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Radiochromic film has become an important tool to verify dose distributions for 
intensity-modulated radiotherapy (IMRT) and quality assurance (QA) procedures. 
A new radiochromic film model, EBT3, has recently become available, whose 
composition and thickness of the sensitive layer are the same as those of previous 
EBT2 films. However, a matte polyester layer was added to EBT3 to prevent the 
formation of Newton’s rings. Furthermore, the symmetrical design of EBT3 allows 
the user to eliminate side-orientation dependence. This film and the flatbed scanner, 
Epson Perfection V750, form a dosimetry system whose intrinsic characteristics 
were studied in this work. In addition, uncertainties associated with these intrinsic 
characteristics and the total uncertainty of the dosimetry system were determined. 
The analysis of the response of the radiochromic film (net optical density) and 
the fitting of the experimental data to a potential function yielded an uncertainty 
of 2.6%, 4.3%, and 4.1% for the red, green, and blue channels, respectively. In 
this work, the dosimetry system presents an uncertainty in resolving the dose of 
1.8% for doses greater than 0.8 Gy and less than 6 Gy for red channel. The films 
irradiated between 0 and 120 Gy show differences in the response when scanned 
in portrait or landscape mode;  less uncertainty was found when using the portrait 
mode. The response of the film depended on the position on the bed of the scanner, 
contributing an uncertainty of 2% for the red, 3% for the green, and 4.5% for the 
blue when placing the film around the center of the bed of scanner. Furthermore, 
the uniformity and reproducibility radiochromic film and reproducibility of the 
response of the scanner contribute less than 1% to the overall uncertainty in dose. 
Finally, the total dose uncertainty was 3.2%, 4.9%, and 5.2% for red, green, and 
blue channels, respectively. The above uncertainty values were obtained by mini-
mizing the contribution to the total dose uncertainty of the film orientation and 
film homogeneity.
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I.	 INTRODUCTION

Initially, the EBT and EBT2 Gafchromic film models were designed for intensity-modulated 
radiotherapy (IMRT) and quality assurance (QA) procedures.(1-6) Currently, radiochromic film 
dosimetry protocols developed for IMRT QA have suggested the use of flatbed scanners to 
read the radiochromic film.(3,5,7-9) The dosimetry system consists of the radiochromic film and 
the flatbed scanner. This dosimetry system is used for two-dimensional measurements of dose 
distributions in radiotherapy applications such as IMRT and stereotactic radiosurgery. The 
system allows one to perform dose distributions measurements with high spatial resolution 
(about 1200 lines/mm). However, certain factors contribute to the total uncertainty in determin-
ing dose. Therefore, considering and minimizing these factors is very important to ensure that 
the uncertainty for each treatment technique is acceptable. The factors to consider include the 
dependence of the response on the relative orientation of the film scanner, the lack of uniformity 
in the useful scan area, the scan parameters, the scanner stability, the scanner uncertainty, and 
curve calibration.(10-14) To this end, the dose measurements with the EBT film using the red 
channel when the film is read with a flatbed scanner have been rigorously investigated because 
absorption is highest at 636 nm.(15,16) The dynamic range of the EBT film in the red channel 
reaches a maximum of approximately 8 Gy,(17) but higher dose ranges result in the saturation 
of the red channel response curve. 

Over time, radiochromic films have been employed in other dosimetry applications, includ-
ing brachytherapy, skin dose measurement, lung and breast phantom measurements, total body 
irradiation (TBI), total skin electron therapy (TSET), electron therapy, stereotactic radiotherapy, 
the dosimetry characterization of proton therapy beams, and dose verification during cell 
irradiation in radiobiological experiments.(18-29) These applications necessitate the study and 
characterization of the EBT3 radiochromic film for dose ranges above 8 Gy. 

The aim of this paper was to analyze and evaluate the dosimetry system formed by the EBT3 
radiochromic film and Epson Perfection V750 for doses ranging from 0 to 120 Gy using three 
color channels. Furthermore, an uncertainty analysis of the dose was performed to study certain 
intrinsic characteristics of film dosimetry. 

