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ABSTRACT

Compared to tropical corals, much less is known about deep-sea coral biology and
ecology. Although the microbial communities of some deep-sea corals have been
described, this is the first study to characterize the bacterial community associated
with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of
P. placomus were collected from Baltimore Canyon (379—382 m depth) in the Atlantic
Ocean off the east coast of the United States of America. DNA was extracted from
the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5
primers. Three samples sequenced deeply (>4,000 sequences each) and were further
analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla
included Firmicutes and Planctomycetes. A conserved community of bacterial taxa
held in common across the three P. placomus colonies was identified, comprising 68—
90% of the total bacterial community depending on the coral individual. The bacterial
community of P. placomus does not appear to include the genus Endozoicomonas, which
has been found previously to be the dominant bacterial associate in several temperate
and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen
cycling by the core bacterial community.

Subjects Biodiversity, Ecology, Marine Biology, Microbiology
Keywords Cold-water coral, Bacteria, Gorgonian, Submarine canyon, Microbiome

INTRODUCTION

Cold-water corals provide critical three-dimensional habitat, creating biodiversity hot
spots in the deep ocean (Buhl-Mortensen ¢ Mortensen, 2005; Miller et al., 2012; Roberts
et al., 2009). In addition to creating habitat for fishes and invertebrates, these corals

are themselves landscapes for microbial associates (Penn et al., 2006; Yakimov et al., 2006).
Studies on human gut microbes are revealing connections between internal microbiota and
host-organism health and immunity (Turnbaugh et al., 2007); likewise, coral-associated
microbiota are connected to the health and resilience of their hosts (Pantos et al., 2003;
Ritchie, 2006). Bacterial pathogens or dysbiosis (microbial imbalance) have been linked to
coral disease outbreaks on tropical reefs (e.g., Bythell, Pantos ¢» Richardson, 2004; Mouchka,
Hewson ¢ Harvell, 2010) and mass die-offs of temperate corals (mainly gorgonians)
(Bally & Garrabou, 2007; Hall-Spencer, Pike ¢ Munn, 2007; Vezzulli et al., 2010). These
studies have resulted in considerable attention and research into coral-associated microbes,
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particularly since the application of molecular tools and DNA sequencing in 2001
(Rohwer et al., 2001).

While much of the focus has remained on reef-building stony corals, increasing attention
is being paid to gorgonians which also host diverse bacterial communities. Regardless of
tropical, temperate, or deep-sea, most gorgonian bacterial microbiomes are dominated by
Proteobacteria (Bayer et al., 2013; Briick et al., 2007; Correa et al., 2013; Duque-Alarcén,
Santiago-Vidzquez ¢ Kerr, 2012; La Riviére, Garrabou ¢ Bally, 2015; La Riviére et al.,

2013; Penn et al., 2006; Ransome et al., 2014; Robertson et al., 2016; Sunagawa, Woodley &
Medina, 2010; Vezzulli et al., 2013). However, Tenericutes (specifically Mycoplasmas) (Gray
et al., 2011; Holm ¢ Heidelberg, 2016) and recently Spirochaetes (Holm ¢ Heidelberg, 2016;
Lawler et al., 2016; Van de Water et al., 2016) have also been shown to be dominant or
co-dominant in a few species. In gammaproteobacterial-dominated gorgonians, often the
dominant genus was Endozoicomonas (Bayer et al., 2013; Correa et al., 2013; La Riviere et
al., 2013; Ransome et al., 2014; Robertson et al., 2016; Vezzulli et al., 2013), while a common
alphaproteobacterial genus was Stenotrophomonas (Bayer et al., 2013; Briick et al., 2007,
Correa et al., 2013; Robertson et al., 2016). Comparable research on deep-sea corals has
been slower, due to the high cost and difficulty of obtaining samples. Most of the focus
has been on the deep-sea stony coral, Lophelia pertusa (Galkiewicz et al., 2011; Hansson
et al., 2009; Kellogg, Lisle & Galkiewicz, 2009; Neulinger et al., 2008; Schottner et al., 2009;
Yakimov et al., 2006). However, microbial studies have been conducted on a few deep-sea
octocorals (Gray et al., 2011; Lawler et al., 2016; Penn et al., 2006).

Paramuricea placomus (Linnaeus, 1758) is a plexaurid gorgonian coral endemic to the
North Atlantic Ocean, occurring on both sides of the Atlantic basin (Buhl-Mortensen
& Buhl-Mortensen, 2014; Simpson, Eckelbarger ¢~ Watling, 2005). In the western Atlantic,
it has been documented on seamounts and deep reef areas along the east coast of the
United States and into the Gulf of Mexico (Lumsden et al., 2007). Although commonly
encountered as by-catch in fishing nets, little is known about P. placomus (Simpson,
Eckelbarger ¢~ Watling, 2005). A temperate congener (P. clavata) in the Mediterranean was
the focus of microbiological studies (La Riviére, Garrabou & Bally, 2010; La Riviere et al.,
2013; Vezzulli et al., 2013; Vezzulli et al., 2010).

