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Abstract: Eccentric cycling (ECC) has attracted attention as a method to improve muscle strength
and aerobic fitness in populations unable to tolerate conventional methods. However, agreement on
exercise prescription targets have been problematic. The current report is an initial exploration of a
potentially useful tool, a nonlinear heart rate (HR) variability (HRV) index based on the short-term
scaling exponent alpha1 of detrended fluctuation analysis (DFA a1), which has been previously
shown to correspond to exercise intensity. Eleven male volunteers performed 45 min of concentric
(CON) cycling and ECC separated by 1 month. Work rates were matched for HR (~50% of the
maximal HR) during the first 5 min and remained stable thereafter. HRV, HR, oxygen consumption
(VO2), and cycling power were monitored and evaluated at elapsed times of 10 (T10) and 45 (T45)
minutes duration. HR significantly increased between ECC T10 and ECC T45 (p = 0.003, d = 1.485),
while DFA a1 significantly decreased (p = 0.004, d = 1.087). During CON, HR significantly increased
(p < 0.001 d = 1.570) without significant DFA a1 change (p = 0.48, d = 0.22). Significantly higher HR
was observed at T45 in ECC than in CON (p = 0.047, d = 1.059). A session of unaccustomed ECC
lead to decreased values of DFA a1 at T45 in comparison to that seen with CON at similar VO2. ECC
lead to altered autonomic nervous system balance as reflected by the loss of correlation properties
compared to CON.

Keywords: eccentric cycling; HRV; detrended fluctuation analysis; DFA a1; endurance exercise

1. Introduction

Eccentric cycling (ECC) has garnered interest as an exercise modality to promote loco-
motor muscle improvements at reduced cardiovascular demands compared to conventional
concentric cycling (CON) [1–3]. ECC refers to the muscular action of actively opposing
the motion of motor driven bicycle pedals moving in the reverse direction [1]. Although it
may appear that the participant is pedaling in reverse, they are actually attempting to stop
the pedals moving backward, thereby engaging locomotor muscles in an eccentric fashion.
At an equivalent metabolic cost or oxygen consumption (VO2), ECC can be performed
at much higher power levels, resulting in enhancement of muscular size, strength, and
oxidative properties [1,4–6]. However, it appears that ECC cycling offers no benefit for
peak aerobic training over CON methods [5,7]. Therefore, this modality is particularly
suited for rehabilitation purposes in patients with cardiovascular or pulmonary disease
who are unable to mount sufficient muscular pedaling force due to inherent limitations.
Unfortunately, recommendations for ECC training intensity are problematic. At the same
VO2, ECC may lead to a higher heart rate (HR), making suggestions based on common
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HR based formulas unreliable [1,5,8]. Many of the ideal candidates for an ECC program
may be taking medications that can affect HR, such as beta-adrenergic blocking agents,
further obscuring HR related intensity target formulas. In addition, the power to VO2
relationship may not be equivalent to that done with CON since the oxygen cost per watt
of each modality is different [1,5]. Although cardiovascular testing centers may be able to
evaluate individuals during CON, gas exchange testing with ECC equipment may not be
available. Therefore, alternate means to evaluate exercise intensity during aerobic eccentric
exercise that do not rely on HR or power and do not require prior incremental ramp testing
with gas exchange would be helpful.