 
II.	 MATERIALS AND METHODS

A. 	 Radiochromic film
The radiochromic film used in this study was a Gafchromic EBT3 (Gafchromic, International 
Specialty Products, Wayne, NJ) film with serial number A01171301 and sheet dimensions of 
20.3 cm × 25.4 cm. The sheets were cut into pieces of 3 cm × 3 cm for all experiments, and 
the films were handled and used according to the general recommendations outlined by the 
manufacturer’s specifications(17) and AAPM TG-55.(30) Radiochromic EBT3 film consists of a 
single active layer, nominally 27 μm thick, between two transparent polyester substrates with 
a thickness of 120 μm each.(17) The active layer contains the active component, marker dye, 
stabilizers, and other additives, giving the film its low-energy dependence. The active layer 
of EBT3 radiochromic films consists of H (56.8%), C (27.6%), O (13.3%), Al (1.6%), and Li 
(0.6%). Therefore, its effective atomic number is 7.26, according to the manufacturer. The 
EBT3 film model presents some improvements, such as greater uniformity, less than 1%.(1) 
Active layer incorporates a yellow marker dye to decreases UV/light sensitivity and enables 
all the benefits of multichannel dosimetry, when it’s used in conjunction with an RGB film 
scanner. The symmetric structure eliminates the need for keeping track of which side of the 
film is facing the light source of the scanner. The polyester substrate has a special surface 
treatment containing microscopic silica particles that maintain a gap between the film surface 
and the glass window in a flatbed scanner. Since the gap is nearly ten times the wavelength 
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of visible light, formation of Newton’s Rings interference patterns in images acquired using 
flatbed scanners is prevented.(17)

B. 	 Irradiation film procedure
Each film piece was placed at a 5 cm depth in a solid water phantom (CIRS Inc., Norfolk, 
VA), which consisted of 30 cm × 30 cm slabs of different thicknesses. The total thickness of 
the phantom was 30 cm. The films were perpendicularly irradiated with a 6 MV photon beam 
using a Novalis linac linear accelerator (Brainlab AG, Feldkirchen, Germany). The linac was 
calibrated such that a 1 cGy per monitor unit was delivered at a 5 cm depth with a 10 cm × 
10 cm field size and a source-to-surface distance (SSD) of 95 cm. The films were exposed to 
various absorbed doses ranging from 0 to 120 Gy to cover the full dynamic range of the film 
considering the following intervals: from 0 to 0.5 Gy in steps of 0.25 Gy, from 0.5 to 3 Gy in 
steps of 0.5 Gy, from 3 to 10 Gy in steps of 1 Gy, from 10 to 50 Gy in steps of 5 Gy, and from 
50 to 120 Gy in steps of 10 Gy. In order to reduce the statistical uncertainty, each calibration 
point consisted of five irradiated film pieces.(31) A total of 150 film pieces were used to build 
the sensitometric curve. 

C. 	 Scanning protocol and analysis
In this study, an Epson Perfection V750 desktop flatbed scanner (US Epson, Long Beach, CA) 
and its associated software, Epson Scan, were used to read all films before and after irradiation. 
To minimize the effect of the nonuniform response of the readout due to the light scattering 
of the scanner lamp caused by particles in the film active layer,(32) a cardboard template was 
fitted to the scanner to position films at a reproducible central location of the scan surface that 
can be considered uniform.(17) The films were scanned after a 15 min warm-up time to stabilize 
the flatbed scanner, according to Ferreira et al.(33) Images were acquired in transmission mode, 
landscape orientation, and RGB-positive mode at a depth of 16 bits per color channel with a 
spatial resolution of 72 dpi, which corresponded to a pixel size of 0.35 mm × 0.35 mm. The 
images were saved in .tiff format.

The raw images of films were imported from the scanning system into the ImageJ (v.1.2) 
analysis software for further image processing to obtain the values of the transmitted light inten-
sity (I) and standard deviation associated with this value (SD(I)). The images were processed 
in three colors channels (red, green, and blue).

D. 	 Film response
The physical principle of radiochromic film is a color change in response to radiation exposure. 
Therefore, the response of the EBT3 radiochromic film is characterized by the net optical density 
(netOD). The net optical density (netOD) is related to the intensity (I) by the Lambert-Beer 
law,(34) as indicated by the following equation: 

		  (1)
	

netOD = –log10

I
I0

where I0 and I are the reading for the unexposed and exposed film piece, respectively. To 
homogenize the film response, a correction procedure was performed, accordingly to Garcia-
Garduno et al.(35) 
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Conversely, using the error propagation expression and ignoring cross-correlations,(36) obtain 
the associated standard deviation net optical density (SD(netOD)) using the following equation:

		  (2)
	

SD(netOD) = +
21

ln 10
SD(I0)

I0
( ) 2SD(I)

I( )
where SD(I0) and SD(I) are the associated standard deviations I0 and I, respectively.

