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Abstract
Late-outgrowth endothelial progenitor cells (EPCs) are stress-resistant and responsible for

reparative functions in the cardiovascular system. Oxidized-LDL (oxLDL) plays a critical

role in cardiovascular disease pathogenesis. However, it is largely unknown what the im-

pacts of oxLDL are on late-outgrowth EPCs. This study aimed to investigate the concentra-

tion-related effects of oxLDL on EPC functions and related angiogenesis, in vitro and in
vivo. In this study, early and late-outgrowth EPCs were generated from circulating human

mononuclear cells. oxLDL may regulate EPC vasculogenic function via the lectin-like oxi-

dized low-density lipoprotein receptor-1 (LOX-1). Lower concentrations (5 μg/mL) of oxLDL

can potentiate EPC tube formation in vitro and in vivo by activating eNOSmechanisms,

which are mediated by p38 MAPK- and SAPK/JNK-related pathways. Higher concentra-

tions of oxLDL (10-50 μg/mL) impaired EPC function via the activation of nicotinamide ade-

nine dinucleotide phosphate (NADPH) oxidase pathways and consequent inhibition of

eNOS activity, which could be reversed by anti-oxidants (diphenylene iodonium and apocy-

nin) and gp91phox siRNA. In conclusion, oxLDL has concentration-dependent biphasic ef-

fects on human late-outgrowth EPC tube formation in vitro and in vivo.

Introduction
Lipid metabolic disorder is one of the most important and common risk factors for atheroscle-
rosis, impaired angiogenesis [1–3] and the prevalence of coronary artery disease [4–6]. Various
mechanisms can lead to dyslipidemia. Lipid oxidation, especially oxidized-low density
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lipoprotein (oxLDL) can enhance intra-atherosclerotic plaque inflammation [7] and instability
[8,9], promoting the formation of early and full-brown atherosclerosis [10–12] resulting in
acute coronary syndrome and depending on its severity [13,14], impaired angiogenesis, vascu-
logenesis and collateral vessel formation in ischemic tissue [15]. In addition, serum oxLDL lev-
els have been demonstrated to predict long term survival in the elderly [16].

Circulating endothelial progenitor cells (EPCs) are considered to have several reparative
functions on impaired endothelium and are also involved in neo-vasculogenesis in ischemic
tissue as well as tumor microenvironments [17–19]. Previous data has shown that circulating
EPCs may have special cellular machinery that is resistant to various types of stress, including
oxidative stress [20], which may enable EPCs to participate in tissue repair. In addition, studies
on EPC-based cell therapy for full brown cardiovascular disease have been performed inten-
sively. However, some studies have still failed to demonstrate the involvement of EPCs in the
regeneration process of ischemic tissue and a growing body of evidence suggests the contrary
[21,22]. A study conducted by David Ingram et al. used more purified EPCs and clonogenic as-
says to test the effects of oxidative stress on EPC function. This study demonstrated that EPCs,
unlike stem cells, are still vulnerable to environmental risk factors, particularly oxidative stress,
which is abundant in the reparative ischemic environment [23].

Previous studies have suggested that oxLDL may have detrimental effects on EPCs [24–28].
However, a limitation of most of these studies is their use of early EPCs—which mainly play
paracrine functions, unlike the adherent late-outgrowth EPCs, which are demonstrated to be
further involved and incorporated into vascular repair and neovasculogenesis in ischemic tis-
sue [29]. In addition, most of these studies used concentrations of oxLDL that (more than
50 μg/mL) were much higher than the physiological serum concentrations of healthy (5.7–
14.8 μg/mL) and diseased human beings (18.8–20.2 μg/mL in DM and coronary artery disease)
[30–35]. Therefore, the behaviors of EPCs have not been thoroughly investigated under physi-
ological concentrations of oxLDL

Knowing the potential role of EPCs in regenerative medicine and that dyslipidemia is a
main risk factor for cardiovascular disease, we designed this study using late-outgrowth EPCs
treated with oxLDL within physiological serum concentrations (0.1–50 μg/mL). We investigat-
ed the potential impacts and underlying mechanisms of oxLDL on EPC vasculogenesis, which
could help further advance EPC-based regenerative treatments in patients with dyslipidemia.

Materials and Methods

In Vitro Study
Reagents and Antibodies. Rabbit anti-SR-A, rabbit anti-SR-B1, and goat anti-hCD34 an-

tibodies were purchased from Santa Cruz Co. (Santa Cruz, CA, USA). LOX-1 blocking anti-
body was a kind gift from Dr. Tatsuya Sawamura of Japan. The rabbit anti-phospho-eNOS and
total-eNOS antibodies were purchased fromMillipore Co. (North Billerica, MA, USA). The
anti-Akt and anti-MAPKs antibodies were all purchased from Cell Signaling Co. (Danvers,
MA, USA). All chemical reagents, including L-arginine methyl ester hydrochloride (L-NAME),
S-nitroso-N-acetylpenicillamine (SNAP), N-acetylcysteine (NAC), diphenyleneiodonium
(DPI), apocynin (APO), LY294002, PD98059, SB203580, SP600125, and the Rac1 inhibitor
were purchased from Calbiochem-Merck (KGaA, Darmstadt, Germany). The gp91phox siRNA
was purchased from Thermo Scientific Inc. (San Jose, CA, USA).

