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Leptin promoter methylation in female 
patients with painful multisomatoform disorder 
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Abstract 

Background:  Different functional somatic syndromes (FSS), fibromyalgia (FMS) and other unexplained painful 
conditions share many common clinical traits and are characterized by troubling and functionally disabling somatic 
symptoms. Chronic pain is most frequently reported and at the center of patients’ level of disease burden. The con-
struct of multisomatoform disorder (MSD) allows to subsume severely impaired patients suffering from FSS, FMS and 
other unexplained painful conditions to be examined for common underlying processes. Altered leptin levels and 
a pathological response of the HPA-axis as a result of chronic stress and childhood trauma have been suggested as 
one of the driving factors of disease development and severity. Previous studies have demonstrated that methylation 
of the leptin promoter can play a regulatory role in addiction. In this study, we hypothesized that methylation of the 
leptin promoter is influenced by the degree of childhood traumatization and differs between patients with MSD and 
controls. A cohort of 151 patients with MSD and 149 matched healthy volunteers were evaluated using clinical and 
psychometric assessment while methylation level analysis of the leptin promoter was performed using DNA isolated 
from whole blood.

Results:  In female controls, we found CpG C-167 to be negatively correlated with leptin levels, whereas in female 
patients CpG C-289, C-255, C-193, C-167 and methylation cluster (C-291 to C-167) at putative bindings sites for tran-
scription factors Sp1 and c/EBPalpha were negatively correlated with leptin levels. Methylation levels were signifi-
cantly lower in female patients CpG C-289 compared with controls. When looking at female patients with chronic 
widespread pain methylation levels were significantly lower at CpG C-289, C-255 and methylation cluster (C-291 to 
C-167).

Conclusion:  Our findings support the hypothesis that epigenetic regulation of leptin plays a role in the regulation of 
leptin levels in patients with MSD. This effect is more pronounced in patients with chronic widespread pain.
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Background
In patients presenting with painful symptoms often a 
sufficient underlying explanation in terms of a somatic 
diagnosis cannot be found. In these cases, the chronic 

pain can be characterized as the leading symptom of a 
functional somatic syndrome (FSS) such as fibromyalgia 
(FMS) or somatoform pain disorder. In such syndromes, 
functionally disabling and bothersome physical symp-
toms are also frequently present. This constellation of 
symptoms is also present in multisomatoform disorder 
(MSD) [1, 2] which is a diagnostic construct to better 
characterize these patients across different somatic and 
psychological specialties [1, 3]. A diagnosis of MSD can 
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be made in the presence of more than three currently dis-
tressing physical symptoms in addition to a long (greater 
than 2 years) history of somatization. The prevalence of 
MSD is 8% and thus posts a relevant disease burden [3] 
The pathophysiology of functional somatic syndromes, 
fibromyalgia, and MSD is incompletely understood but a 
complex interplay of biographic, environmental, genetic, 
and epigenetic factors influencing allostasis seems likely 
[4, 5], especially as the similarity in symptoms and 
patients suggest common mechanisms which lends valid-
ity to the construct of MSD. In a population-based twin 
study, genetic influences have been shown to play a role 
especially in painful FSS, whereas inconsistent results 
suggest a role of single nucleotide polymorphisms (SNPs) 
of serotonergic and dopaminergic genes [6–8]. Our 
group recently demonstrated common sensory altera-
tions through quantitative sensory testing in patients 
with MSD [9] similar to those found in patients with 
fibromyalgia (FMS) [10, 11]. In this context, the construct 
of chronic widespread pain is of particular interest. Since 
its systematic introduction as part of the diagnostic crite-
ria for FMS in 1990 [12] numerous studies have included 
patients with CWP not fulfilling criteria for FMS. How-
ever, different interpretations of the criteria as well as 
adaptations over time [13, 14] have made comparisons 
not straightforward [15]. DNA methylation describes a 
modification through covalent binding of a methyl group 
to cytosine residues that are followed by guanine nucle-
otide in the DNA strand (CpG Island). This has among 
others been shown to be influenced in a model of early 
stress through reduced neonatal maternal care in rodent 
models [16–18] as well as in chronic pain states [19, 20]. 
We could also demonstrate the influence of transient 
receptor potential ankyrin 1 (TRPA1) receptor promoter 
methylation on heat and pressure pain thresholds which 
was significantly influenced by the level of childhood 
traumatization [21].

