IL-10 (71, 
74). Compared with BCG vaccination alone, OX40 ligation with 
BCG vaccination in a murine model provided enhanced protec-
tion against aerosol and intravenous Mtb challenge with NK 
cells playing a crucial role (71). In cancer therapy, the beneficial 
results of combination immunotherapy targeting both costimu-
latory and co-inhibitory molecules (combined OX40/PD-1 or 
OX40/CTLA-4 mAb therapy) dramatically improved survival in 
the prostate, ovarian carcinoma, and sarcoma models (70, 75). 
The adjunct potential of OX40 agonists, in conjunction with 
CTLA–4 mAb, has been shown for infection by the intracellular 
bacterium, Leishmania donovani (76). The role of activation of 
stimulatory coreceptors to improve vaccine responses deserves 
further investigation.

Modulation of immune Regulatory Cells
Regulatory T Cells
Th1-type immunity is downregulated by a subset of immunosup-
pressive CD4+ T cells expressing CD25 and the transcription 
factor FoxP3, referred to as Tregs (77–79). As excessive inflamma-
tion related to highly activated populations of CD4+ T cells can 
cause tissue damage and exacerbate TB disease, a critical balance 
of regulatory and effector T-cell responses govern the outcome 
of infection (80, 81). Tregs suppress both T cells and APCs, thus 
enhancing persistent infection (79, 82–84). Expansion of Tregs 
in active TB has been observed both at organ-specific sites and 

in blood (80, 85, 86). Multiple studies suggest Tregs delay the 
arrival of potential effector T cells into the pulmonary lymph 
nodes during early infection, play a role in reactivation of latent 
infection, and have a positive correlation with bacterial burden 
and extent of active disease (80, 81, 87, 88). Contrasting results 
have been observed in the TB treatment phase, with some studies 
reporting declining levels of Tregs and others showing a transient 
increase (86, 89, 90).

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells are another group of regulatory 
cells controlling TB inflammation. MDSCs are a diverse popula-
tion of monocyte, granulocyte, and DC precursors showing 
features of immune suppressors (91). Similar to macrophages, 
polarized MDSC lineages can be distinguished as M1 and M2 
cells (92). Their numbers are expanded significantly in cancer and 
in pleural effusions and blood of TB patients (93, 94). MDSCs 
have been shown to become infected by Mtb, accumulate within 
the inflamed lung, interact with granuloma-residing cells, and 
decrease in number after TB chemotherapy (95, 96).

Strategies for Modulation of Treg and MDSC 
Population
Studies of Treg suppression agents in combination with TB 
vaccination have yielded unclear results. A heterologous BCG/
DNA-heat shock protein (HSP) 65 vaccination regimen was 
protective, and the effect was associated with lower numbers 
of Tregs in murine lungs (97). Concurrent inhibition of Th2 
cells and Tregs by using the small molecule inhibitors Suplatast 
tosylate and D4476, respectively, during BCG vaccination 
improved vaccine efficacy in mice, by enhancing Mtb clearance, 
induction of superior Th1 responses, and long-lasting protective 
central memory T cell responses (98). However, reduction of 
Tregs using anti-CD25 antibody prior to BCG vaccination and 
an experimental ESAT-6 subunit TB vaccine administered con-
currently with IL-28B that downregulates Tregs did not enhance 
the protective effect in mice models, suggesting a need to refine 
Treg inactivation strategies (79, 99).

Table 1 lists several other agents being tested for their regula-
tory cell modulation properties including damage-associated 
molecular patterns (DAMPs), inducible indoleamine 2,3-dioxy-
genase (IDO), TK, phosphodiesterase-5 (PDE5) and fatty acid 
oxidation (FAO), and arginase inhibitors.

Damage-associated molecular patterns (also known as 
alarmins) are released by dying or stressed cells and include 
HSPs, S100, and high mobility group box (HMGB1) proteins 
(111). Expansion of both Treg and MDSCs in cancer involves 
the participation of DAMPs (112). Interestingly, HMGB1 was 
evaluated as an adjuvant for a TB subunit HMGB1–ESAT-6 
fusion protein vaccine in a mouse model. Poly-functional CD4 T 
cell-mediated immune response generated by the fusion protein 
vaccination correlated with protection against subsequent Mtb 
challenge (113). Tasquinimod, an S100A9 inhibitor currently in 
phase III trials for prostate carcinoma, decreased accumulation 
and activity of MDSCs with enhanced CD8+ responses in dif-
ferent combination immunotherapeutic strategies including a 
tumor vaccine in murine cancer models (114, 115). The potential 
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use of DAMPs and DAMP inhibitors in TB vaccination strategies 
needs to be resolved.