Preparation of Oxidized Low Density Lipoprotein. The LDL fraction of human serum
was isolated and characterized as previously described [36,37]. Briefly, plasma was taken from
blood withdrawn into 0.38% sodium citrate from healthy young adult males. The major lipo-
protein classes of LDL (d = 1.019–1.063 g/mL) were prepared by sequential ultracentrifugation.

Effects of OxLDL on Endothelial Progenitor Cells
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Density was adjusted by using solid NaBr and extensive dialysis at 4°C for 24 hours against phos-
phate-buffered saline (PBS, 5 mM phosphate buffer and 125 mMNaCl, pH 7.4). LDL was oxi-
dized by dialysis for 24 hours at 37°C against 10 μMCuSO4 in PBS, then oxLDL was dialyzed for
24 hours at 4°C against PBS containing 0.3 μMEDTA. The extracted oxLDL was stored in the
dark at -80°C until use. In these experiments, the extent of oxidation was monitored by measure-
ment of thiobarbituric acidreactive substance (TBARS) and horizontal electrophoresis. To avoid
endotoxin contamination, isolated lipoproteins were acquired from healthy volunteers (no ill-
ness), in a sterile environment. Isolated lipoprotein samples were also grown on bacterial culture
discs to exclude the possibility of bacterial contamination. In this study, we also maintained the
7.5 ± 1.5 μM ofMDA in the oxidation state of per microgram of native LDL, and 90.0 ± 10.5 μM
of MDA in the oxidation state of per microgram of oxLDL. The oxidation state of oxLDL is 7–11
times to the nLDL. Only oxLDL prepared within 7 days was used.

EPC Isolation and Cultivation. Total mononuclear cells (MNCs) were isolated from
40 ml of peripheral blood from healthy young male volunteers using density gradient centrifu-
gation with Histopaq-1077 (density 1.077 g/mL; Sigma). The Taipei Medical University-Insti-
tutional Review Board approved this study (IRB No.: CRC-04-10-04 and No.: 201302008),
and all participants provided their written informed consent to participate in this study. MNCs
(1x107 cells) were plated in 2 ml of endothelial growth medium (EGM-2 MV; Cambrex,
Charles, IA, USA) with supplements (hydrocortisone, R3-insulin-like growth factor 1, human
vascular endothelial growth factor, human fibroblast growth factor, gentamicin, amphotericin
B, vitamin C, and 20% fetal bovine serum) on fibronectin-coated six-well plates at 37°C in a
5% CO2 incubator. The cultures were observed daily, and after 4 days of culture, the media was
changed and nonadherent cells were removed. EPCs that attached early had a spindle shape
and were elongated. Thereafter, media was replaced every 3 days, and each colony/cluster was
observed. A certain number of early EPCs continued to grow into colonies of late EPCs, which
emerged 2–4 weeks after the start of MNC culture. The late EPCs exhibited “cobblestone”
morphology and a monolayer growth pattern typical of mature endothelial cells at confluence.
The late EPC-derived EC outgrowth population was also characterized using immunofluores-
cent staining for the expression of lectin, VE-cadherin, vonWillebrand factor (vWF), CD31
(platelet/endothelial cell adhesion molecule; PE-CAM), CD34, kinase insert domain receptor
(KDR)/VEGF receptor 2, CD133 and the endocytic portion of Dil-acLDL. The vascular smooth
muscle cell markers (αSMA, CALP, SM-MHC) and leukocyte marker (CD45) were undetect-
able. The fluorescent images were recorded using a laser scanning confocal microscope
(S1 Fig).

Measurement of Cytotoxicity by MTT Assay. The cytotoxicity of oxLDL was analyzed
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. EPCs
(2x104 cells) were grown in 96-well plates and incubated with oxLDL at 0–100 μg/mL for 12 or
24 hours. Subsequently, MTT (0.5 μg/mL) was applied to cells for 4 h to allow the conversion
of MTT into formazan crystals. After washing with PBS, the cells were lysed with dimethyl sulf-
oxide, and the absorbance was read at 530 nm with a DIAS Microplate Reader (Dynex Tech-
nologies, Chantilly, VA, USA).

EPC Tube Formation Assay. The tube formation assay was performed on EPCs to assess
angiogenic capacity, which is believed to be important for new vessel formation. The in vitro
tube formation assay was performed using the Angiogenesis Assay Kit (Chemicon, CA, USA)
[38] according to the manufacturer’s protocol. Briefly, ECMatrix gel solution was thawed at
4°C overnight, mixed with ECMatrix diluent buffer, and placed in a 96-well plate at 37°C for 1
hour to allow the matrix solution to solidify. EPCs were treated with oxLDL for 24 hours and
then harvested. A total of 104 cells were placed on the matrix solution, and the samples were in-
cubated at 37°C for 12 hours. Tubule formation was inspected under an inverted light
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microscope, four representative fields were taken. The average of the total area of complete
tubes formed by cells was compared using the Image-Pro Plus computer software.

Knockdown of Gene Expression by Silencing RNA. Knockdown of gp91phox gene expres-
sion was performed by transfection of EPCs with silencing RNA (siRNA) using GenMute siRNA
Transfection Reagent (SignaGen Lab., Gaithersburg, MD, USA). Cells (3x106) were suspended in
2.5 ml of serum-free medium and 25-μM aliquots of a gp91phox siRNA duplex mixture (Catalog
CYBB-HSS 102523, CYBB-HSS 175761, and CYBB-HSS 102525; Invitrogen, Carlsbad, CA,
USA) were transfected according to the manufacturer’s instructions. Cells were seeded into
6-well plates immediately post-transfection, and experiments were done 24 hours later.