E. 	 Experiments to characterize the dosimetry system

E.1  Dynamic range
Radiochromic EBT3 film is designed to be used in a wide range of doses when analyzed with 
a flatbed scanner using three color channels: red, green, and blue.(17) In this study, the dynamic 
range of the radiochromic film was determined by analyzing the sensitivity and uncertainty 
of the film response.(37) The radiochromic film was irradiated from 0 to 120 Gy to ensure that 
covered the entire dynamic range. With the information obtained from the image analysis, the 
response curves of the film were constructed by plotting the net optical density as a function 
of dose. These curves were fitted to a power function of the following form:

	 netOD = aD + bDn	 (3)

where a, b, and n are fitting parameters and D is the measured dose in Gy. Subsequently, the 
response sensitivity of the film EBT3 for each color channel, which is defined as the derivative 
of the slope of the calibration curve at each point,(38) was calculated. In mathematical form, 
this sensitivity is given by the following:

		  (4)
	

S = = a + nb Dn–1
dnetOD

dD

The sensitivity curves of radiochromic EBT3 film were used to determine the dynamic range 
for each color channel based on two points of intersection. The first point is the intersection of 
the sensitivity curves of the red and green channels (SRG), and the second point corresponds 
to the intersection of the sensitivity curve of the green channel with blue channel curve (SGB).

E.2  Response curves and fitting procedure
The radiochromic film was used for dose measurement, but the dose is more conveniently plotted 
as a function of the measured net optical density, allowing the data to be fitted to a curve. This 
analytical curve was used to convert the measured net optical density to dose values.

To obtain the dose response relationship, we used the pieces of EBT3 film irradiated at dif-
ferent dose levels between 0 and 120 Gy. The analytical expression was obtained by fitting the 
data using the least squares method; a potential equation such as Eq. (3) with the dose as the 
dependent variable is given by the following: 

	 D = anetOD + bnetODn	 (5)

Dose-response curves were obtained for the three color channels by considering the dynamic 
ranges determined in this study for each color channel (see Materials and Methods section E.1).
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The uncertainty in determining the dose was calculated using an error propagation analysis, 
as proposed by Devic et al.(39) The total scan uncertainty (SDtot) was calculated using the fol-
lowing expression:

		  (6)
	

SDtot = SD2
exp + SD2

fit  

where SDexp is the experimental uncertainty and resulted the uncertainties associated with the 
film irradiation and scanning procedures. Furthermore, SDfit represents the fitting uncertainty. 
The mathematical expressions of SDexp and SDfit are

		
     (7)

	
SDexp(%) = · 100

(a + n·b·netODn–1) · SD(netOD)
Dfit

			 
		

			  (8)
	

SDtot(%) = · 100
netOD2 · SD2

a + netOD2n · SD2
b)

Dfit

where SDa and SDb are the fitting parameter uncertainties, and SD(netOD) is the uncertainty 
associated with the measured optical density calculated within Eq. (2).

E.3  Dose resolution of the system  
The definition of dose resolution used in this work was taken from Baldock et al.(40) and it is 
defined as the minimal separation of two absorbed doses at which their most probably value is 
different with a given level of confidence. The dose resolution (DR) of the measurement system 
was calculated from the response curve (Materials and Methods section E.2) by multiplying 
the standard deviation of netOD (SD(netOD)) associated to each dose level times the value of 
the first derivative of the fit function at the respective dose point. 

		  (9)
	

DR = SD(netOD) ∙
dD

dnetOD

The dose resolution of the system was evaluated in the dose range from 0 to 120 Gy.(5) 

F. 	 Experiments to characterize the Gafchromic EBT3 film

F.1  Film reproducibility and uniformity 
To study the radiochromic EBT3 film reproducibility, the standard deviation (SD) of the response 
(net optical density) was calculated using Eq. (2) for 165 film pieces of 3 cm × 3 cm irradiated 
between 0 and 120 Gy. These pieces were cut from different regions of five film sheets.