Changes in heart rate variability (HRV) indexes during dynamic aerobic exercise have
been well studied over the past several decades [9]. The concept revolves around the
characterization of the variation of the cardiac beat to beat sequence over time. Although
several linear, time, and frequency domain measures, such as SDNN (standard deviation of
normal-to-normal RR intervals), high frequency (HF) power, as well as nonlinear measures
of HRV such as SD1 (standard deviation 1 from Poincaré plot analysis), have been shown
to have potential to assess exercise intensity, all reach a nadir near the aerobic threshold,
limiting their ability to estimate loads above this point [10]. In addition, they require a
dedicated exercise ramp to failure for standardization to HR, VO2, or power. Recently, a
nonlinear HRV index, the short-term exponent alpha 1 of detrended fluctuation analysis
(DFA a1) based on fractal correlation properties, has been shown to decline with increasing
exercise loads throughout all intensity domains providing information about physiological
transitions corresponding to the aerobic and anaerobic threshold (e.g., as represented by
the first and second ventilatory thresholds) [10–12]. Fractal behavior in relation to HRV
can be described as degrees of self-similarity between RR interval variations over different
time scales [13]. At low exercise intensity, DFA a1 values are usually in a well correlated
fractal range near or above 1.0. As exercise intensity rises, DFA a1 passes 0.75 at the
aerobic threshold and continues to drop to an uncorrelated random pattern (0.5) near the
anaerobic threshold, finally reaching below 0.5, signifying an anticorrelated range at the
very highest work rates [10–12]. The anticorrelated state can be viewed as a protective
feedback and stabilizing mechanism, where interactions and/or coordination of subsystems
fail before the entire system fails [13,14]. Another unique advantage of DFA a1 for intensity
monitoring revolves around its dimensionless nature, which makes standardization to
other internal load parameters such as gas exchange or lactate unnecessary. For example,
an intensity associated with a DFA a1 value of 0.75 corresponds to a workload near the
aerobic threshold in a wide spectrum of individuals and is referred to as the HRVT (heart
rate variability threshold) [11,15].

As exercise intensity rises, there is a withdrawal of parasympathetic and enhancement
of sympathetic influence that leads to a decline in DFA a1 [10,16]. On the other hand, it
has been shown that, for the same VO2 or HR, ECC is associated with an increased muscle
tension and sympathetic stress [1,8], especially when participants are not accustomed
to eccentric exercise, and ECC should produce the greatest degree of muscle soreness.
However, to the best of our knowledge, it is not known whether this is accompanied by
a more pronounced decrease in DFA a1. DFA a1 behavior could offer an opportunity to
monitor exercise loads and interaction patterns from the autonomic system standpoint
during ECC. Therefore, the aim of this report is to provide an initial observation of DFA
a1 activity during ECC compared to conventional, CON. DFA a1 will be evaluated at
the beginning and end of a representative 45 min exercise session consisting of either
low-intensity ECC or CON. We anticipate that DFA a1 will show a higher decrease during
ECC compared to CON.

2. Methods
2.1. Participants

Eleven male volunteers who had no history of cardiovascular disease, prescribed
medication, smoking, and were already training with endurance related exercise several
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times per week were evaluated. None had performed eccentric related activity, including
prolonged downhill running. The mean participant age was 28 ± 6 years, and mean
body mass index (BMI) was 23 ± 3 kg/m2. All procedures were in accordance with the
ethical standards of the institutional research committee (RCB number 2014-A00501-46)
and conformed to the principles of the Declaration of Helsinki, and all subjects gave their
informed consent for inclusion before they participated in the study.

2.2. Baseline Assessment

Baseline gas exchange testing was performed using an incremental maximal cycling
exercise test performed on a braked ergometer (Excalibur Sport, Lode, Groningen, Nether-
lands). After a stable resting period, a 3 min warm-up was performed at 50 watts, and
the intensity was increased by 25 watts every minute until volitional exhaustion. The
HR (CASE P2, GE Healthcare, Buckinghamshire, UK) at the first ventilatory threshold
(VT1) was determined using pulmonary gas exchange data (MGC Diagnostics—Ultima
CPXTM System, St Paul, Minnesota, USA) and the ventilatory equivalents method [17].
Maximal oxygen uptake (VO2MAX) was defined as reaching a VO2 plateau or a HR > 90%
of predicted maximal HR (220—age), and the corresponding maximal heart rate (HRMAX)
and power output were reported.