Western Blot Analysis. Total cell lysate and membrane proteins were processed according
to previous reports [39]. The protein concentration in the supernatants was measured using a
Bio-Rad protein determination kit (Bio-Rad, CA, USA). The supernatants were subjected to
8% SDS-PAGE and transferred for 1 hour at room temperature to polyvinylidene difluoride
membranes. The membranes were treated for 1 hour at room temperature with PBS containing
0.05% Tween-20 and 2% skimmed milk and incubated separately for 1 hour at room tempera-
ture with primary antibodies. The membranes were then incubated with horseradish peroxi-
dase-conjugated IgG. Immunodetection was performed using a chemiluminescence reagent
and with exposure to Biomax MR Film (Kodak, NY, USA).

Electron Spin Resonance Spectroscopy (ESRS). Spin-probe colloid Fe(DETC)2 (Noxy-
gen) was used as a probe to detect the NO production in EPCs and was performed as previously
described [40,41]. In brief, 200 μL of EPC-cultured medium was mixed with 400 μL of colloid Fe
(DETC)2, followed by incubation for 1 hour at 37°C. The samples were recorded on a ESRS
(model: EMX-6/1, Bruker BioSpin, San Antonio, TX, USA) with the following instrumental set-
tings: center field 3295.0 G, sweep width 100.0 G, static field 3415.0 G, power of microwave
2.0 mW, microwave frequency 9.8 GHz, modulation amplitude 10.0 G, modulation frequency
100.0 GHz, 1024 points resolution in X, sweep time 10.5 seconds and number of X-scans 5.

In Vivo Study
Preparation of Animals. All animals were treated according to protocols approved by

the Institutional Animal Care and Use Committee (IACUC) of the Taipei Medical University,
Taipei, Taiwan (admission No.: LAC 101–0127). Twenty-seven adult male NOD SCID mice
(6-week old) were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). Mice were
kept in microisolation cages on a 12-h day/night cycle and fed a commercial mouse chow diet
(Scientific Diet Services, Essex, UK) with water ad libitum. Experimental procedures and ani-
mal care conformed to the ‘‘Guide for the Care and Use of Laboratory Animals” published by
the US National Institutes of Health (NIH Publication No. 85–23, revised 1996).

Production of Neoangiogenesis Gel. Production of neoangiogenesis gel was modified
from a previous study [42]. The neoangiogenesis gel solution contained 1.5 mg/mL of rat-tail
type 1 collagen, 90 μg/mL human plasma fibronectin, 25 mMHepes, 1.5 mg/mL NaHCO3, and
EGM-2 medium and was stored at 4°C until use. Isolated EPCs were suspended in neoangio-
genesis gel solution and then pipetted into 12-transwell plates and warmed to 37°C for 10 min-
utes to allow polymerization of the neoangiogenesis gel. In some experiments,
neoangiogenesis/EPC gels contained oxLDL with or without 100 μM of APO, 30 μM of DPI,
10 μM of SP600125, 10 μM of SB203580 or 10 μg/mL of LOX-1 blocking antibody. After poly-
merization was completed, warmed EGM-2 was added to cover the solidified gels, and the gels
were cultured at 37°C in 5% CO2 for 24 hours. For implantation, neoangiogenesis/EPC gels
were harvested from the transwell plates and approximately 1x1x0.5 cm gel segments were
dissected.

Effects of OxLDL on Endothelial Progenitor Cells
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Study Protocol. The animals were anesthetized using intraperitoneal injection of Xylo-
caine (2 mg/kg of BW) plus Zoletil (containing a dissociative anesthetic, Tiletamine/ Zolaze-
pam at a ratio of 1:1; 5 mg/kg of BW). The neoangiogenesis/EPC gels were subcutaneously
implanted into bluntly dissected subcutaneous pouches in the backs of the NOD SCID mice.
The wounds were closed with skin sutures. At the time indicated (21 days), the mice were anes-
thetized and the implanted constructs were harvested. The implanted constructs were exam-
ined in 5-μμm frozen sections, and vascular-like density was determined using a goat
monoclonal antibody directed against human CD31 (Santa Cruz, CA, USA). Four representa-
tive fields were taken, and the average of the total area of complete tubes formed by the cells
was compared using the Image-Pro Plus computer software.

Statistical Analyses. Values are expressed as the mean ± SEM. Statistical evaluation was
performed using Student’s t test and one- or two-way ANOVA followed by a Dunnett’s test. A
probability value of p<0.05 was considered significant.