The uniformity of the radiochromic EBT3 film was investigated by comparing the dose 
measured in ROIs at different locations on a single sheet of the film. Ten pieces of the same 
film had been irradiated at 0, 1, 6, 15, 35, and 70 Gy. The uncertainty due to film uniformity 
was defined as the standard deviation from the mean in the ROI of each film piece.

F.2  Relative orientation of the film
To determine the influence of the relative orientation of the film during scanning, the 165 film 
pieces irradiated from 0 to 120 Gy were scanned both in landscape and portrait orientation. 
The expression portrait orientation is used when the scanning direction is perpendicular to the 
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shorter leaf film side, while the expression landscape orientation is used if both directions are 
parallel.  The reason is that, in these films, the polymers of the active layer are as small needles, 
thereby changing the response of the film according to the orientation.(37) 

G. Experiments to characterize the scanner

G.1  Reproducibility of the response of the scanner
The reproducibility of the flatbed Epson Perfection V750 scanner response was investigated 
by repeatedly scanning film pieces irradiated at 0, 1, 6, 15, 35, and 70 Gy at different times: 
30 min, 18 hrs, and 25 days between scans.

G.2  Uniformity of the response of the scanner
To determine the uniformity of the response of the scanner, films pieces were irradiated with 
0, 1, 6, 15, 35, and 70 Gy and later digitized these films at 20 different positions on the bed of 
the scanner. The uniformity was evaluated based on the standard deviation in the response of 
the film placed to each position on the bed of the scanner with respect to standard deviation of 
central position of the film placed in central position on the bed of the scanner.

 
III.	 RESULTS  

A. 	 Dynamic range
Figure 1 shows the dose response curves of the EBT3 radiochromic film for all three color 
channels from the RGB scanned images and doses ranging from 0 to 120 Gy. These curves 
represent the film response (net optical density, netOD) as a function of the dose delivered to 
the film. As indicated in the figure, the response curves of the radiochromic film scanned in the 
red and green channels are above the response curve of the films scanned in the blue channel; 
these results are consistent with those obtained for the EBT radiochromic film.(10) Therefore, 
the signal weakly depends on the dose and strongly depends on the thickness of the active layer 
in the blue channel. The film response curves for the red and green channel show an intersec-
tion at 50 Gy; this value is consistent with data available in the literature.(10) Also, from Fig. 1 
it can be observed that there are relatively low changes of netOD for dose values greater than 
30 Gy and the film response saturation starts approximately at 60 Gy. Starting at this point, the 

Fig. 1.  Dose response curves of EBT3 radiochromic film for the three color channels.
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response curve for films scanned with the red channel shows a more rapid saturation than the 
response curve for the green channel. The response behavior of the radiochromic film to radia-
tion could be attributed to the absorption spectrum of the active layer, which exhibits maximum 
absorption at approximately 635 nm (i.e., the red spectrum of visible light). Furthermore, the 
absorption spectrum has a lower absorption peak centered at approximately 583 nm that falls 
within the green visible spectrum. Because the absorption peaks found in the blue part of 
the visible spectrum are very small, the response of the film in the blue channel is below the 
response of the red and green channels.(41,42) In addition, the net optical density is a measure 
of the convolution of the active layer absorption spectrum, the linear CCD array sensitivity 
spectrum, and the emission spectrum of the fluorescent light source of the scanner.(10)

Because the response curves of the EBT3 radiochromic film do not accurately define the 
dynamic ranges for each color channel, the response sensitivity of the film is analyzed. The 
response sensitivity of the film is defined as the slope of the response curve for each dose value 
and is mathematically expressed as the derivative of the response curve for each dose value.(38)  
Figure 2 shows the sensitivity curves of each color channel as a function of the delivered dose, 
which were used to define the dose regions of maximum sensitivity for a particular color chan-
nel. In general, the sensitivity of the response of the film decreased with the dose. Furthermore, 
the sensitivity depends on the color channel with which the films are scanned. Figure 2 shows 
two points of interest, one corresponding to the intersection of the sensitivity curves of the 
red and green channels (SRG = 6 Gy) and the other being the intersection of the sensitivity 
curves of the green and blue channels (SGB = 35 Gy). These points define the intervals of 
maximum sensitivity for each color channel. In other words, for the dose range of 0–6 Gy, the 
film response is more sensitive when scanning with the red channel, whereas from 6–35 Gy, 
the response is more sensitive if we scan the film with the green channel. For doses greater 
than 35 Gy, the sensitivity in the response of the film is maximized if the film is scanned with 
the blue channel. Notably, the dynamic ranges and response curves depend on the dosimetry 
system used, which consists of a particular model of radiochromic film, a flatbed scanner, and a  
dosimetry protocol. 