During a 2012 research expedition in and near Baltimore Canyon off the mid-Atlantic
coast of the United States, we collected samples of P. placomus in order to describe
the bacterial associates of a deep-sea Paramuricea species. Based on reports that have
shown tropical (Littman et al., 2009; Rohwer et al., 2002), temperate (Van de Water et al.,
2016), and cold-water (Kellogg, Lisle & Galkiewicz, 2009; Lawler et al., 2016) corals to have
conserved bacterial communities associated with them, we hypothesized that P. placomus
would also have a specific bacterial community with an identifiable core component shared
by all individuals.

MATERIALS AND METHODS

Sample site and collections
Samples of P. placomus were collected from a single area in Baltimore Canyon (38°09.08'N,
73°50.26'W; white arrow, Fig. 1) on 12 September 2012, during a research cruise using
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Figure 1 Multibeam sonar map of Baltimore Canyon showing P. placomus sample collection location
(white arrow). Locations of all ROV dives made during the 2012 cruise are indicated by black lines. Depth
contours are in meters.

the NOAA ship Nancy Foster. In spite of a number of other dives in this canyon (Fig.
1), this coral species was only observed in this one relatively small area. Collections were
made using the remotely-operated vehicle (ROV) Kraken I (Univ. of Connecticut) during
dive number ROV-2012-NF-19 between 10:30—11:30 Eastern Daylight Time (14:30-15:30
Coordinated Universal Time (UTC)). The sample site was a flat plateau with a depth range
of 379-382 m, water temperature of 5.8-6.0 °C and salinity of 35.0. Samples NF12.19Q2,
NF12.19Q5, NF12.19Q6 and NF12.19Q7 were all within one meter of each other and were
collected without repositioning the ROV. This was done both to save time on a dive with
multiple other objectives (repositioning the ROV can be time consuming and stirs up the
substrate reducing visibility) and because the collections were being shared with a coral
genetics group that was interested in the relationships of the close colonies. The ROV was
moved a short distance away (2 to 3 m) to collect NF12.19Q1, at which point all the quivers
dedicated to microbiology samples were filled. All coral colonies had adult galatheid squat
lobster (Eumunida picta) associates, except NF12.19Q2, which hosted several galatheids
that were too small to identify. Specimen NF12.19Q1 was a larger colony, with a dark
purple stalk and mainly yellow polyps, in contrast to the other four specimens which had
much paler, lavender stalks, and more variegated yellow and lavender polyps (Figs. 2B and
20).
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Figure 2 Images of P. placomus. (A) In situ photo of NF12.19Q1 (white arrow) showing general site
rugosity and proximity (>1 m) of other P. placomus colonies (black arrows). For scale, red laser dots
(circled in white and surrounded by a white box for clarity) in the center of the image are 10 cm apart; (B)
Specimen photos of NF12.19Q5 and NF12.19Q1 showing differences in color pattern; (C) Close up image
of P. placomus showing color variation between the stalk and the polyps. Image credit for (A): Deepwater
Canyons 2012-Pathways to the Abyss, BOEM/NOAA-OER/USGS. Image credit for (B) and (C): Art
Howard, Deepwater Canyons 2012—Pathways to the Abyss, BOEM/NOAA-OER/USGS.
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Small pieces of each coral colony (ca. 5-15 cm) were removed using the ROV’s
manipulator arm and placed into individual polyvinyl chloride (PVC) quivers that had
been washed, ethanol sterilized, filled with freshwater, and sealed with a rubber stopper
while the ROV was on deck. The freshwater evacuated at depth when the quiver was
opened to receive the coral sample, so that only seawater local to the coral samples was
entrained during collection. Each coral sample was placed in a separate quiver and sealed
at depth to prevent microbial contamination from other corals or different water masses
during ascent. All collections occurred during 1 h. Upon recovery of the ROV (7 h after
collection), the samples were removed from the quivers using ethanol-sterilized forceps,
trimmed if necessary with ethanol-sterilized shears (to select a part of the coral sample that
was not in contact with the ROV collection claw), and placed into individual, sterile 50 mL
tubes. The tubes were filled with RNAlater solution (Life Technologies, Grand Island, NY,
USA) to preserve the samples, placed at 4 °C overnight to allow the fixative to infiltrate the
samples, and then transferred to —20 °C until ready for processing. If sufficient biomass
remained, specimen photos were taken of the samples (Fig. 2B) and tissue was shared with
a research group working on octocoral phylogenies.