Results

OxLDL with Biphasic Effects in EPC Capacity for Tube Formation
AnMTT assay was performed to analyze cell viability and cytotoxicity of oxLDL. EPCs were
treated with 0.1–100 μg/mL of oxLDL for 12 or 24 hours. The results showed that treatment
with 5 μg/mL of oxLDL both for 12 and 24 hours as well as 10 μg/mL of oxLDL for 12 hours
increased cell viability. In contrast, treatment with 50 μg/mL of oxLDL for 24 hours or
100 μg/mL of oxLDL both for 12 and 24 hours reduced cell viability as well as increased cell cy-
totoxicity in a dose-dependent manner (Fig 1A). To explore the potential effects of oxLDL on
EPC angiogenesis, a tube formation assay was performed. It has been shown that EPCs can suc-
cessfully initiate capillary network formation on Matrigel [43]. After 24 hours of culture in
5 μg/mL oxLDL, the functional capacity for tube formation of EPCs on ECMatrix gel signifi-
cantly increased compared to the control group (141.3 ± 12.0% of control). Interestingly, treat-
ment of EPCs with oxLDL at 10, 25, or 50 μg/mL for 24 hours significantly decreased cell tube
formation (75.3 ± 8.6%, or 50.6 ± 7.2%, or 49.2 ± 6.3% of control, respectively) compared to
the control group. These results indicate that low concentrations (approximately 5 μg/mL) of
oxLDL potentially increase the tube formation capacity of EPCs, whereas higher concentra-
tions (more than 10 μg/mL) of oxLDL induce cell cytotoxicity and impair EPC tube formation.

OxLDL Affects Tube Formation Capacity Mediated by LOX-1 and
Enhances LOX-1 Expression in EPCs
LOX-1, SR-A and SR-B1 were originally identified on the membrane of vascular endothelial
cells and EPCs. Therefore, we investigated whether the potential effects of oxLDL on EPC an-
giogenesis are mediated by these membrane receptors. Neovascularization was analyzed using
an in vitro angiogenesis assay in EPCs incubated with rabbit anti-SR-A, rabbit anti-SR-B1, or
LOX-1 blocking antibody (10 μg/mL) for 1 hour followed by 5 or 50 μg/mL of oxLDL treat-
ment. Fig 2A shows that 10 μg/mL of LOX-1 blocking antibody, but not SR-A or SR-B1
blocked the promotion of EPC tube formation capacity under 5 μg/mL of oxLDL treatment.
Similar to Fig 1A, addition of 10 μg/mL of LOX-1 blocking antibody may have significantly re-
duced the impaired tube formation capacity of EPCs treated with 50 μg/mL oxLDL. As a nega-
tive control in the competition assay, a nonspecific IgG2α isotype antibody was substituted for
the specific antibodies (data not shown). Additionally, we also analyzed membrane LOX-1,
SR-A, and SR-B1 production with Western blot of oxLDL-treated EPCs. As shown in Fig 2C,
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an oxLDL concentration of more than 10 μg/mL may elevate LOX-1 expression in EPCs; in
contrast, neither SR-A nor SR-B1 was affected by oxLDL treatment.

These results demonstrate that the increased neovascularization capacity of EPCs with
5 μg/mL oxLDL and the impaired neovascularization capacity of EPCs with 50 μg/mL oxLDL-
are both mediated by LOX-1, but not SR-A or SR-B1.

The PI3K/Akt- and NO-related Pathways Contribute to the Effects of
OxLDL on EPC Tube Formation
We have previously shown that phosphatidylinositol-3 kinase (PI3K)/Akt- and NO-related
mechanisms could be involved in the angiogenesis capacity of high glucose-stimulated EPCs

Fig 1. The effects of oxLDL on cell cytotoxicity and tube formation. (A) After treatment of EPCs with 0–100 μg/mL of oxLDL for 12 (▓) or 24 (□) hours, an
MTT assay was performed, and the absorbance was recorded using a microplate reader. (B) EPCs were treated for 24 hours with 0–50 μg/mL oxLDL. An in
vitro angiogenesis assay was used with ECMatrix gel to investigate the effect of oxLDL on EPC neovascularization. Representative photos of in vitro
angiogenesis are shown. Data are expressed as the mean ± SEM of nine experiments performed in triplicate.*p < 0.05 was compared to a control group with
the same time treatment and considered significant.

doi:10.1371/journal.pone.0123971.g001
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[43]. In this study, we investigated whether PI3K/Akt and NO regulate tube formation in
oxLDL-treated EPCs. After cultured EPCs were incubated for 2 hours with 5 μg/mL of oxLDL,
Akt phosphorylation and eNOS phosphorylation at Ser1,177 were significantly increased (Fig
3A). Furthermore, Akt phosphorylation and eNOS phosphorylation at Ser1,177 were signifi-
cantly decreased in EPCs incubated with more than 10 μg/mL oxLDL. The conditional medium
containing NO was analyzed using electron spin resonance spectroscopy. In Fig 3C, 5 μg/mL
oxLDL treatment may have markedly increased NO production in comparison to the control
(no oxLDL treatment) group; however, incubation with 10–50 μg/mL oxLDL may have de-
creased NO production. Finally, we measured whether PI3K/Akt- and NO-related signaling
pathways were involved in the angiogenic capacity of EPCs stimulated with oxLDL. Pretreat-
ment with the NOS inhibitor L-Ng-nitro-L-arginine methyl ester (L-NAME) or PI3K inhibitor,
LY294002 for 1 hour significantly ameliorated the positive effects of 5 μg/mL oxLDL on EPC
tube formation capacity (Fig 3D). In contrast, pretreated with 10 μM of NO donors, S-nitroso-
N-acetylpenicillamine (SNAP) or N-acetylcysteine (NAC) for 1 hour significantly ameliorated
inhibition of tube formation in EPCs stimulated with 50 μg/mL oxLDL for 24 hours. Treatment