Indoleamine 2,3-dioxygenase blocks T cell proliferation and 
modulates immune responses to Mtb (116–118). Increased IDO 
expression is strongly associated with poor outcome in many 
cancers and is emerging as new target for potentiation of cancer 
vaccines (119, 120). Similarly, reduced immunogenicity seen 
following MVA85A vaccination in South Africans compared 
to UK subjects has been attributed to increased baseline IDO 
activity (118). Use of IDO inhibitor drugs like epacadostat that 
significantly decrease Treg proliferation and increase CTL activ-
ity in vitro provide rationale for improving vaccine responses by 
combining with IDO inhibitors (121). A first-in-human, phase 
I clinical study, combining ipilimumab (anti CTLA-4) with a 
single-epitope peptide vaccine targeting IDO showed detectable 
T-cell responses in a subset of metastatic melanoma patients 
(120). New strategies targeting the IDO enzyme in cancer, either 
through vaccine components directed against IDO epitopes or 
silencing the IDO gene using small hairpin RNA plasmids, are 
some of the strategies with potential application in the context of 
TB vaccination (118, 122).

Tyrosine kinase inhibitors can also reduce the Tregs and 
MDSCs (123, 124), probably through multiple mechanisms, 
including cKIT inhibition. Sunitinib, currently used in cancer 
therapy, depletes MDSCs and synergized with a cancer vac-
cine to enhance antigen-specific immune responses and tumor 
eradication in mice (125). Similarly, dasatinib exhibits modest 
single-agent clinical efficacy but showed superior efficacy asso-
ciated with reduced levels of MDSC and Treg populations in a 
combination treatment regimen with a DC vaccine candidate in 
a murine melanoma model (126). Imatinib, used as an approved 
therapeutic for chronic myelogenous leukemia, reduced bacte-
rial load and associated pathology in mice infected with Mtb and 
acted in a synergistic manner with anti-TB drugs (47). Several 
mechanisms are possible for this effect, including inhibition of 
suppressor cells, and imatinib is being considered for study as a 
vaccine adjunct for infections.

Manipulation of immunometabolism by 
Mtb and Potential interventions
Adenosine Monophosophate-Activated 
Protein Kinase
Adenosine monophosophate-activated protein kinase (AMPK) is 
an energy sensor kinase that regulates cellular energy homeosta-
sis and acts as a negative regulator of inflammation (127–129). 
AMPK-dependent control of T cell metabolism (as an immuno-
metabolic checkpoint) is a crucial contributing factor to deter-
mine T cell development and effector responses. AMPK also has 
an essential role in memory T-cell differentiation by regulating 
the metabolic switch from primarily aerobic glycolysis to oxida-
tive phosphorylation of lipids (129, 130). During Mtb infection, 
AMPK activation enhances autophagy, leading to phagosomal 
maturation and improved antimicrobial response (107, 129, 131).

The antidiabetic drug metformin (MET) is an AMPK activator 
that inhibits intracellular Mtb growth, restricts disease immu-
nopathology, and induces expansion of Mtb-specific effector 
and memory T cells (Table 1) (128). Additionally, MET-treated 

diabetic patients with LTBI have increased numbers of Mtb-
specific T cells (128). Although issues of dosage and incorporation 
into current TB treatments remain, MET is under consideration 
for evaluation as an adjunctive agent for TB treatment (132). 
Therapeutic cancer vaccination combined with MET improved 
tumor-infiltrating lymphocytes’ multifunctionality and protec-
tion from apoptosis and exhaustion (133). Additionally, MET is 
able to block M2-like macrophage polarization (partially through 
AMPK) in cancer. The Notch signaling pathway is a potentially 
important mechanism in this polarization (134, 135).