Fig. 2.  Sensitivity curves of EBT3 radiochromic film for the three color channels.
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B. 	 Response curves and fitting procedure
Figure 3 shows the fitting curves for each color channel within the dose regions defined above 
(Results section A.). The fit parameters a, b, and c in the analytical expression  given by Eq. (4) 
were determined for each color channel for data corresponding to the highest sensitivity range. 
These ranges were: from 0 to 6 Gy for the red channel, from 6 to 35 for the green channel, 
and from 35 to 120 Gy for the blue channel. The fitted curves coincided with the experimental 
values in the dose ranges for the color channel that was most sensitive. 

Figure 4 shows the analysis result of uncertainty for each color channel considering the 
ranges over which the response of the film was most sensitive. For radiochromic EBT3 films 
scanned using the red channel at doses ranging from 0 to 6 Gy, an average total uncertainty of 
2.6% was obtained, representing the lower limit of lower uncertainty when using the system 
consisting of the EBT3 radiochromic film and the Epson Perfection V750 scanner for dosimetry. 
Moreover, the average total uncertainty for films scanned with the green channel in the dose 
range from 6 to 35 Gy was 4.3%, which is the maximum average total uncertainty. Finally, 
the total uncertainty in determining the dose for the blue channel was 4.1% for doses ranging 
from 35 to 120 Gy. 

In addition, experimental uncertainty contributed the most to the calculation of the total 
uncertainty in the red channel, whereas greater uncertainty was associated with the fitting pro-
cess in the green channel. For the blue channel, the associated uncertainty decreased with the 
dose. Therefore, the total uncertainty for the three color channels was less than 5%, but only 
the red channel exhibited a lower total uncertainty of 3%. 

Fig. 3.  Curve fitting of EBT3 radiochromic film (a) from the red channel scanned within dose range from 0 to 6 Gy.  
(b) Curve fitting of EBT3 radiochromic film from the green channel scanned within dose range from 6 to 35 Gy. (c) Curve 
fitting of EBT3 radiochromic film from the blue channel scanned within dose range from 35 to 120 Gy.
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Figure 5 shows the total dose uncertainty for the three channels from 0 to 120 Gy. It can 
be observed, that the three channels show the same trend. For low doses, the dose uncertainty 
decrease as a function of dose, nerveless for higher doses, the dose uncertainty increases not 
monotonically in the three channels. Figure 6 shows the same uncertainty data that is shown in 
Fig. 5 but only the total dose uncertainty is plotted, corresponding to the dose interval recom-
mend for each color channel by the film manufacturer: 0-10 Gy for red, 10-40 Gy for green, 
and > 40 Gy for blue channel. It can be observed that the total dose uncertainty increases for 
the green and blue channels as a function of dose.

Fig. 4.  Dose uncertainty analysis for the three color channels within dose regions defined by sensitivity curves.

Fig. 5.  Total dose uncertainty for the three color channels defined by the sensitometric curves.
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C. 	 Dose resolution of the system  
Figure 6 shows the results of the uncertainty analyses for the dose resolution of the dosimetric 
system consisting of the EBT3 radiochromic film and Epson Perfection V750 flatbed scanner 
for the doses ranging from 0 to 120 Gy. The uncertainty associated with the resolution of the 
dosimetry system depends on the dose and the color channel used. For the red channel, the 
uncertainty decreases with dose, presenting with an average value of 1.8%. In contrast, for the 
green and blue channels, uncertainty tended to increase with the dose. However, the average 
uncertainty in dose for the green channel was the same as that of the red channel, 2.3%, whereas 
that for the blue channel was 3.1%. The results obtained in this work for the red channel are 
consistent with those shown in the literature for the EBT film Epson Expression 1680 Pro 
flatbed scanner for the red and green channels.(5) 