Fig 2. Effects of oxLDL on tube formation in EPCs is mediated by LOX-1. (A and B) EPCs were pretreated with anti-SR-A, anti-SR-B1, or LOX-1
blocking antibodies for 1 hour prior to oxLDL treatment. The effect of oxLDL on EPC neovascularization was analyzed using an in vitro angiogenesis assay.
(C) EPCs were treated for 12 hours with 0–50 μg/mL oxLDL, and membrane LOX-1, SR-A, and SR-B1 were analyzed byWestern blot. α-tubulin protein
levels were used as a loading control. (D) The graph shows the quantification of LOX-1, SR-A, and SR-B1 density in oxLDL-treated EPCs. Data are
expressed as the mean ± SEM of three experiments. *p < 0.05 was compared to the control group in the same time treatment and considered significant.

doi:10.1371/journal.pone.0123971.g002

Effects of OxLDL on Endothelial Progenitor Cells

PLOS ONE | DOI:10.1371/journal.pone.0123971 May 27, 2015 7 / 17



Effects of OxLDL on Endothelial Progenitor Cells

PLOS ONE | DOI:10.1371/journal.pone.0123971 May 27, 2015 8 / 17



with SNAP, NAC, L-NAME, or LY294002 for 24 hours had been used the controls (Fig 3E).
Therefore, these data indicate that oxLDL protein may affect the capacity of neovascularization
(both by promoting and inhibiting) in EPCs by modulating PI3K/Akt- and eNOS-
related mechanisms.

The p38 MAPK- and SAPK/JNK-related Pathways Contribute to EPC
Tube Formation Increased by Low OxLDL Concentrations
The potential roles of mitogen-activated protein kinase (MAPK)-related mechanisms were also
examined. OxLDL markedly induced the phosphorylation of MAPKs, including p38 MAPK
and SAPK/JNK (Fig 4A), after exposure to 0.1–5 μg/mL of oxLDL for 4 hours. Interestingly, ex-
posure to 10–50 μg/mL of oxLDL did not change the phosphorylation of p38 MAPK, ERK1/2,
and SAPK/JNK in EPCs.

Pretreatment with SP600125 (a SAPK/JNK inhibitor) and SB203580 (a p38 MAPK inhibi-
tor) but not PD98059 (an ERK1/2 inhibitor) for 1 hour may have ameliorated the positive ef-
fects of 5 μg/mL oxLDL on EPC tube formation (Fig 4B). Treatment of MAPK inhibitors alone
did not affect the tube formation in EPCs (Fig 4C). Additionally, pretreatment with the
SB203580 or SP600125 for 1 hour significantly ameliorated the positive effects of 5 μg/mL
oxLDL on NO production in EPCs (Fig 4D). Akt phosphorylation induced by 5 μg/mL of
oxLDL was also reduced by SB203580 and SP600125 (Fig 4E). These results suggest that Akt
activation contribute to the increased tube formation in EPCs treated with 5 μg/mL oxLDL,
which is mediated by the p38 MAPK- and SAPK/JNK-related pathways.

The NADPHOxidase-related Pathway Contribute to Decreased Tube
Formation in EPCs Treated with High Concentrations of OxLDL
In addition, the potential role of NADPH oxidase-mediated oxidative stress in the neovascular-
ization of EPCs affected by oxLDL was investigated using optimal concentrations of diverse an-
tioxidants base on our pilot studies. The specific NADPH oxidase inhibitors
(Diphenyleneiodonium, DPI and apocynin, APO) significantly rescued the decreasing of tube
formation capacity in EPCs stimulated with 50 μg/mL oxLDL; however, these oxidase inhibi-
tors did not influence EPCs treated with 5 μg/mL oxLDL (Fig 5A). These results suggest that
the NADPH–oxidase-derived reactive oxygen species (ROS) signaling pathways are involved
in oxLDL-impaired neovascularization in EPCs. NADPH oxidase is a complex enzyme consist-
ing of two membrane-bound components (gp91phox and p22 phox) and three components in
the cytosol (Rac 1, p40 phox, p47 phox, and p67 phox). Therefore, gp91phox siRNA and Rac 1 in-
hibitor were used to block the function of NADPH oxidase in this study. The efficiency of
siRNA was showed (Fig 5B). Recent evidence demonstrated that NADPH oxidase-mediated
ROS regulates Akt phosphorylation and activation of eNOS [44]. Similarly, our results showed
that treatment of DPI or knock down of gp91phox using specific siRNA prior to treatment with

Fig 3. The PI3K/Akt- and NO-related pathways contribute to EPC tube formation affected by oxLDL. (A and B) EPCs were treated for 2 hours with
0–50 μg/mL oxLDL, then eNOS and Akt activation (phosphorylation) was analyzed byWestern blot. Total eNOS, Akt, and β-actin protein levels were used as
loading controls. The graphs show the quantitative activation of eNOS (phospho-eNOS/total-eNOS ratio) and Akt (phospho-Akt/total-Akt ratio) density in
oxLDL-treated EPCs. (C) EPCs were pretreated with 0–50 μg/mL oxLDL for 24 hours. The NO-containing conditional medium was analyzed using electron
spin resonance spectroscopy. Left, Representative ESR spectra of the NO-Fe(DETC)2 signal in EPCs treated with 0, 5 or 50 μg/mL oxLDL. Right, increasing
concentrations of oxLDL (0–5 μg/mL) in EPCs from healthy subjects stimulated NO production. In contrast, 10–50 μg/mL oxLDL had decreasing production
of NO observed (n = 5). (D) EPCs were pretreated with L-NAME or LY294002 for 1 hour prior to treatment with 5 μg/mL oxLDL for 24 hours, or pretreated with
SNAP or NAC for 1 hour prior to treatment with 50 μg/mL oxLDL for 24 hours. (E) EPCs were treated with SNAP, NAC, L-NAME or LY294002 alone for 24
hours. In vitro angiogenesis was assayed using ECMatrix gel. Data are expressed as the mean ± SEM of three experiments performed in triplicate. *p < 0.05
was considered significant.