Cross Talk of AMPK with Other Signaling Pathways, 
Particularly mTOR and HIF-1α
Increasing evidence indicates that T cells have metabolic check-
points impacting their development and functions, including 
final phenotypes and numbers. AMPK and mTOR are chief 
players in the sensing and control of metabolic state and determi-
nation of subsequent immune cellular fates (136). mTOR inhibi-
tion is among the downstream effects of AMPK signaling. As a 
result, rapamycin, an inhibitor of mTOR, may share mechanistic 
effects with MET, an AMPK activator that subsequently inhibits 
mTOR (133).

Similarly, mTOR signaling, primarily through activating the 
transcription factor hypoxia-inducible factor-1 (HIF-1α), regu-
lates T cell effector and memory differentiation (137). HIF-1α 
increases aerobic glycolysis (opposed by AMPK) and regulates the 
differentiation of CD4+ T cells, favoring differentiation into Th17 
cells versus Tregs and production of pro-inflammatory cytokines 
in response to T cell receptor activation (136, 138). Elevated levels 
of HIF result in the differentiation of cytotoxic CD8+ lympho-
cytes (CTLs) with a high glycolytic activity, increased effector 
capacity, and expression of costimulatory receptors like OX40 
(139). These HIF-dependent effects enhanced and sustained T 
cell effector function in tumor and persistent infection models 
(139, 140). However, HIF-1α may be a key factor for Mtb infec-
tion control, as mice lacking HIF-1α in the myeloid lineage were 
more susceptible to infection and exhibited defective production 
of inflammatory cytokines and microbicidal effectors (141). The 
role of HIF-1 activity in the regulation of immune responses for 
infections in general remains an area in need of investigation 
before any assessment can be made regarding potential clinical 
applications.

Sirtuins
Silent information regulator 2 proteins or sirtuins (Sirts) are 
seven NAD-dependent protein deacetylases involved in stress 
adaption, cell survival, aging, and apoptosis (142–144). Sirts, 
specifically Sirt1, Sirt2, Sirt6, and Sirt7, are also emerging as 
important players in epigenetic changes (145). Sirt1 activates the 
key autophagy proteins ATG5, ATG7, ATG8/LC3, and Sirt1 and 
Sirt2 have anti-inflammatory roles, such as inhibition of NF-kB 
signaling and NLRP3 inflammasome activity (146–149). Sirt1 
has recently emerged as a key regulator in immune regulation 
modulating both innate and adaptive responses.

Sirt1 inhibitors (Table  1) are able to block virus infections 
including HCMV, influenza A virus, and adenovirus Ad5 
(150). In a tumor microenvironment, Sirt1 deficiency impacted 
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immune suppression by switching MDSCs to a pro-inflammatory 
M1 phenotype through HIF-1α-dependent glycolysis (92). This 
suggests that Sirt1 inhibitors should be considered for evalua-
tion as vaccine adjuncts. Conversely, the enzymatic activity of 
Sirt1 can be enhanced by small molecule activators including 
the natural polyphenol, resveratrol, and synthetic Sirt1 activator 
compounds (151). In respiratory syncytial virus infection, Sirt1 
promotes an effective antiviral response through DC cytokine 
secretion and autophagy-mediated processes, providing an 
option for a novel vaccination strategy, such as a Sirt1-activating 
viral vaccine (152).

Sirtuins have multiple effects on immune regulation based 
on integration of immune cell metabolic and immune function 
regulation including potentially modulating T cell exhaustion. 
Sirt1 activates PGC-1a and negatively regulates NFAT, mTOR, 
and HIF-1a activity (149, 153, 154). This effect could reduce 
metabolic cell stresses and improve the effectiveness of PD-1 
blockade therapy. Overall, the role of Sirt family in Mtb infection 
and its potential combined use with vaccination requires further 
exploration.

immunomodulatory Potential  
of Core Signaling Pathways
Wnt/β-Catenin Signaling
The canonical Wnt/β-catenin pathway plays an important role 
in the regulation of various cellular processes, including cell 
differentiation, apoptosis, polarity, motility, embryonic develop-
ment, adult tissue homeostasis, and carcinogenesis (155–158). 
Infection with BCG activates Wnt/β-catenin signaling, resulting 
in the expression of a host of genetic signatures important for 
subsequent regulatory responses, including cyclooxygenase 
(COX)-2, suppressor of cytokine signaling-3 (SOCS-3), and 
Jagged1 (ligand for Notch1 signaling) (159–162). Additionally, 
wnt/β-catenin signaling in DCs induces production of various 
anti-inflammatory cytokines that induce Treg cells and suppress 
TH1/Th17 responses (163).