2.3. Eccentric and Concentric Cycling Exercise Sessions

After the baseline cycling exercise test, a low-intensity 5 min familiarization session
was performed by participants to learn eccentric cycle ergometer coordination. The ec-
centric cycle used was a semi-recumbent prototype (developed by Inserm U887 and Tech
med, Champs sur Yonne, France), which permits different pedaling frequencies. The
ergometer was pedaled backward with participants actively resisting the movement. A
visual display of cycling torque produced during ECC was provided. In order to maintain
comparable hemodynamics during CON, a semi-recumbent concentric ergometer was
used (Excite + Recline, Technogym SpA, Cesean, Italy). ECC and CON exercise sessions
were randomized, counterbalanced, and were performed one month apart to prevent any
delayed onset muscle soreness and the long-term protective, repeat bout effect triggered
by eccentric cycling [18]. All cycling sessions were performed at 30 rpm for 45 min. This
cadence was chosen because performing high velocity eccentric contractions requires an
advanced degree of coordination that needs several training sessions not performed in this
study, which focused on an acute bout of exercise. Moreover, the custom-made ergometer
presented technical limitations and could not allow the achievement of high pedaling fre-
quencies. ECC and CON cycling power were selected to produce a similar HR of 100 bpm
at the beginning of exercise (first 5 min) and remained stable throughout the exercise
period. The target HR was fixed based on a previous study, which was around 54% of peak
heart rate observed during a concentric incremental test [19]. To confirm that the work
was practical for the participants, a 5 min test interval was performed on the ECC cycle
ergometer immediately before the ECC bout. Since the initial session of eccentric cycling
should produce the greatest degree of muscle soreness and potential change in autonomic
balance [18], testing was performed without adaptation to eccentric activity. VO2 was
continuously monitored by gas exchange testing during all sessions (Vmax Encore 29 C,
SensorMedics, Yorba Linda, CA, USA).

2.4. RR Measurements and Calculation of DFA a1

An ECG device with a sampling rate of 500 Hz (CASE P2, GE Healthcare, Bucking-
hamshire, UK) was used to detect and record RR intervals during all sessions. RR data was
downloaded as text files, then imported into Kubios HRV Software Version 3.5 (Biosignal
Analysis and Medical Imaging Group, Department of Physics, University of Kuopio, Kuo-
pio, Finland; [20]). Kubios preprocessing settings were set to the default values including
the RR detrending method which was kept at “Smoothn priors” (Lambda = 500). The RR
series was then corrected by the Kubios “automatic method” [21] and relevant parameters
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exported as text files for further analysis. In brief, DFA a1 estimation is based on the root
mean square of the fluctuation of the detrended RR data and is measured in observation
windows of different sizes (widths). The data is then plotted against the size of the window
on a log–log scale. The scaling exponent represents the slope of the line, which relates (log)
fluctuation to (log) window size with DFA a1 window width set to 4 ≤ n ≤ 16 beats for
computation of the a1 component [10,13].

DFA a1 and average HR were calculated from the RR data series of the 2 min time
window at the end of 10 (T10) and 45 min (T45) of cycling. Two-minute time windowing
was selected based on previous estimates as to the minimal beat count required [22].
Artifact levels measured by Kubios HRV were below 5%. This limit was previously shown
to have minimal effect on DFA a1 during exercise [23].

2.5. Blood Pressure and Biochemical Measurements

Continuous monitoring of diastolic and systolic blood pressure was obtained via a
photoplethysmographic device using the model flow method (Nexfin, BMEYE B.V., Am-
sterdam, The Netherlands). At the end of exercise, whole blood lactate concentrations
were measured from venous samples collected into lithium heparin coated vacutainers (BD
Vacutainer, Fisher Scientific, Strasbourg, France) using a portable lactate analyzer (Lactate
Pro, Arkray, Kyoto, Japan). Additionally, separate samples were collected at the same time
point in ethylenediaminetetraacetic acid (EDTA) to determine norepinephrine concentra-
tion using a specific and sensitive radioenzymatic method at the Clinical Chemistry Unit at
University Hospital of Besançon.