doi:10.1371/journal.pone.0123971.g003
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50 μg/mL oxLDL may reverse the inhibition of Akt and eNOS activation (Fig 5C). Additionally,
pretreatment with the LOX-1 antibody may block the reduction of Akt and eNOS activation
(Fig 5C); gp91phox siRNA transfection and pretreatment with 20 μM of a Rac1 inhibitor for 1
hour prior to oxLDL treatment may efficiently inhibit membrane LOX-1 expression induced
by 50 μg/mL oxLDL (Fig 5D). These results suggest that NADPH oxidase plays a significant
role in LOX-1 expression mediated by 50 μg/mL oxLDL and the impaired neovascularization
mediated by the Akt and eNOS transcriptional regulatory signaling pathway.

Biphasic Effects of OxLDL on In Vivo Neoangiogenesis of Late-
outgrowth EPCs
To investigate the in vivo effects of oxLDL on neoangiogenesis, EPC/neoangiogenesis gel con-
structs were implanted into NOD SCID mice. The constructs were harvested 21 days after im-
plantation and embedded into OCT (frozen tissue matrix). The frozen sections were assessed
by immuno-histochemical staining using CD31. The results are presented in Fig 6. Consistent
with the in vitro results, human EPCs-arranged vessel-like structures were significantly more
visible in human EPC/neoangiogenesis gels containing 5 μg/mL of oxLDL in comparison to
the control group. In contrast, the raising of human EPCs-arranged vessel-like structures was
significantly decreased in EPC/neoangiogenesis gels containing 10 μg/mL of LOX-1 blocking
antibody, SP600125, or SB203580 plus 5 μg/mL of oxLDL compared to 5 μg/mL of oxLDL

Fig 4. p38 MAPK- and SAPK/JNK-related pathways contribute to increased tube formation in EPCs under low concentrated oxLDL. (A) Following
treatment of EPCs with 0–50 μg/mL of oxLDL for 4 hours, the phosphorylation of p38 MAPK, SAPK/JNK and ERK1/2 were analyzed byWestern blot. The
total p38 MAPK, SAPK/JNK, ERK1/2, and β-actin protein levels were used as loading controls. The graph showed the quantitative activation of p38 MAPK
(phospho-p38MAPK/total- p38MAPK ratio), SAPK/JNK (phospho-SAPK/JNK/total-SAPK/JNK ratio), and Akt (phospho-ERK1/2/total-ERK1/2 ratio) density
in oxLDL-treated EPCs. (B) EPCs were pretreated with SP600125, PD98059, or SB203580 for 1 hour prior to treatment with 5 or 50 μg/mL oxLDL for 24
hours. (C) Treatment of SP600125, PD98059, or SB203580 alone for 24 hours. In vitro angiogenesis was assayed using ECMatrix gel. (D) EPCs were
pretreated with SP600125 or SB203580 for 1 hour prior to treatment with 5 μg/mL oxLDL for 24 hours. The NO-containing conditional medium was analyzed
using electron spin resonance spectroscopy. Data are expressed as the mean ± SEM of three experiments performed in triplicate. *p < 0.05 was considered
significant. (E) EPCs were pretreated with SP600125 or SB203580 for 1 hour prior to treatment with 5 μg/mL oxLDL for 2 hours, subsequently Akt activation
(phosphorylation) was analyzed by Western blot. Total Akt protein levels were used as loading controls.

doi:10.1371/journal.pone.0123971.g004
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Fig 5. The NADPH oxidase-related pathway contribute to decreased tube formation in EPCs under high concentrated oxLDL. (A) EPCs were
pretreated with DPI or APO for 1 hour prior to treatment with 5 or 50 μg/mL oxLDL for 24 hours. In vitro angiogenesis was assayed using ECMatrix gel. Data
were expressed as the mean ± SEM of three experiments performed in triplicate. *p < 0.05 was considered significant. (B) EPCs were transfected with
gp91phox siRNA, the total gp91phox protein were analyzed using western blotting. (C) EPCs were pretreated with DPI, LOX-1 blocking antibody for 1 hour or
transfected with gp91phox siRNA prior to 50 μg/mL of oxLDL treatment, subsequently eNOS and Akt activation (phosphorylation) were analyzed byWestern
blot. Total eNOS, Akt, and β-actin protein levels were used as loading controls. The graph showed the quantitative activation of eNOS (phospho-eNOS/total-
eNOS ratio) and Akt (phospho-Akt/total-Akt ratio) density in oxLDL-treated EPCs. (D) EPCs were pretreated with 20 μMRac1 inhibitor for 1 hour or
transfected with gp91phox siRNA prior to 50 μg/mL oxLDL treatment for 12 hours, subsequently membrane LOX-1 expression was analyzed byWestern blot.
β-actin protein levels were used as a loading control.

doi:10.1371/journal.pone.0123971.g005
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group (Fig 6A). However, adding LOX-1 blocking antibody, DPI or APO to gels reversed the
decreasing formation of vessel-like structures in the 50 μg/mL of oxLDL containing gel-
received mice.