The wnt/β-catenin pathway has been suggested as a therapeu-
tic target for adjunct treatments along with vaccination in the 
ovarian tumor microenvironment (164). Agents for targeting 
the wnt/β-catenin pathway include flavonoids, monensin, and 
resveratrol, and the use of antibodies against the Notch recep-
tor or ligand (Table 1) (165). Additionally, telomere protection 
enzymes, the tankyrase (Tnks) subfamily of PARPs, control tran-
scriptional response to secreted Wnt signaling molecules. Tnks 
inhibitors are currently being developed as therapeutic agents 
for targeting Wnt-related cancers (166). Despite recent reports 
of studies implicating Wnt signaling pathway in the development 
and progression of TB, the utilization of potential signaling 
inhibitors as effective adjuncts in TB vaccination remains to be 
explored.

Notch Signaling
Notch signaling regulates various developmental stages of T 
and B cells and T cell activation and differentiation (167). This 
highly conserved pathway also integrates further inputs from 
other signaling pathways. This cross talk includes upregulation 

of ligands or receptors (e.g., Wnt regulating Notch ligand levels) 
and co-regulation of shared target genes [e.g., Hes1 and Gsk3β 
regulation by Notch, Wnt, and sonic hedgehog (SHH)] (168, 169). 
Notch signaling directly controls PD-1 transcription in activated 
CD8+ T cells, as blocking Notch signaling leads to the inhibition 
of PD-1 expression (170). BCG infection of murine macrophages 
induced upregulation of Notch1 expression. Activation of 
Notch1 signaling was demonstrated in granulomatous lesions in 
brains of humans with TB meningitis in comparison to healthy 
individuals (167, 171). Several notch inhibitors, mainly gamma-
secretase inhibitors, are now in clinical trials, e.g., RO4929097 
(Table 1) (172).

Sonic Hedgehog
Sonic hedgehog, a pleotropic member of the hedgehog family 
of signaling molecules, plays a key role in cellular homeostasis 
and development (173). Aberrant activation of the HH signaling 
pathway has been implicated in the pathogenesis of several types 
of cancer (174). SHH signaling constitutes one of the networks 
that macrophages use to tailor differential immune responses to 
infections with pathogenic mycobacteria. In addition to BCG 
triggering a robust activation of SHH signaling in macrophages, 
SHH signaling is heightened in humans with PTB and TBM 
(175). Additionally, TNFα-driven SHH signaling downregulates 
M. bovis-specific TLR2 responses through micro RNA-31 and 
-150 targeting MyD88 (175). These changes lead to modulation of 
a battery of genes that regulate various functions of macrophages 
genes, including SOCS-3, COX-2, MMP-9, and M1 and M2 genes 
and emphasize a novel role for SHH signaling in host immune 
responses to mycobacterial infections. Vismodegib and son-
idegib are small molecule inhibitors targeting the SHH pathway 
in cancer (Table 1) (174, 176).

Glycogen Synthase Kinase-3β
The binding of Wnt ligands secreted from various cell types to 
transmembrane receptors of the Frizzled family activates a signal-
ing cascade resulting in the inhibition of a negative regulator of 
β-catenin levels, glycogen synthase kinase-3β (GSK3β) (177). 
GSK3β plays a pivotal role in regulating many cellular func-
tions, including cell survival and apoptosis (165, 178–180). M. 
bovis BCG induces phosphorylation of GSK3 by the PI3K–Akt 
signaling pathway, switching the transcriptional activity to an 
anti-inflammatory CREB-driven cytokine response instead of 
the pro-inflammatory NF-κB transcription (181, 182). GSK3β is 
an upstream kinase regulating PD-1 transcription, and the use of 
GSK3β inhibitors in vivo downregulates PD-1 and enhances CTL 
clearance of viral infections (183). Several inhibitors of GSK3β 
are in various stages of development, e.g., tideglusib (Table  1) 
(184). Additionally, in a DC-based tumor vaccination murine 
model, inhibition of GSK3β by siRNA enhanced CTL activity via 
suppression of IDO expression (185).

epigenetic Changes and Trained immunity
Trained immunity (TI) is a new paradigm for vaccination refer-
ring to a prolonged, enhanced functional innate response after 
adequate priming. While the specificity and memory of innate 
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TABLe 2 | Prioritized list of candidate potentiating agents for use with TB 
vaccines.