Lastly, the complex interplay between obesity in 
chronic pain states as well as FMS, leptin and the HPA-
axis has been investigated with growing interest by the 
scientific community [22], whereas obesity is a common 
comorbidity in FMS and has also been shown to increase 
symptom severity [23–26], Leptin levels in relation to 
painful conditions have been found to be either unal-
tered [27], elevated [28–31] or reduced [32] compared 
with controls. Leptin is a 16 kDa protein predominantly 
secreted by adipose tissue or in the brain [33, 34]. Its 
main function lies in the regulation of energy homeo-
stasis and conveying a feeling of satiety [35–37]. It has 
also been shown to have an inhibitory function on the 
HPA-axis [38]. In a reverse manner, however, its synthe-
sis is stimulated by cortisol in adipose tissue [39]. Addi-
tionally, leptin has been demonstrated to play a role in 

the pathophysiology of neuropathic pain [40–42] . The 
expression of leptin has been previously shown to be 
influenced by epigenetic mechanisms, namely hypometh-
ylation in the promoter region at binding sites for Sp1 
and C/EBPalpha [43–46] which typically act as activators 
of gene expression.

Our group recently demonstrated in the current patient 
collective a distinct alteration of the neuroendocrine pro-
file of patients with MSD (publication under review) with 
a significantly higher level of leptin and lower levels of 
cortisol in female patients compared with controls. We, 
therefore, hypothesized that in patients with MSD the 
difference in measured leptin levels is influenced by alter-
ations in leptin promoter methylation due to the influ-
ence of childhood trauma.

Materials and methods
Subjects
Participants in this study have been previously evaluated 
with regards to the presence of SNPs of different genes 
[6–8], the presence of sensory alterations using standard-
ized quantitative sensory testing as well as methylation 
status of the TRPA1 promoter [9, 21]. Altogether, 151 
MSD patients and 149 healthy controls were included in 
the study. Patients were recruited through the outpatient 
pain clinic of the Hannover Medical School, Hannover, 
Germany, and the Clinic for Psychosomatic Medicine 
and Psychotherapy of the Hannover Medical School over 
a period of 12  months. Additional patients were con-
tacted through local fibromyalgia support groups while 
healthy age- and gender-matched participants without 
physical pain were included in the control group. Exact 
records of the place of recruitment were not kept; most 
patients however were partaking in regular treatments 
at Hannover Medical School. Severe somatic or psychi-
atric conditions were excluded through expert clinician 
assessment while psychometric evaluations through 
questionnaires were also performed. All patients’ chief 
complaint was chronic widespread pain. Diagnosis of 
MSD was supported by means of a modified interview of 
the somatoform disorders section of the Structured Clin-
ical Interview for the Diagnostic and Statistical Manual of 
Mental Disorder IV (DSM-IV) (SCID) as well as the Ger-
man version of the 36-item Short Form 36 (SF-36) ques-
tionnaire, i.e., the Physical Component Summary score 
needed to be ≤ 40 as sign of strong psychophysiological 
strain [1, 2, 6–8, 47]. The presence of chronic widespread 
pain fulfilling the strict criteria of pain present in three 
out of four body quadrants in addition to axial pain [15] 
was systematically assessed by a 34-item pain localization 
questionnaire.

Exclusion criteria were defined as age < 18 years, insuf-
ficient German language ability, insufficient cognitive 
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abilities, severe and chronic somatic diseases (e.g., 
severe heart failure, encephalitis disseminata, demen-
tia), and severe comorbid mental disorders which cause 
major impairment of social functioning (e.g., schizo-
phrenia, severe mood disorders, personality disorders, 
substance abuse) as previously described [6–8]. Psycho-
metric questionnaires are beyond the scope of the cur-
rent manuscript.

Blood samples were collected and used for DNA 
extraction, laboratory, and epigenetic analysis [48, 49]. 
In all investigations, the revised Declaration of Helsinki 
in 2000 (Edinburgh, 52. general meeting) was adhered to 
and there was approval by the Ethical Committee of Han-
nover Medical School (study protocol number 4757). All 
subjects gave informed consent for blood sampling, gen-
otyping, and clinical measurements [6–8].