Discussion
The schematic shown in S2 Fig summarizes our current results. We demonstrated for the first
time that oxLDL has biphasic effects on human late-outgrowth EPCs. OxLDL may regulate
EPC vasculogenic function via membrane receptors, LOX-1, and PI3K/Akt- as well as through
NO-mediated mechanisms. Low concentrations (approximately 5 μg/mL) of oxLDL enhanced
EPC capacity for tube formation in vitro and in vivo by activating eNOS mechanisms, which
were mediated by p38 MAPK- and SAPK/JNK-related pathways. Whereas oxLDL at higher
concentrations (10–50 μg/mL) impaired EPC function via the activation of NADPH oxidase
pathways with consequent inhibition of eNOS activity. eNOS is pivotal for EPC mobilization,
migration and vessel formation [45,46]. Our study results demonstrate the diverse EPC vascu-
logenic function in response to low and high serum oxLDL concentrations.

Fig 6. OxLDL affects EPC neovascularization in vivo. The vessel networks were stained with anti-human CD31 antibodies and observed using
fluorescent microscopy. In the control group, subcutaneous implantation of an EPC/neovascularization gel for 21 days resulted in a small amount of EPC in-
growth. Inclusion of 5 μg/mL of oxLDL in the gel significantly increased the formation of vessel-like structures, and LOX-1 blocking antibody, SP600125, and
SB203580 against the increased capacity observed in the gel containing 5 μg/mL of oxLDL alone. In contrast, 50 μg/mL of oxLDL in the gel significantly
decreased the formation of vessel-like structures, and LOX-1 blocking antibody, DPI, and APO improved the decreased capacity observed in the gel
containing 50 μg/mL of oxLDL alone. The vessel-like structures are indicated by white arrows, and all magnifications are at 400x. Data were expressed from
one of three experiments. The diagram shows the quantification of vessel-like structures. Data are expressed as the mean ± SEM of three experiments.
*p < 0.05 was considered significant.

doi:10.1371/journal.pone.0123971.g006
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Previous studies have demonstrated that treating early-EPCs with higher concentrations of
oxLDL (10–200μg/mL) may have resulted in p38 MAPK pathway activation [47], decreasing
Akt phosphorylation, eNOS mRNA expression and increasing LOX-1 mRNA expression;
which could subsequently result in increased early-EPCs apoptosis, decreased early-EPC prolif-
eration, migratory rate and adhesion function, down-regulating E-selectin and integrin αVβ5
(50 μg/mL) expression [27], and impaired therapeutic vasculogenesis [26]. Although our work,
similar to previous works, showed the detrimental effects of high oxLDL on early-EPCs, we
also demonstrated that late out-growth EPCs were vulnerable to higher concentrations of
oxLDL (10–50μg/mL), resulting in impaired EPC tube formation in vivo and in vitro. However,
the underlying mechanisms that are involved in late-outgrowth EPC dysfunction under high
oxLDL are somewhat different to those in early-EPCs or endothelial cells. In our study, signal-
ing pathways including p38 MAPK, SAPK/JNK, and ERK 1/2 were neither activated nor sup-
pressed and were not involved in the pathogenesis of higher oxLDL conditions.

In our study, the detrimental effect of high oxLDL on EPCs was LOX-1 dependent. Similar
to previous studies where treatment of early-EPCs with higher oxLDL concentrations up-regu-
lated cell membrane LOX-1 expression, our study showed that LOX-1 expression of late-out-
growth EPCs was significantly enhanced at oxLDL concentrations higher than 10μg/mL.
Interestingly, in our study, oxLDL did not enhance LOX-1 expression at concentrations below
10μg/mL. Unlike other scavenger receptors, such as SR-A nor SR-B, the expression of the
LOX-1 receptor, a lectin-like oxLDL receptor that is responsible for the binding and uptake of
oxLDL [48], was up-regulated on late-outgrowth EPC cell membrane when treating with
higher oxLDL (10–50μg/mL,). In our study, LOX-1 blocking antibody significantly restored
the impaired Akt and eNOS activity in higher oxLDL conditions, and also significantly re-
versed high oxLDL impaired EPC tube formation in a dose-dependent manner.

Oxidative stress plays an important role in the pathogenesis of endothelial dysfunction and
cardiovascular disease, especially in cases of dyslipidemia, hypertension, diabetes, smoking and
congestive heart failure. Previous studies have suggested that unlike mature endothelial cells,
EPCs are more resistant to ROS-driven cytotoxicity because EPCs may play a role in repairing
injured endothelium or are involved in neo-vasculogenesis in ischemic tissue enriched for reac-
tive oxygen species and oxidized metabolites. It has been known that activation of LOX-1 can
stimulate the formation of reactive oxygen species (ROS) and initiate a series of redox-sensitive
signaling pathways. In our study, the up-regulation of the LOX-1 receptor by higher concentra-
tions of oxLDL revealed the possible role of ROS regulation on EPC functions. The lack of en-
hancement of LOX-1 expression by lower concentrations of oxLDL in our study implies that
ROS was not significantly activated in these situations. Under higher concentrations of oxLDL
(10–50 μg/mL), the up-regulated LOX-1 receptors subsequently potentiate the activation of
NADPH oxidase and further impair Akt activation; eNOS phosphorylation and eventually
EPC tube formation. The detrimental effects of higher oxLDL could be reversed by the anti-ox-
idants: DPI, Apocynin and gp91phox siRNA. Our study corroborated a previous study demon-
strating that EPCs are not completely oxidative stress-resistant, and NADH/NADPH oxidase
was suggested to be one of the most important enzyme systems capable of producing ROS in
the endothelial system [49].