Target Drug examples

Autophagy modulation

Direct mechanistic target of rapamycin 
(mTOR) inhibitors

Sirolimus, everolimus, and 
ridaforolimus

mTOR independent Imatinib

immune checkpoint modulation

Programed death-1/CTLA-1  
inhibitors

Ipilimumab, pembrolizumab, and 
nivolumab

OX40 stimulator OX40 agonist (monoclonal antibody)

immunometabolism regulation

Adenosine monophosophate-activated 
protein kinase activators

Metformin, AICAR, and AZD-769662

Sirtuins

Activators Resveratrol, pterostilbene, Sirt1 
activator compounds in development

Inhibitors Sirtinol and cambinol

Core signaling pathway modulators

Notch inhibitors RO4929097

Sonic hedgehog inhibitors Vismodegib and sonidegib

Glycogen synthase kinase-3β inhibitors Tideglusib

Modulation of immune regulatory cells: Tregs and myeloid-derived 
suppressor cells

Damage-associated molecular patterns 
inhibitor

Tasquinimod

Indoleamine 2,3-dioxygenase inhibitor Epacadostat

Tyrosine kinase inhibitors Sunitinib, dasatinib

PDE5 inhibitors Sildenafil
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immunity is not as sophisticated as adaptive immunity, TI could 
potentially contribute to BCG, yellow fever, influenza, vaccinia, 
and measles vaccine-induced responses (186). The molecular 
basis of innate immune memory is cell type-specific epigenetic 
modifications, including DNA methylation and histone modifi-
cations, such as acetylation, methylation, and phosphorylation 
(187). Specifically, after BCG vaccination, the TI response in 
human monocytes and NK cells appears to be mediated through 
autophagy and regulatory pathway signaling changes leading to 
epigenetic reprograming (188, 189). Following histone modifica-
tion profiles and genome-wide transcriptomics to study trained 
human monocytes, an mTOR- and HIF-1α-mediated aerobic 
glycolysis pathway has been suggested as the metabolic basis 
for TI (190). The identification of glycolysis as a fundamental 
process in TI defines potential targets that inhibit TI including 
inhibition of mTOR/HIF-1a axis and use of MET and sirtuin 
activators (190).

Whether training of innate immunity to exhibit adaptive fea-
tures can significantly potentiate vaccine responses is an important 
research question. Possible epigenetic-based interventions may 
include enhancement of TI development with sirtuin inhibition 
and stabilizing the activity of the mTOR/HIF axis. The knowledge 
that modification of epigenetic changes can potentially improve 
immune responses has led to development of “epi-drugs” now 
approved for use in targeted oncologic treatment strategies (191, 
192). These drugs, inhibitors of DNA methyltransferases and 
histone deacetylases (HDACs) (Table  1), for example, sodium 
butyrate can modulate expression of immune regulatory mole-
cules to improve immune responses in murine models, including 
in therapeutic combinations with cancer vaccines (193).

TeSTiNG OF POTeNTiAL AGeNTS wiTH 
CANDiDATe TB vACCiNeS iN 
APPROPRiATe ANiMAL MODeLS

Table 2 is a prioritized list of candidate-potentiating agents that 
are either approved or currently being tested for other diseases. 
These include activators of effector T cell expansion and genera-
tion of memory T cells responses (MET and OX40 agonists) and 
agents targeting specific initiators of regulatory pathway signaling 
(PD1, wnt/notch, and mTOR).