Nucleic acid extraction

Microbial community DNA was extracted from P. placomus following the protocol
described in Sunagawa, Woodley & Medina (2010). Rather than grinding the sample,

the protocol was modified by clipping a small piece (one polyp and its attached piece of
central skeleton) from each octocoral sample using sterile forceps and shears and then
placing it into a bead tube supplied with the PowerPlant DNA extraction kit (MO BIO,
Carlsbad, CA, USA). Polyps were always collected from the part of the coral sample furthest
from the end grasped during collection to limit any contamination from the ROV claw. The
Sunagawa protocol was further modified by increasing the proteinase K (Ambion, Grand
Island, NY, USA) incubation to 90 min from the protocol’s stated 60 min. Extracted DNA
was quantified using the PicoGreen DNA quantification kit (Invitrogen, Grand Island,
NY, USA) and the presence of bacterial DNA was confirmed by PCR amplification of
16S rRNA genes, using primers Eco8F (Edwards et al., 1989) and 1492R (Stackebrandt &
Liesack, 1993), AmpliTaq Gold polymerase, and thermal cycled as follows: 1 cycle of 95 °C
for 15 min; 30 cycles of 95 °C for 1 min, 54 °C for 1 min, and 72 °C for 2 min; and a final
extension of 72 °C for 10 min.

16S rRNA gene pyrosequencing

The DNA extractions were sent to Selah Genomics (Greenville, SC) for sequencing. Each
of the five P. placomus samples was amplified using barcoded primers (Integrated DNA
Technologies, Inc., Coralville, IA, USA) targeting the V4-V5 hypervariable region of the
16S rRNA gene (563F/926R); V4-forward: 5'-AYTGGGYDTAAAGNG and V5-reverse:
5'-CCGTCAATTYYTTTRAGTTT (Claesson et al., 2010) Amplification was done using
Roche’s FSHF (High Fidelity) polymerase and the following cycling parameters: 1 cycle of
95 °C for 2 min; 35 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min; and a
final extension of 72 °C for 4 min. The amplicons then underwent 454 pyrosequencing
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Table 1 Summary statistics for 454 sequencing of 16S rRNA genes from P. placomus.

Sample Raw reads Filtered No. reads Observed Effective#of = Shannon Chaol ACE Simpson
reads subsampled OTUs species index richness richness evenness
NF12.19Q1 4,393 4,300 4,300 105 54 3.98 107.80 108.20 0.0574
NF12.19Q2 7,577 7,268 4,300 107 36 3.58 117.91 115.17 0.0468
NF12.19Q5 6,197 5,635 4,300 168 97 4.57 170.36 173.47 0.0305
NF12.19Q6 404 262 = = = = = = =
NF12.19Q7 428 389 = = = = = = =

using Titanium FLX chemistry. Sequence data from all five samples were deposited in the
NCBI Sequence Read Archive (SRA) under BioProject number PRJNA297333.

Bioinformatics

A fully commented workflow describing the analysis conducted, as well as all the resulting
output files, is available as a USGS data release at http://dx.doi.org/10.5066/F7HQ3WZZ
(Kellogg, 2015). The software QIIME 1.9 (Caporaso et al., 2010b) was used to process and
analyze the sequence data, and specific python scripts listed below were run within QIIME.
The libraries were split and then quality checked using the following parameters: length
between 200 and 700, quality score of 25 with a 50 bp running quality window, one primer
mismatch allowed, and a maximum homopolymer run of 6 (Kunin et al., 2010). The data
were denoised (Kunin et al., 2010; Quince et al., 2009) and then operational taxonomic
units (OTUs) were picked using the pick_open_reference_otus.py script (Rideout et al.,
2014) which combines a closed OTU picking against the reference database (Greengenes
release 13_8; DeSantis et al., 2006) with a de novo method so as not to lose novel OTUs.
We employed the usearch61 OTU-picking method (Edgar, 2010) in this script since it
incorporates chimera-checking. Alignment was performed with PyNAST (version 1.2.2)
(Caporaso et al., 2010a) and taxonomy was assigned with uclust (Edgar, 2010). Absolute
singletons (OTUs that occur only once in the dataset) were removed from the OTU
table as a default in this method. Any non-bacterial sequences (i.e., archaeal, eukaryotic,
chloroplast, or mitochondrial) were removed in a post-OTU picking step. Two of the
libraries sequenced poorly (Table 1), so the remaining three libraries were rarefied to
4,300 sequences and rarefaction curves were generated (Fig. 3). Diversity calculations were
accomplished using alpha_diversity.py and beta_diversity.py. Effective number of species
(the number of equally abundant species needed to obtain the same mean proportional
species abundance as that observed in the data) was calculated by taking the inverse of
the natural logarithm of the Shannon diversity value. Taxa relative abundance summaries
were generated using summarize_taxa_through_plots.py, with the resulting data passed
to Excel and then R-Studio (R Core Development Team, 2015) using the vegan (Oksanen et
al., 2016) and ggplot2 (Wickham, 2009) packages to produce taxa summary plots. The core
microbiome was analyzed with compute_core_microbiome.py with the minimum fraction
of samples set at 100%. Comparisons of bacterial community dissimilarity between coral
individuals were calculated using Similarity Percentages (SIMPER) from PRIMER (Clarke,
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Figure 3 Rarefaction curves for bacterial diversity in three individuals of P. placomus collected from
Baltimore Canyon. Although there were five samples collected, only three were successfully sequenced.
Operational taxonomic units (calculated using a 97% sequence similarity cutoff) identified by 454 pyrose-
quencing of 16S rRNA genes.