Determination of Leptin levels
A radioimmunoassay was performed using the human 
leptin RIA kit (LINCO Research, St. Charles, Missouri, 
USA). Blood was collected between 8.00 and 9.00 am 
for each participant to be in keeping with the circadian 
rhythm of hormone release of the HPA-axis. EDTA vials 
(4  ml) and Serum vials (5  ml) were used (S-Monovette, 
Sarstedt). Measurements were performed through the 
Department of Endocrinology of the Hannover Medical 
School (MHH).

DNA Isolation
Blood was collected from each subject using two 4-mL 
EDTA tubes that were then stored at − 80° until extrac-
tion. Genomic DNA from patients and controls was 
extracted using a standard high-salt extraction method. 
A small subset of DNA samples was isolated by using a 
commercially available DNA isolation kit (QiAamp® 
blood kit, Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions.

Determination of methylation rates
DNA was bisulfite-converted using the Epitect conver-
sion kit (Qiagen, Hilden, Germany) according to manu-
facturer recommendations.

Bisulfite-converted DNA was used for PCR amplifi-
cation using specific primer sets (see Additional file  1: 
Table  S1) in a Touchdown PCR approach [50]. Result-
ing amplicons were subjected to linear sequencing PCR 
using BigDye Terminator according to manufacturer 
instructions (ABI Life Technologies, Grand Island, USA). 
For Sequence cleanup prior to sequencing we used 
AMPure beads on a Biomek NxP liquid handling plat-
form (Beckman Coulter, Brea, USA). Purified reactions 
were sequenced using a 3500xl 24 capillary Sequencer 
(ABI Life Technologies, Grand Island, USA).

CpG position is provided in relation to the transcrip-
tional start site located at GRCh38:7:128241278 accord-
ing to ENSEMBL gene accession # ENSG00000174697. 
All reported locations are in the proximal promoter 
upstream of the gene locus. Sequence analysis and deter-
mination of methylation rates for each CpG site were 
conducted using the Epigenetic Sequencing Methyla-
tion analysis software [51]. The methylation rate of each 
CpG site per subject was estimated by determining the 
ratio between normalized peak values of cytosine and 
thymine.

Quality control
Raw sequences were checked for quality and integrity by 
using the Sequence Scanner 2 Software (ABI Life Tech-
nologies, Grand Island, USA) and alignment in Geneious 
11 (Biomatters, Auckland, New Zealand).

The resulting values were processed further if 95% of 
the CpGs of each specimen and 95% of the respective 
CpG position were available.

We successfully measured other genes in this collec-
tive (TRPA1) [21] as well as unpublished data. The overall 
variance of measured results for TRPA1 and other genes 
was very low indicating a high level of precision of the 
collected data.

Prediction of transcription factor binding sites
Potential binding sites for transcription factors (TFs) 
were predicted using Geneious 11 (Biomatters, Auckland, 
New Zealand) allowing for 1 mismatch base. The find-
ings were confirmed using the Alggen Promo tool (http://​
alggen.​lsi.​upc.​es/​cgi-​bin/​promo_​v3/​promo/​promo​init.​
cgi?​dirDB=​TF_8.3) on the same sequence. Both tools 
access the freely available resources at the Transfac pub-
lic database: (http://​gene-​regul​ation.​com/​cgi-​bin/​pub/​
datab​ases/​trans​fac/​search.​cgi) [52].

Statistical analysis
All statistical calculations were performed using the Sta-
tistical Package for the Social Sciences Version 26 (SPSS, 
IBM, Armonk, NY). We used GraphPad Prism for Mac 
Version 9 for data illustration (Graphpad Software Inc, 
La Jolla, CA). Sequence Scanner v1.0 software (ABI Life 
Technologies) was used to assess sequence quality. After 
sample quality estimation 151 Patients and 149 controls 
were used for data analysis. CpG sites were measured 
successfully without need for exclusion from analysis. 
Distribution of data was checked according to Shap-
iro–Wilk. For normally distributed data parametric tests 
were chosen, in all other instances nonparametric tests 
were used. Pearson correlations were used to character-
ize association of methylation with serum leptin levels. 
Differences between patients and controls were assessed 

http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3
http://gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi
http://gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi
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using a two-sided t test for independent samples. Adjust-
ment for multiple comparisons was not made as compar-
isons were preplanned before the study was commenced. 
Equality of variance was determined automatically using 
the Levene test. Interpretation of the results was con-
ducted accordingly. Results are given as mean and stand-
ard deviation.