2.6. Statistics

Statistical analysis of means and standard deviations were performed for demographic
and performance data in Excel 365 (Microsoft, USA). The Shapiro–Wilk test was used to
confirm normal distribution of the data. Levene’s test was used to show that the between
group difference in variances was equal. The correlation between the percent difference in
HR, systolic, diastolic blood pressure, norepinephrine, and serum lactate levels with the
percent difference in DFA a1 at T45 of ECC vs. CON session ((ECC T45—CON T45/CON
T45) × 100) was assessed using linear regression, Pearson’s r correlation coefficient, and
standard error of estimate (SEE). The strength of Pearson’s r correlations evaluated as
follows: 0.3 ≤ r < 0.5 low; 0.6 ≤ r < 0.8 moderate; and r ≥ 0.8 high [24]. Two-way ANOVA
with repeated measures and Bonferroni correction was used for main effect analysis (time:
T10 vs. T45, group: CON vs. ECC) and paired t testing for direct comparisons. For all tests,
the statistical significance was accepted as p ≤ 0.05. Cohen’s d was used to denote effect
sizes for direct comparisons (small effect = 0.2, medium effect = 0.5, large effect = 0.8; [25].
ANOVA statistical analysis was performed using SPSS 23.0 (IBM Statistics, USA).

3. Results

Incremental cycling test results showed a mean VO2MAX of 51 ± 10 mL/kg/min,
HRMAX of 189 ± 5 bpm, maximal power of 318 ± 69 watts, and heart rate at first ven-
tilatory threshold of 153 ± 6 bpm (81% of HRMAX). Individual results of the study are
listed in Table 1 for HR, VO2, and DFA a1 for both CON and ECC at T10 and T45 of the
exercise sessions. Figure 1 shows HR and DFA a1 during ECC and CON at T10 and T45.
As expected, HR at T10 were 102 ± 9 bpm and 102 ± 13 bpm for CON and ECC, respec-
tively (corresponding to 54% of HRMAX), without significant difference. The corresponding
cycling power was 81 ± 15 watts for CON and 205 ± 31 watts for ECC (p < 0.001, d = 4.415).
Significant interaction effects of time and group could be found for HR (F = 7.084, p = 0.015,
partial η2 = 0.262). While the HR differential was not significant at T10, a progressive drift
over time was observed (F = 25.053, p < 0.001, partial η2 = 0.556), and at T45, the HR were
significantly higher for both CON (p < 0.001, d = 1.570) and ECC (p = 0.003, d = 1.485),
with significantly higher HR for ECC than CON at T45 (p = 0.047, d = 1.059). Contrary to
HR, VO2 showed no significant changes in both conditions (F = 0.930, p = 0.346, partial
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η2 = 0.044). Finally, the ANOVA analysis showed significant main time effects for DFA a1
(F = 7.432, p = 0.013, partial η2 = 0.271). DFA a1 did not significantly change during CON
(p = 0.48, d = 0.22 but significantly decreased during ECC with large effect size (p = 0.004,
d = 1.087). Values at T45 for norepinephrine, lactate, systolic, and diastolic blood pressure
for each participant are listed in Table 2. No significant differences were observed between
values at the end of CON and ECC for norepinephrine (p = 0.28, d = 0.35), lactate (p = 0.71,
d = 0.12), and systolic blood pressure (p = 0.43, d = 0.25). However, diastolic blood pressure
was significantly higher at the end of ECC compared to CON (p = 0.01, d = 0.91).

The percentage difference of DFA a1 at T45 of ECC vs. CON sessions did correlate
with the percent difference in HR with Pearson’s r of 0.73 (see Figure 2). The percentage
difference of DFA a1 did not correlate with that of norepinephrine (r = 0.31, SEE = 32%, p =
0.35), serum lactate (r = 0.07, SEE = 33%, p = 0.32), systolic (r = 0.18, SEE = 33%, p = 0.59)
and diastolic blood pressure differences (r = 0.07, SEE = 32%, p = 0.83).