1993). SIMPER was run using abundance data with no transformation, using the sample
names (NF12.19Q1, NF12.19Q2, NF12.19Q5) as factors.

RESULTS AND DISCUSSION

During this cruise 18 ROV dives were conducted from the head to the mouth of
Baltimore Canyon, over sections of hardbottom (usually compacted mud) along both walls
(Fig. 1). A depth range of 234-1,001 m was covered, with the bulk of the dives at 300-600 m.
While other octocoral species, such as Paragorgia arborea and Primnoa resedaeformis were
encountered at multiple locations in this canyon, P. placomus was only found at one
location in Baltimore Canyon (Fig. 1). During a subsequent cruise in 2013, P. placomus
was also sighted at a single location in Norfolk Canyon (37 02.96 N, 74 37.03 W; 448 m);
unfortunately, the coral was identified from video review after the cruise, so no samples
could be collected for comparison. In both cases, the P. placomus habitat was a flat rocky
terrace on top of a steep wall. In Baltimore Canyon, the patch of P. placomus consisted of
similarly-sized colonies (<1 m tall), with each colony typically less than one meter from
another, possibly suggesting a single recruitment event (Fig. 2A). In Norfolk Canyon,
the larger colonies were of similar size to those in Baltimore Canyon, but other smaller
colonies were also observed. Like most corals, successful colonization of Paramuricea sp.
requires hard substrata (Doughty, Quattrini & Cordes, 2013). Most of the octocoral species
in these canyons were observed on underhangs or steep walls and boulders, presumably
where sediment deposition was minimized. Colonies of P. placomus, however, were only
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Figure 4 Relative abundance of common taxonomic groups in P. placomus samples. Families (or the
nearest identifiable phylogenetic level) that represent >1% of the total taxa are shown. All remaining taxa
are summarized as “Other” [A]. B = Tenericutes. Gammaproteobacterial groups are C-G, alphapro-
teobacterial groups are H-J, Planctomycetes are K-L, and Firmicutes are M—N. *See note in reference to
Francisellaceae in Table 2.

found on relatively flat terrace-type habitat that had a veneer of sediment. Many flat terrace
areas were observed in both canyons but distribution of this species was very limited,
suggesting that other factors influence successful recruitment and colonization. These may
include larval delivery (controlled by water currents), a lack of appropriate settlement cues,
and sub-optimal water conditions (e.g., particle load) (Doughty, Quattrini ¢~ Cordes, 2013;
Mienis et al., 2012). Also, sister species like P. clavata are surface brooders, which often
results in short dispersal distances and was suggested as a reason for clumped distributions
of the genus in the Gulf of Mexico (Doughty, Quattrini ¢ Cordes, 2013).

Bacterial diversity associated with P. placomus in Baltimore Canyon

All five of the Baltimore Canyon Paramuricea colonies share the same DNA sequence for
the mtMutS gene (SC France & RW Clostio, pers. comm., 2015), which is consistent with
their identification as P. placomus (Thoma, 2013). Because of the colonies close proximity
to each other (<1 meter in most cases), they may not be genetically distinct. Due to the small
number of successful sequence reads in two of the samples (NF12.19Q6 and NF12.19Q7),
only sequences from the other three samples were further analyzed (Table 1, Figs. 3 and 4).
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We chose to use an open OTU picking method so as to capture maximum diversity,
including novel environmental sequences that do not have close matches in reference
databases. The P. placomus Shannon index values (range = 3.58-4.57; Table 1) were
similar to those seen for tropical stony corals like Orbicella annularis (Barott et al., 2011),
but were higher than those seen for unimpacted P. clavata (range = 0.8—1.3) in the
Mediterranean (Vezzulli et al., 2013), suggesting higher bacterial species richness compared
to the temperate sister species (with the obvious caveat that the three studies did not use
identical methodologies). Converting the Shannon index values to effective number of
species (Hill, 1973), also known as true diversities (Table 1), allows a linear comparison
of the magnitude of true diversity differences between two communities. The diversity of
healthy P. clavata bacterial communities with Shannon index values of 0.8-1.3 (Vezzulli
etal., 2013) is equivalent to that of communities with 2—4 equally-common species,
compared to a range of 36-97 equally-common species (i.e., effective number of species)
in P. placomus (Table 1). Using this metric, P. placomus bacterial communities are roughly
9 to 50 times more diverse than those associated with P. clavata.