Results
Diagnostic criteria for MSD according to the Diagnostic 
and Statistical Manual of Mental Disorder-IV (DSM-IV) 
were fulfilled by all patients. As previously reported, there 
were no differences between gender and age (p > 0.05) 
(control group: mean age, 52.1 ± 9.9  years; 73% women 
and 27% men; MSD group: mean age, 54.4 ± 10.1  years; 
82% women and 18% men) [6–9, 21]. As expected the 
physical component summary score of the SF-36 dem-
onstrated a significant difference between patients and 
controls (28.75 ± 7.81 vs 54.0 ± 5.74) (p < 0.0001). The 
sample size of male participants proved too small to pro-
vide satisfactory explanatory power. At the same time, 
no significant findings could be demonstrated so that 
further investigation focused mainly on female study 
participants. Leptin measurements were obtained in 244 
participants (129 female controls, 91 female patients as 
well as 12 male patients and controls each (data submit-
ted for publication).

Methylation
Leptin levels and methylation status at the following 
CpGs were negatively correlated: in female controls at 
C-167 (rp = − 0.205, p = 0.046) and in female patients 
at C-289 (rp = − 0.232, p = 0.047), C-255 (rp = − 0.242, 
p = 0.038), C-193 (rp = − 0.294, p = 0.022), C-167 
(rp = − 0.242, p = 0.043) and the mean methylation at 
the cluster with binding sites for Sp1, c/EBPalpha and 
CREB (C-291 til C-167) (rp = − 0.239, p = 0.039). The 
observed correlations affected CpGs that were in close 
proximity to one another and have been previously 
shown to have particular relevance as binding motifs 
for Sp1, c/EBPalpha and CREB which are well known to 
be involved in the regulation of leptin expression. We, 
therefore, decided to further characterize only these 
highly thematic CpGs. There was a significant difference 
in the methylation levels of CpG C-289 between female 
patients (0.1449 ± 0.9554) and controls (0.1766 ± 0.1000), 
t(211) = 2.366, p = 0.019 (see Fig.  1 for most relevant 
CpGs). For a graphical representation of the methylation 
level at each individual CpG see Additional file 2: Fig. S1.

Significant differences between female patients and 
controls despite significant correlation with leptin levels 
could surprisingly only be found at CpG C-289. To focus 
on patients with the highest pain burden, we re-examined 

a subset of female patients (120/138) fulfilling the strict 
criteria for chronic widespread pain (pain in three out 
of four quadrants as well as axial pain). Incomplete data 
to determine pain distribution were present in 5 female 
controls and 10 female patients. Significant differences 
were observed at CpG C-289 (t(182) = 2.990, p = 0.003), 
C-255 (t(182) = 2.202, p = 0.029) and methylation cluster 
(t(183) = 2.228, p = 0.024). A graphical representation is 
given in Fig. 2, whereas exact methylation levels are given 
in Table 1.

Discussion
Hormones regulating dysfunctional responses of the 
HPA-axis to chronic stress have been implied in the eti-
ology of most disorders that can be subsumed under the 
construct of MSD [53–56]. In addition, the role of leptin 
and its influence on the HPA-axis and its role with pain-
ful disorders have been investigated. In our study, we 
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Fig. 1  Methylation levels of most relevant CpGs comparing female 
patients and female controls. Data represented as mean + 95% CI. 
There was a significant difference observed only at CpG C-289
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characterized female patients with MSD in comparison 
with healthy controls with regards to the methylation sta-
tus of the leptin promoter region. We focused on female 
subjects as women are known to have a higher preva-
lence of MSD [57, 58] because methylation patterns were 
found to be gender-dependent in genome-wide associa-
tion studies [59]. We performed a methylation analysis of 
the leptin promoter region that revealed significant nega-
tive correlations between methylation at C-289, C-255, 
C-193, C-167 and leptin levels in female patients, i.e., less 
methylation is correlated with higher leptin levels. This 
is plausible as these CpGs are located at binding sites 
for transcription factors and higher methylation is often 
associated with repressive effects on gene expression 
[60]. Transcription factors Sp1 and c/EBPalpha whose 
binding is favored in states of reduced methylation and 
increases transcription of the gene upon binding to DNA 
[61–64].