D. Film uniformity and reproducibility
Figure 7 presents the analysis of the reproducibility of the response of the EBT3 radiochromic 
film irradiated from 0 to 120 Gy. This analysis was conducted for the three colors, from 0 to 
6 Gy for the red channel, from 6 to 35 Gy for the green channel, and from 35 to 120 Gy for the 
blue channel. The figure shows the behavior of the standard deviation (reproducibility in film 
response) as a function of the delivered dose. For films irradiated from 0 to 6 Gy and scanned 
in the red channel, the figure shows that the standard deviation in the response of the EBT3 
radiochromic film (net optical density) decreases with dose (i.e., the reproducibility of the film 
increases with dose). Conversely, for films irradiated at doses ranging from 6 to 35 Gy and from 
35 to 120 Gy scanned in the green and blue channels, respectively, the reproducibility of the 
film did not exhibit a defined behavior. Finally, the reproducibility of the EBT3 radiochromic 
film was increased when the film is scanned within the red channel, with an average standard 
deviation in the response of the film that was lower than 0.2%. For the films scanned with the 
green and blue channels, the average standard deviation of the response of the film was lower 
than 0.3%. The literature reports a higher uncertainty in the reproducibility of the response for 
the radiochromic EBT2 film model, the uncertainty in the reproducibility of the response was 
1.5% and less 0.6% for the EBT film model.(3,5) 

However, the nonuniformity of the radiochromic EBT3 film was less than 0.2% for the red 
channel. This result is consistent with that reported for the EBT3 film by Casanova-Borca et 
al.;(1) they found a nonuniformity of less than 1%. The nonuniformity of the EBT film was also 

Fig. 6.  Dose resolution of the dosimetry system for the three color channels in their respective dynamic ranges.
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less than 1%.(5) However, the EBT2 film nonuniformity was 0.7%.(3) For the green and blue 
channels, the nonuniformity had values of less than 0.3%. 

E. 	 Relative orientation of the film
Figure 8 shows the response curves of the radiochromic EBT3 films scanned in portrait and 
landscape mode for doses ranging from 0 to 120 Gy. Response curves were obtained for the 
three color channels in their respective ranges of highest sensitivity. Differences are observed in 
the response of the film when it was scanned in landscape mode and portrait mode in the three 
color channels. However, the difference in the response was greater for the red channel than 
for the green and blue channels. The difference in the response of the film to the red channel 
was 6.2% in portrait mode, whereas these differences were 2.7% and 3.3% for the green and 
blue channels, respectively. These differences in the response of the film have been studied and 
quantified in models for EBT(6,43) and EBT2(3) radiochromic films. These studies concluded 
that the influence of the relative film orientation in the scanner is significant and, therefore, 
should be considered when conducting dosimetry analyses with radiochromic film. Notably, 
the differences in response due to the relative orientation of the scanner depend on the type of 
film and scanner model used. The reported differences in the response of the EBT radiochro-
mic film are 6.2%(5) and 11.5% for the EBT2 film model(3) relative to the portrait orientation. 
However, the reported differences for the EBT3 film model was less than 4.5% with reference 
films scanned in portrait mode.(1) Another report compares portrait and landscape film scans 
with an Epson Expression 1680 Pro. This work concluded that, due to  the influence of rotation 
on optical densities, the results showed a minimum reduction in OD of 3.9% for EBT2 and 
EBT3. Also, the study shows a lower dose intensified this effect with a peak relative difference 
of 7.1% for the 50c Gy dose level.(44)

Figure 9 shows the uncertainty analyses for the relative orientation of the film during scanning. 
This analysis was performed for the radiochromic EBT3 films by scanning them in portrait and 
landscape mode using the three color channels for dose intervals that maximized the sensitivity 
of the response. Overall, the results show that the uncertainty in determining the dose is less 
when the films are scanned in portrait mode than when they are scanned in landscape mode. 
This difference was observed for all three color channels. The average uncertainty in dose for 
the red channel was 3%, whereas that for the green and blue channels was 4.4%. Moreover, 

Fig. 7.  Standard deviation of the film response (net optical density) for the three color channels and the dose ranges 
determined in this work.
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the average uncertainty values for films scanned in portrait mode were 2.6%, 4.3%, and 4.1% 
for the red, green, and blue channels, respectively. 