As seen in most octocorals (Briick et al., 2007; Duque-Alarcon, Santiago-Vizquez ¢» Kerr,
2012; Gray et al., 2011; Sunagawa, Woodley ¢ Medina, 2010; Webster ¢ Bourne, 2007),
the bacterial community was dominated by proteobacterial sequences (>50% relative
abundance). Other major phyla included the Firmicutes (10%) and Planctomycetes
(10%). Tenericutes were 20% of sample NF12.19Q1, and less than 1% in the other two
samples. Present at or below 1% relative abundance were Acidobacteria, Actinobacteria,
Bacteroidetes, Chlamydiae, Chloroflexi, Cyanobacteria, Fusobacteria, Gemmatimonadetes,
Lentisphaerae, and Verrucomicrobia.

At the microbial family level, pronounced differences occurred between sample
NF12.19Q1 and samples NF12.19Q2 and NF12.19Q5; most notably, reductions in
unclassified Legionellales and alphaproteobacterial groups, and increases in Vibrionaceae,
and Mycoplasmataceae (Fig. 4). Similarity percentages (SIMPER) analysis (Clarke, 1993)
showed the average dissimilarity between NF12.19Q1 and NF12.19Q2 or NF12.19Q5
was 50.63—51.03, and the groups responsible for more than 5% of that dissimilarity were
Legionellales (11.9%), Vibrionaceae (7.1-9.4%), and Mycoplasmataceae (7.7-9.0%). The
average dissimilarity between samples NF12.19Q2 and NF12.19Q5 was 44.04 and was
driven by Xanthomonadaceae (7.5%) and Bacillaceae (6.8%).

Mycoplasma sp. sequences were previously found associated with other deep-sea
corals, including the scleractinian L. pertusa (Kellogg, Lisle & Galkiewicz, 2009; Neulinger
et al., 2009; Neulinger et al., 2008), and octocorals including a bamboo coral (Penn et al.,
2006), Cryogorgia koolsae (Gray et al., 2011) and Plumarella superba (Gray et al., 2011). A
phylogenetic comparison revealed two ‘coral’ Mycoplasma clades: the deep-sea octocoral
clones clustered together with sequences from the tropical coral Muricea elongata, and the
sequences from L. pertusa formed a separate cluster (Gray et al., 2011). We aligned the 329
bp Mycoplasma 16S rRNA sequence found in P. placomus against V4-V5 regions derived
from nearly full-length 16S rRNA sequences available from L. pertusa (GenBank Accession
number AM911412.1), bamboo coral (DQ395563.1), and M. elongata (DQ917875.1,
DQ917898.1), to determine if it clustered in either of the two deep-sea coral clades. Note
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that we were unable to include other octocoral sequences because the clones were too short
and did not include enough of the V4-V5 variable region for alignment. The Mycoplasma
from P. placomus did not cluster with any of the other coral mycoplasmal sequences.

All three P. placomus samples showed higher relative abundance of gammaproteobacte-
rial families (Fig. 4, letters C-G) compared to alphaproteobacterial families (Fig. 4, letters
H-J). The bacterial community of temperate sister-species P. clavata, is heavily dominated
by Gammaproteobacteria (>90%), whereas other corals from the family Plexauridae
(Cryogorgia koolsae (Gray et al., 2011). Eunicea fusca (Duque-Alarcon, Santiago-Vizquez &
Kerr, 2012) Muricea elongata (Ranzer, Restrepo ¢ Kerr, 2006), and Swiftia exertia (Briick et
al., 2007)) tend to have a roughly equal distribution of Alpha- and Gammaproteobacteria,
but at much lower relative abundances (ca. 15-37% each).