Testing the wide range of candidate TB vaccine in conjunc-
tion with immunoregulatory and immunometabolic interven-
tions as adjuncts requires developing appropriate preclinical 
models. Due to the remarkable amount of cross talk between 
the cellular immune pathways (for example, AMPK and mTOR 
are chief players in the controlled sensing of metabolic state and 
subsequent immune cell fates), in vitro testing with particular 
focus on macrophages and DCs will be important to ascertain 
that specific cellular interactions are targeted without affecting 
other pathways. Following in  vitro testing of new candidates, 
assessment of their combinatorial effect and safety interactions 
in small animal models including transgenic mice models and 
non-human primates (NHPs) will be essential evaluations. 
While experimental studies in mouse models have provided 
direct insight into Mtb- and BCG-induced changes in Wnt, 

Gsk3b, Notch1, SHH, and mTOR signaling (194–196), many 
differences in human versus murine immune cell regulation 
are known. In view of these differences, the use of NHPs to 
determine the role of regulatory pathway disruptions and the 
resulting effects on essential immune functions can be poten-
tially illuminating.

As shown in the Tables 1 and 2, many of the proposed agents 
have been studied in the context of TB disease and are yet to be 
tested with candidate TB vaccines. Due to the highly complex 
patterns of host responses to TB infection/disease, it is probable 
that what relates to TB infection/disease may not be effective in 
the context of vaccination, and this possibility requires careful 
exploration. Also, differences in specific antigens and correspond-
ing immune responses for the numerous classes of candidate TB 
vaccines complicate the evaluation of these adjunct agents for 
vaccination. Among the whole cell, viral-vectored, and adju-
vanted subunit candidate vaccines, attenuated WCV may present 
a viable opportunity to be tested first. The antigenic complexity 
associated with WCV most probably will modulate key signaling 
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pathways and/or immune cell functions that can be targeted for 
modification with drugs.

Timing of vaccine administration with these potential adjunct 
therapies remains to be determined. A balanced regulatory and 
effector T-cell response is required for optimal control of bacterial 
replication while simultaneously limiting effector cell-mediated 
tissue damage (197). For example, Sirt1 inhibiting drugs could 
potentiate vaccine responses and improve outcomes in very 
early stages of infection when enhanced immunity is essential. 
Conversely, Sirt1 activators may potentially be useful for the 
control of inflammatory damage and control of pathogen spread 
during later stages of infections. Similarly, timing of GSK3β inhi-
bition, for instance, has to be determined as this inhibition sup-
presses pro-inflammatory cytokine expression, including TNF-α 
(198, 199). The use of inhibitors of mTOR/HIF-1a axis and MET 
can inhibit TI, suggesting that studies to determine the timing of 
use of these complementary therapies will also be needed.

PATH FORwARD

Tuberculosis is an ancient human disease and has very effectively 
adapted to persist in its hosts despite the multiple robust immune 
responses directed against it. While antigen-specific CD4+ T cells 
and macrophage-activating cytokines are required for the control 
of TB, merely inducing more of these T cells or cytokines may 
not result in improved protection (18, 200). Both Mtb and BCG 
bacilli are highly immunogenic and drive robust antigen-specific 
T cell responses (18). The limited effectiveness of BCG and failure 
to improve on it, underlines the lack of understanding of why 
highly protective immune responses are not obtained. A potential 
underlying cause of ineffectiveness for some Mtb vaccines may 
be distortion of immune cell regulatory pathways required for 
development of protection by many potential mechanisms.

In cancer, innovative new strategies have been developed that 
include restoration of proper immune checkpoint, immunome-
tabolism and epigenetic interventions. Most of these types of 
interventions have much in common, as reversal of alterations 
will allow affected immune cells to perform necessary immune 
functions, including autophagy, antigen processing and presen-
tation, cytokine secretion, and other effector mechanisms. The 
potential for using both immunometabolism and co-signaling 
interventions in combination to balance effector and regulatory 
effects is beginning to be explored, to potentiate host responses 
induced by vaccines.

Similar to cancer, the complex regulation of immune cells and 
the extensive cross talk among several key regulatory pathways 
in response to TB infection make the therapeutic targeting and 
utilization of immune and metabolic checkpoints in TB very 
challenging. The most critical need is to determine the precise 
points of signaling pathway dysregulation that can be reversed 
by targeted intervention to result in improved immune protec-
tion. A large spectrum of innovative interventions to improve 
immune responses are now in clinical evaluation in other 
diseases, including enhancement of vaccine outcomes, and are 
available for adaption to TB vaccine research. Truly multidis-
ciplinary research teams including investigators in the fields of 
immuno-oncology, immunometabolic, and applied epigenetic 
research working together with more traditional pathogen vac-
cine researchers will be important to develop successful new TB 
vaccine strategies.
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