Previous studies showed that LOX-1 receptors could be up-regulated by oxLDL treatment
[50] or oxidative stress. In our study, higher rather than lower concentrations of oxLDL en-
hanced LOX-1 expression. Rac1 inhibitors and gp91phox siRNA abrogated the expression of
LOX-1 induced by higher oxLDL concentrations. Increased LOX-1 expression could have cre-
ated more oxidative stress, and this oxidative stress could have further enhanced the expression
of LOX-1, which could form a positive feedback loop maintaining the detrimental effect of
higher oxLDL concentrations on EPCs.
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We first noted that in contrast to higher oxLDL concentrations, treating EPCs with lower
oxLDL (0.1 to 5 μg/mL) concentrations, corresponding to those in serum levels of relatively
healthy populations, could paradoxically enhance EPC survival and tube formation in vivo and
in vitro. The beneficial effect of lower oxLDL concentrations was also LOX-1 dependent and
not via SR-A or SR-B1. After LOX-1 receptors on EPCs were activated by lower concentrations
of oxLDL, the p38/MAPK and SAPK/JNK pathways were subsequently activated and further
enhanced Akt-eNOS pathway activation and EPC tube formation. Although the beneficial ef-
fect of low oxLDL has been demonstrated in previous endothelium studies, the underlying
mechanisms are quite different and were not redox-dependent for EPCs.

In our study, anti-oxidants used with DPI and Aponcynin failed to inhibit EPC tube forma-
tion augmented by lower oxLDL concentrations, suggesting that oxidative stress is not involved
in the mechanisms that promote EPC tube formation by lower oxLDL concentrations. In a pre-
vious study conducted by Dandapat et al. focusing on mature endothelial cells, it was demon-
strated that small concentrations of oxLDL (0.1 to 5 μg/mL) could enhance endothelium tube
formation by inducing the expression of the Vascular endothelial growth factor via LOX-1 me-
diated activation of NADPH oxidase- MAPKs-NF-κB pathways. According to current studies,
the mechanisms resulting in the discrepancies between endothelium and EPCs under lower
concentrations of oxLDL is still not known. However, some possible clues may answer this
question. In our study, although lower oxLDL (0.1–5 μg/mL) concentrations exert positive ef-
fects via the LOX-1 receptor, the amounts of lectin-like oxLDL receptors were not up-regulated
until oxLDL concentrations were above 10 μg/mL (at which the detrimental effects of oxLDL
started). In contrast to our study, LOX-1 in mature endothelium was significantly enhanced
dose-dependently even in very low concentrations of oxLDL (0.1–5 μg/mL) [51], which may
further activate NADPH oxidase in endothelium. In addition, previous studies have demon-
strated that EPCs are more redox resistance under some circumstances and may have special
machinery to clear oxidative stress and may explain why lower concentrations of oxLDL failed
to generate NADPH oxidase, which could possibly reverse the enhanced LOX-1 expression, in
EPCs. Further studies could be designed to examine this idea about oxidative scavengers in
EPCs treated with lower concentrations of oxLDL.

In conclusion, our study first demonstrated that oxLDL is not always harmful to EPCs. We
demonstrated that oxLDL has concentration-dependent bi-phasic effects on late-outgrowth
EPC tube formation in vitro and in vivo. Further animal and prospective clinical studies could
be initiated to delineate the clinical implications of the concentration-dependent effects of
serum oxLDL on the neo-vasculogenic function of EPCs.

Supporting Information
S1 Fig. The late EPC-derived EC outgrowth population was also characterized. The late
EPC-derived EC outgrowth population was also characterized using immunofluorescent stain-
ing for the expression of lectin, VE-cadherin, von Willebrand factor (vWF), CD31 (PE-CAM),
CD34, kinase insert domain receptor (KDR)/VEGF receptor 2, CD133 and the endocytic por-
tion of Dil-acLDL. The vascular smooth muscle cell markers (αSMA, CALP, SM-MHC) and
leukocyte marker (CD45) were undetectable.
(TIF)

S2 Fig. The schematic shows summarize of our current results. OxLDL has biphasic effects
on human late-outgrowth EPCs. OxLDL may regulate EPC vasculogenic function via mem-
brane receptors, LOX-1, and PI3K/Akt- as well as through NO-mediated mechanisms. Low
concentrations (approximately 5 μg/mL) of oxLDL enhanced EPC capacity for tube formation
in vitro and in vivo by activating eNOS mechanisms, which were mediated by p38 MAPK- and
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SAPK/JNK-related pathways. Whereas oxLDL at higher concentrations (10–50 μg/mL) im-
paired EPC function via the activation of NADPH oxidase pathways with consequent inhibi-
tion of eNOS activity.
(TIF)

S1 Text.
(DOC)
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