F. 	 Reproducibility of the response of the scanner 
The reproducibility of the Epson Perfection V750 flatbed scanner was studied for time intervals 
of 30 min, 18 hrs, and 25 days between scans. For all color channels and times, the uncertainty 
in the dose was less than 0.3%, indicating that the reproducibility of the scanner readings was 
good. An uncertainty of less than 1% was reported EBT films irradiated at 2 Gy.(5) 
 
G. 	 Uniformity of the response of scanner
EBT3 radiochromic films were digitized at 20 different positions on the bed of a scanner, as 
shown in Fig. 10. The results of our uncertainty analysis show that the uncertainty obtained 
in determining the dose is higher when placing the film at a position other than the center of 
the scanner bed than when placing the film at the center. This difference was observed for all 

Fig. 8.  Dose response curves of EBT3 radiochromic film for the three color channels scanned in portrait and landscape mode.

Fig. 9.  Dose uncertainty analysis for the three color channels scanned in portrait and landscape mode.
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tested doses. The differences in the response of the films placed farthest from the center of the 
scanner bed (positions 1, 4, 17, and 20) were 5% for the red channel, 7% for the green channel, 
and 10% for the blue channel with respect to the center position. Conversely, the differences in 
the response of the films placed near the center of the scanner (positions 6, 7, 10, 11, 14, and 
15) were 2%, 3%, and 4.5% for the red, green, and blue channels, respectively. As shown in the 
figure, the increase in the uncertainties of the central position of the scanner bed with respect to 
any other position is small. For the Epson Expression 1680 Pro flatbed scanner evaluated with 
radiochromic EBT film, the difference in the response was 8% using the red channel. However, 
for the Epson Perfection V700 flatbed scanner and radiochromic EBT2 film, the contribution of 
the poor positioning of the film on the scanner bed to the total uncertainty was found to be 1.6%.

 
IV.	 DISCUSSION

This study examined several intrinsic characteristics of the dosimetry system consisting of 
radiochromic EBT3 film and the Epson Perfection V750 flatbed scanner that contribute to the 
overall uncertainty in dose determination. Furthermore, the uncertainty analysis was performed 
to quantify this contribution. To this end, we investigated the behavior of the radiochromic 
film (net optical density) as a function of the delivered dose, as well as the standard deviation 
associated with the response. The response of the radiochromic EBT3 film (net optical density) 
corroborated the results reported by Devic et al.(10) for radiochromic EBT film and doses rang-
ing from 0 to 100 Gy. In addition, the behavior for doses ranging from 0 to 40 Gy corroborated 
the results reported by Casanova-Borca et al.(1) for EBT3 film.

It is important to remember that the uncertainty in determining the dose depends not only 
on our dosimetry system but also on the measurement protocol used. In our case, the behavior 
of the radiochromic film (net optical density) as a function of the delivered dose as well as the 
standard deviation associated with the response. Under these conditions, the dynamic ranges for 
the red, green, and blue channels are 0–6 Gy, 6–35 Gy, and 35–120 Gy, respectively. Moreover, 
Casanova-Borca found that the red channel exhibits a greater response for doses up to 10 Gy 
and the green channel exceeds the response of the red channel for doses above 10 Gy. Therefore, 
the green channel should be used for doses up to 40 Gy. These results were obtained with an 
Epson Expression 10000XL flatbed scanner using a third-degree polynomial fit. Furthermore, 
at study by Devic and coworkers of a dosimetry system consisting of radiochromic EBT film 
and an Epson Expression 1680 flatbed scanner at doses ranging from 0 to 100 Gy yielded 
optimized ranges of 0–4 Gy for the red channel, 4–50 Gy for the green channel, and above 
50 Gy for the blue channel.

Fig. 10.  EBT3 radiochromic film positions on the film scanner bed.
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It is noteworthy that an important parameter in uncertainty analysis is the flatbed scanner 
temperature. The analysis within this study does not try to evaluate uncertainty due to the flatbed 
scanner temperature, but is necessary an estimation of this source of uncertainty. The flatbed 
temperature can become an important variable when making many successive scans. Buchauer 
et al.(45) shows the readout difference in film is strongly dependent on readout light spectral 
characteristic, irradiation dose, and temperature. In addition, that the characteristic temperature 
behavior patterns are present for each color channel of a flat bed scanner.