The dominance of Gammaproteobacteria in P. clavata was due to the presence of a
single bacterial genus, Endozoicomonas, as shown by both clone libraries (La Riviere et
al., 2013)) and 16S rRNA amplicon pyrosequencing (Vezzulli et al., 2013). We did not
detect this genus or its family (Hahellaceae) in our P. placomus samples. Rarefaction
curves (Fig. 3) level off, indicating that the absence of Endozoicomonas in these samples
is unlikely to be due to under sampling of the P. placomus bacterial communities. The
genus Endozoicomonas dominated two other species of temperate gorgonians (Bayer et
al., 2013; Ransome et al., 2014), and a recent study has suggested a coadaptation between
clades of bacteria within Hahellaceae and several temperate gorgonian species (La Riviére,
Garrabou ¢ Bally, 2015). A small number of Endozoicomonas sequences were detected in
the bacterial communities associated with the deep-sea coral L. pertusa (Kellogg, Lisle &
Galkiewicz, 2009; Van Bleijswijk et al., 2015), and in two Anthothela grandiflora samples
from Norfolk Canyon (Lawler et al., 2016). This would suggest that this bacterial group’s
absence in P. placomus was not driven by a cold temperature or other depth-related
limitation. Two studies of shallow-water scleractinian corals found that the corals located
in their preferred habitats were dominated by Endozoicomonas, but had more diverse
microbiomes in other habitats (Pantos ef al., 2015; Roder et al., 2015). This raises questions
of whether the absence of this bacterial group in P. placomus is driven by biogeography
(due to the isolated nature of this particular coral population) or whether this could
be a diagnostic feature of this species. In comparing P. placomus core taxa (Table 2) to
the 16S rRNA amplicon pyrosequencing data from P. clavata (Vezzulli et al., 2013), the
shared bacterial taxa for the coral genus Paramuricea are Actinobacteria, Rhodobacterales,
Burkholderiales, and Vibrionales. Congeneric tropical acroporid corals harbored similar
bacterial communities (Littiman et al., 2009) and two deep-sea Anthothela species shared
statistically indistinguishable bacterial communities (Lawler et al., 2016), so the lack of
overlap between the bacterial communities of P. placomus and P. clavata was unexpected.
However, perhaps it should not be surprising given (a) the differences in the studies’
methodologies and (b) the great differences between these corals’ environments: depth,
pressure, temperature, and available food sources.
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Table 2 Core bacterial taxa shared by three P. placomus samples and their relative abundance in each sample, as a percentage of the total taxa.

Core taxa #OTUs NF12.19Q1 NF12.19Q2 NF12.19Q5
Phylum Class Order Family Genus
Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Curtobacterium 1 0.0 0.1 0.1
Actinobacteria Actinobacteria Actinomycetales Propionibacteriaceae Propionibacterium 1 0.3 0.6 0.9
Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae 1 1.0 0.0 0.2
Firmicutes Bacilli Bacillales 1 1.8 3.3 0.1
Firmicutes Bacilli Bacillales Alicyclobacillaceae Alicyclobacillus 1 0.4 0.1 0.0
Firmicutes Bacilli Bacillales Bacillaceae Bacillus 1 4.8 15.6 0.7
Planctomycetes Phycisphaerae Phycisphaerales 9 5.0 1.7 6.2
Planctomycetes Planctomycetia Pirellulales Pirellulaceae 6 5.3 4.0 5.7
Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium 1 0.9 0.4 0.0
Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae 1 0.6 0.1 0.0
Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 2 0.3 0.4 2.0
Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Magnetospirillum 1 0.2 0.3 0.1
Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae 1 0.0 0.2 0.1
Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae 2 0.3 1.3 0.7
Proteobacteria Deltaproteobacteria NBI1-j JTB38 1 0.7 0.2 0.9
Proteobacteria Epsilonproteobacteria Campylobacterales 1 0.3 0.6 0.8
Proteobacteria Gammaproteobacteria Alteromonadales 2 0.2 1.7 0.5
Proteobacteria Gammaproteobacteria Alteromonadales OM60 1 0.3 0.0 0.2
Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 1 0.3 0.5 0.2
Proteobacteria Gammaproteobacteria Legionellales 2 0.1 38.1 43.5
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 1 0.4 0.5 0.2
Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 2 1.3 0.0 0.7
Proteobacteria Gammaproteobacteria Thiotrichales Francisellaceae’ Caedibacter 3 1.6 1.2 6.4
Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae 1 343 0.7 1.3
Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Enterovibrio 1 0.1 0.9 3.3
Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium 1 0.4 0.0 0.2
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 1 0.3 0.1 0.2
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter 1 6.9 17.0 0.1
TOTALS 68.1 89.6 75.3
Notes.

*Caedibacter are actually incertae sedis, being closely related to both Legionella and Francisella, but placed in Francisellaceae by Greengenes database.

A value of 0.0 means <0.1%.
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Composition of conserved core bacterial community

Sequences shared by all three coral samples were examined to identify core bacterial taxa
(characterized to the lowest possible taxon, down to genus, Table 2). It is recognized
that this population of P. placomus is both isolated and likely highly clonal, and therefore
may not reflect all the bacterial diversity present across the large geographic range of this
coral species, or could contain regionally-specific taxa. While other studies have included
bacterial groups present in 30-50% of the coral samples as part of the core (Ainsworth et
al., 2015), given the small sample size of this study we have opted for the most conservative
approach; requiring the OTU be present in 100% of the samples. For each sample, the
relative abundance of each taxon is shown in relation to the total taxa (Table 2). For
samples NF12.19Q5 and NF12.19Q2 the core taxa make up 75 to nearly 90% of the total
community, suggesting a strongly species-specific bacterial community. The core taxa
constitute 68% of sample NF12.19Q1, in spite of its visibly different appearance at the
family level (Fig. 4). This can be contrasted against the microbiome of the temperate
gorgonian Eunicella cavolini, where only 7 of 2067 OTUs (less than 1%) were shared across
9 samples (Bayer et al., 2013).