After only observing significantly lower methylation 
in CpG-289 in female patients further analysis revealed 
that in patients fulfilling strict criteria for CWP had sig-
nificantly lower methylation levels at CpGs -289, -255 
and methylation cluster while -167 trended toward sig-
nificance (p = 0.09) It also serves as further support of 
our interpretation that lower methylation levels facili-
tate binding of activating transcription factors Sp1 and 
c/EBPalpha resulting in higher leptin levels. Previous 
studies have demonstrated similar findings in psychiatric 
patients suffering from addiction [43]. Thus, in patients 
with MSD methylation at C-289 being significantly lower 
can be contributing to observed elevated leptin levels 
as this is a known binding site for c/EBPalpha. The lack 
of significant differences in CpG -255 and the methyla-
tion cluster could be attributed to lower pain burden in 
these patients compared with MSD patients suffering dis-
tinctly from CWP. This is plausible as self-reported pain 
has been shown to be associated with leptin levels [31]. 

Further significant hypomethylation in CpG -255 and 
methylation cluster could be a likely corollary, especially 
as this is a known binding site of Sp1.

Higher leptin levels in patients with painful condi-
tions are biologically plausible as previous study demon-
strated increased leptin levels in patients with FMS [28, 
65] despite other studies showing an opposite effect [32, 
66]. Leptin also plays a crucial role in the development 
of neuropathic pain in animal models of nerve injury [40, 
67] and has been demonstrated to cause allodynia and 
hyperalgesia [42] (which are hallmarks of neuropathic 
pain conditions but also of central sensitization and noci-
plastic pain). The observation is congruent with the fact 
that a subset of patients with FMS shows signs of small 
fiber neuropathy [10, 11]. Similar findings have been 
previously shown in patients with FMS where BMI and 
elevated leptin levels are independently associated with 
self-reported pain [31]. Chronic stress is known to cause 
a dysregulation of the stress response as mediated by the 
HPA-axis [68]; here leptin has been found to play a sig-
nificant role as well [69–73] . Taken together our current 
findings and the fact that leptin levels are significantly 
higher in these female patients with MSD (publication 
under review) confer a plausible interrelational connec-
tion with leptin regulation in patients with MSD, espe-
cially with CWP.

One of the limitations of our and other epigenetic stud-
ies is the utilization of DNA from whole blood cells for 
analysis. It has been shown that different tissues demon-
strate similar methylation levels [74], other cases have 
reported tissue-specific levels [75], whereas neuronal 
tissue is preferable, most study designs don’t allow for it 
being readily available. A further limitation is the lack of 
data on how many possible participants declined to take 
part in the study after positive eligibility screening as well 
as on location of recruitment (support group, Pain Clinic, 
Department of Psychosomatics and Psychotherapy). A 
potential for a degree of self-selection bias is however 
mitigated by stringent selection criteria that led to a 
study population with a high disease burden.

In conclusion, to our knowledge, this is the first study 
to thoroughly investigate a large collective of patients 
with MSD and pain as the leading symptom with regards 
to the epigenetic regulation of leptin expression. Our 
study demonstrated that transcriptional regulation is 
in part regulated through methylation on an epigenetic 
level. Future studies should further validate our results of 
site-specific promoter methylation of patients compared 
to controls and increased methylation stratified by degree 
of widespread pain and stress levels.

Table 1  Mean methylation levels of female patients with 
chronic widespread pain (CWP) and female controls without 
CWP; SD: standard deviation

CWP negative CWP positive

Mean SD ±  Mean SD ± 

Mean methylation .2911 .0723 .2800 .0828

Methylation cluster .3270 .0898 .2935 .1106

C-289 .1835 .0987 .1414 .0920

C-255 .3743 .1607 .3205 .1685

C-193 .2522 .1129 .2177 .1481

C-167 .4323 .1849 .3835 .1956
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