Table 1 summarizes the characteristics of the dosimetry system, radiochromic EBT3 film, 
and flatbed scanner analyzed in this paper. In addition, shows the contribution of each of these 
features to the total uncertainty. These uncertainties were calculated for each color channel: red, 
green, and blue. In general, the values of the uncertainties were lower for the red channel than 
for the green and blue channels. However, for all three color channels, the largest contribution 
to the total uncertainty was due to the fitting procedure, the dose resolution of the system, the 
relative orientation of the film, and the homogeneity on the bed of the scanner. Therefore, when 
the radiochromic film is scanned, care should be taken to place it at the center of the scanner 
bed because the light from the lamp is not emitted evenly,(31) and this orientation with respect 
to the scanner should be noted. Moreover, if we rotated the recommended film 90° to the scan 
direction (portrait), the uncertainty of the dose significantly increased because the polymer 
chains are producing a network effect to interfere with the electromagnetic radiation from of 
the light source of the scanner.(46) One of the characteristics that make radiochromic films ideal 
candidates for the dosimetry of unconventional fields is their high spatial resolution (> 1200 
lines/mm).(47) However, the resolution in the dose is limited by the optical reading system, in 
this case, the spatial resolution of the flatbed scanner. As the results show, the resolution of the 
dosimetry system significantly contributes to the overall uncertainty in dose. Conversely, the 
uniformity and reproducibility of the radiochromic film and reproducibility of the response of 
the scanner contribute less than 1% to the overall uncertainty in dose. Nevertheless, a strict 
protocol for the handling and use of radiochromic films must be followed to minimize this 
uncertainty. From Fig. 6, if it is considered the allowed total uncertainty in delivered dose for 
radiation therapy of 5%,(48) the minimum dose that can be measured with an overall uncertainty 
less than 5% is 0.4 Gy. On the other hand, if it is considered that suggested total uncertainty in 
the delivered dose for radiosurgery of 2%,(30) the minimum dose that can be measured with an 
overall uncertainty less than 5% is 0.8 Gy.

Table 1 shows the total uncertainty in the measured dose based on the intrinsic characteris-
tics evaluated in this work without considering the relative orientation of the film and scanner 
homogeneity because international recommendations suggest a rigorous control when the films 
are scanned as to the orientation and position in the scanner. Specifically, the uncertainty for 
the red channel was 3.2%. Accordingly, our results are consistent with those reported in the 
literature. However, the overall uncertainties in the dose for the green and blue channels were 
4.9% and 5.2%. 

 

Table 1.  Summary of dose uncertainties in percentage (%).

	 Characteristic	 Red Channel	 Green Channel	 Blue Channel

	 Response curves and fitting procedure	 2.6	 4.3	 4.1
	 Dose resolution of the system	 1.8	 2.3	 3.1
	 Film reproducibility	 0.2	 0.3	 0.3
	 Film uniformity	 0.2	 0.3	 0.3
	 Relative orientation of the film	 6.2	 2.7	 3.3
	Reproducibility of the response of the scanner	 0.3	 0.3	 0.3
	 Homogeneity on the bed of scanner	 2.0	 3.0	 4.5

	 Total Uncertaintya	 3.2	 4.9	 5.2

a	 Without considering relative orientation of the film and homogeneity on the bed of the scanner.
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IV.	 CONCLUSIONS

In this study, the dosimetry system consisting of EBT3 radiochromic film and an Epson 
Perfection V750 scanner for doses ranging from 0 to 120 Gy using three color channels was 
evaluated and analyzed, and an uncertainty analysis of the dose was performed to study cer-
tain intrinsic characteristics of film dosimetry. According with our uncertainty analysis, it is 
notable that the higher uncertainties found were: 1) the relative orientation of the film, 2) the 
uniformity of response of the scanner, and 3) the fitting procedure in decreasing importance. 
However, when taking into account international recommendations on handling of the films 
when they are analyzed in a scanner, which state that one must have strict control of the posi-
tion and orientation of the film, the total uncertainties decrease considerably. Therefore, the 
radiochromic films can be used in a wide branch of applications in a 0–120 Gy useful range 
considering their associated uncertainties as a function of dose.
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