A member of the P. placomus core (Table 2), Propionibacterium, was recently identified
as a conserved member of the core microbiome across a number of tropical and mesophotic
corals (Ainsworth et al., 2015). The authors used fluorescently-labeled probes to localize the
Propionibacterium to the corals’ endosymbiotic algae (zooxanthellae) and speculated these
bacteria had a role in facilitating the success of the dinoflagellate-coral symbiosis, and/or
meeting the coral host’s energy requirements. Interestingly, Propionibacterium spp. have
been cultivated or detected by molecular techniques from both azooxanthellate (Lawler
et al., 2016; Santiago-Vizquez et al., 2007) and zooxathellate corals (Bayer et al., 2013;

De Castro et al., 2010; Nithyanand, Manju ¢ Pandian, 2011). This raises an interesting
question as to whether these conserved bacteria have multiple roles, or play a different role
in azooxanthellate corals.

The phylum Firmicutes is present in the P. placomus core, has been identified as a core
component conserved across multiple tropical coral holobionts (Ainsworth et al., 2015),
and appears to be a minor component in most corals, although more are being detected by
pyrosequencing than were previously by clone libraries (e.g., Ainsworth et al., 2015; Lawler
et al., 2016; Sunagawa, Woodley & Medina, 2010; Van de Water et al., 2015). However, we
may still be underestimating the contribution of Firmicutes to coral microbiota due to
spore-formers’ relative resistance to DNA extraction (Filippidou et al., 2015). Culture-based
work revealed that bacterial communities associated with several tropical stony corals and
mesophotic azooxanthellate corals include a number of Bacillus species (Beleneva, Dautova
& Zhukova, 2005; Briick et al., 2007; Nithyanand ¢ Pandian, 2009). Culture-independent
work, including microarrays (Kellogg et al., 2014; Kellogg et al., 2013) and pyrosequencing
(Morrow et al., 2012), also revealed the Bacillaceae family to be a common associate of
tropical corals. While abilities vary based on species, Bacillus spp. are known to produce
siderophores to acquire iron and are assumed to have important roles in carbon and
nitrogen cycling (Logan ¢ De Vos, 2009).
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The P. placomus core bacterial community includes Alpha-, Beta-, Delta-, Epsilon-
and Gammaproteobacteria (Table 2). Legionellales sequences have not been commonly
detected in association with corals. Single clones of Legionellales were obtained from the
skeletons of Mediterranean corals Cladocora caespitosa and Balanophyllia europaea (Meron
et al., 2012) and less than 10 clones similar to Legionella feeleii were associated with diseased
colonies of temperate gorgonian Eunicella verrucosa (Ransome et al., 2014). A recent study
of three deep-sea coral species within the family Anthothelidae detected this order as a
minor component of their bacterial communities (Lawler et al., 2016). This bacterial order
is defined as comprising facultative and obligate intracellular parasites, many of which are
associated with free-living protozoa. It therefore remains to be determined if Legionellales
are direct associates of the gorgonian, or infect amoebae that are part of the holobiont
microbiome (Garrity, Bell & Lilburn, 20055 Rowbotham, 1986).

In addition to the dominant phylotypes of Legionellales, another major component of the
core gammaproteobacterial taxa, particularly for sample NF12.19Q]1, is the Vibrionaceae,
including the genera Enterovibrio and Photobacterium (Table 2). Vibrionaceae are a
common component of coral microbiota, having been found in healthy tropical (Bourne ¢
Munn, 2005; Chimetto et al., 2008; Daniels et al., 2011; Lampert et al., 2006) and cold-water
corals (Galkiewicz et al., 2011; Gray et al., 2011). While this bacterial group has been linked
to a number of diseases in tropical (e.g., Arotsker et al., 2009; Ben-Haim & Rosenberg, 2002;
Cervino et al., 2004) and temperate (Bally ¢ Garrabou, 2007; Hall-Spencer, Pike ¢ Munn,
2007) corals, pathogenicity seems to be driven by water temperatures greater than 20 °C.

While other members of the order Xanthomonadales have been found in association
with corals (Briick et al., 2007; Cdrdenas et al., 2012; Rohwer et al., 2002), Lysobacter was
only known from freshwater and soil environments (Christensen, 2005). However, this
genus’s ability to degrade chitin (Christensen, 2005) would be useful for a coral host that
feeds on zooplankton. Lysobacter are named for their antimicrobial activity, active against
not only bacteria, but also yeasts, filamentous fungi, and nematodes (Christensen, 2005),
suggesting this genus has a potential role in protecting and maintaining the microbial
balance of the coral.

A component of the core microbiome of P. placomus was identified as Francisellaceae
(Table 2 and Fig. 4). However, when those sequences were run through RDP Classifier
(Wang et al., 2007) they were identified as Thiotrichales incertae sedis, genus Caedibacter.
Further evaluation using BLAST (Altschul et al., 1990) showed that the closest matches
in GenBank included uncultured Caedibacter clones derived from the coral Orbicella
faveolata (FJ425613, FJ425621). The genus Caedibacter consists of endosymbionts of
Paramecium and has been shown to be polyphyletic (Beier et al., 2002), including both
Alphaproteobacteria similar to Rickettsiales and Gammaproteobacteria similar to both
Legionella and Francisella (as seen here). As with Legionellales, the presence of this bacterial
group hints at the presence of eukaryotic members (i.e., protist hosts) in these coral
microbiomes.
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Figure 5 Core bacterial groups potential roles within the nitrogen cycle. A number of the bacterial
groups present within the core microbiome of these three P. placomus samples were previously recognized
for their roles within the nitrogen cycle. This diagram illustrates a simplified overview of the bacterial
groups with their possible functions. This figure was adapted from one presented in Wegley et al. (2007).

Core: Nitrogen cycling?

A recent characterization of the core microbiome of the deep-sea octocoral Anthothela
grandiflora revealed the possibility of a nearly complete nitrogen cycle, based on previously
described abilities of particular bacteria present in the coral (Lawler et al., 2016). With
this in mind, we examined the core bacterial community associated with the three

P. placomus colonies (Table 2) and determined that a similar possibility exists for this coral
species (Fig. 5).

The alphaproteobacterial genus Bradyrhizobium is typically an intracellular nitrogen-
fixing symbiont in the root nodules of plants; however, some free-living strains of
Bradyrhizobium have been observed to fix nitrogen with particular carbon sources and
under low oxygen conditions (Kuykendall, 2005). Bacterial nitrogen-fixation has been
documented in shallow-water corals (Cardini et al., 2015; Lesser et al., 2007; Shashar et
al., 1994; Williams, Viner ¢ Broughton, 1987), and nifH genes from Bradyrhizobium and
other rhizobial species have been detected in three tropical coral species (Lerna, Willis &
Bourne, 2012). Bradyrhizobium spp. also have been identified previously in association
with the deep-sea octocoral Plumarella superba (Gray et al., 2011), as well as in the
tropical corals Orbicella annularis (Kellogg et al., 2013) and Siderastrea siderea (Kellogg et
al., 2014). Magnetospirillum spp. are capable of fixing atmospheric nitrogen (Bazylinski et
al., 2000) and can also use nitrate and ammonium as nitrogen sources (Schiiler ¢ Schleifer,
2005). Pirellulaceae are ammonia-oxidizing bacteria found in sponges (Gade et al., 2004;
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Mohamed et al., 2010) and the deep-sea octocoral Alcyonium grandiflorum (Lawler et al.,
2016), and may be conducting nitrification. Propionibacterium (Allison ¢ Macfarlane,
1989) and Photobacterium (Thyssen ¢ Ollevier, 2005) have been shown to reduce nitrate to
nitrite. Bacillus spp. have been shown to carry out denitrification (Verbaendert et al., 2011)
and also nitrate/nitrite ammonification (Hoffmann et al., 1998). Lastly, members of the
Campylobacterales are known to reduce nitrate and nitrite to ammonium (De Vries et al.,
1980). Nitrogen cycling has recently been confirmed in the deep-sea coral Lophelia pertusa
(Middelburg et al., 2015), and given that P. placomus is likely to have an inconsistent diet
of nano-zooplankton and detrital particulates (Ribes, Coma ¢ Gili, 1999), the ability to
recycle and retain nitrogen would be beneficial (Fig. 5). Further work with metagenomics
and transcriptomics remains to be conducted to confirm this hypothesis.

CONCLUSIONS

Based on these three samples from the Baltimore Canyon population, the deep-sea
plexaurid octocoral P. placomus has a species-specific bacterial community that shows very
little overlap with previously characterized temperate gorgonians, including sister-species
P. clavata. The bacterial community of this species is dominated by Proteobacteria but has
similar diversity to that of tropical stony corals. Conserved core bacterial taxa comprise 68—
90% of the total community, leaving roughly 10-30% individual variability between coral
colonies. Additional sampling from other locations is required to confirm the consistency
of these findings across the coral’s geographic range. The composition of the core suggests
that nitrogen cycling may be carried out by the bacterial associates. This study is the first
description of the bacterial microbiota of a deep-sea paramuricid species and provides a
baseline for comparison by future studies to address questions regarding biogeography,
ecology, and resilience of these corals to anthropogenic impacts and changing climate.
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