Table 1. Heart rate (HR), oxygen consumption (VO2), and DFA a1 for all participants measured at elapsed time of 10
(T10) and 45 (T45) minutes of either concentric (CON) or eccentric (ECC) cycling. Mean (± standard deviation, SD) listed.
* Significantly different from T10; # significantly different from CON.

T10 T45

Participant

HR
(bpm)

VO2
(mL/min/kg) DFA a1 HR

(bpm)
VO2

(mL/min/kg) DFA a1

CON ECC CON ECC CON ECC CON ECC CON ECC CON ECC

1 105 104 17.6 14.3 0.946 1.18 105 93 18.3 14.0 0.854 1.053

2 93 88 18.7 15.1 1.381 1.323 97 103 18.6 12.9 1.595 1.187

3 101 120 19.5 35.9 1.537 0.722 102 150 21.7 20.4 1.202 0.404

4 107 103 15.4 17.9 0.926 1.272 115 146 14.4 19.4 1.109 0.736

5 83 75 17.3 12.8 1.155 1.004 90 98 17.9 15.9 1.339 0.79

6 97 115 14.9 20.0 0.761 1.083 101 125 14.9 19.3 0.903 0.965

7 100 102 15.5 13.5 0.973 1.403 110 119 17.2 17.6 1.076 1.077

8 97 107 20.0 19.8 1.004 0.707 100 115 20.1 15.4 0.682 0.666

9 105 90 18.4 15.1 0.856 0.81 110 108 19.7 14.5 0.706 0.86

10 118 113 16.8 13.4 1.188 0.971 120 123 15.4 15.6 0.804 0.795

11 114 108 13.9 9.6 0.851 1.161 122 121 15.7 10.7 0.756 1.118

Mean
(±SD)

102
(±9)

102
(±13)

17.1
(±1.9)

17.0
(±6.7)

1.053
(±0.228)

1.058
(±0.228)

107
(±9) *

118
(±17) *#

17.6
(±2.2)

16.0
(±2.9)

1.002
(±0.277)

0.877
(±0.221) *
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Figure 1. A: HR during ECC and CON exercise session at elapsed time 10 (T10) and 45 min (T45).
B: DFA a1 during ECC and CON exercise session at elapsed time 10 (T10) and 45 min (T45). ECC:
dashed line, CON: solid line, error bars represent standard deviation, * significant for direct compari-
son of T10 vs. T45, # significant for direct comparison of CON vs. ECC at T10 or T45.
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Table 2. Norepinephrine, serum lactate, and systolic and diastolic blood pressure (BP) for all participants measured at
elapsed time of 45 min of either concentric (CON) or eccentric (ECC) cycling. Mean (± standard deviation, SD) listed.
# significantly different from CON.

Participant
Norepinephrine (pg/mL) Serum Lactate

(mmol/L)
Systolic BP

(mmHg)
Diastolic BP

(mmHg)

CON ECC CON ECC CON ECC CON ECC

1 715 513 1.79 1.33 127 141 57 76

2 696 783 1.72 2.36 128 143 61 71

3 580 753 1.55 1.89 135 115 56 62

4 820 1355 2.10 2.22 121 149 61 85

5 363 317 1.73 1.45 144 135 70 65

6 476 810 1.46 2.06 186 158 82 78

7 359 489 1.53 1.93 148 153 68 81

8 482 475 1.28 1.20 118 148 58 80

9 449 365 2.18 1.41 147 148 85 84

10 568 446 1.64 1.70 129 136 69 74

11 423 440 1.91 1.90 140 147 73 86

Mean
(±SD)

539
(±144)

613
(±284)

1.72
(±0.26)

1.77
(±0.36)

138
(±18)

143
(±11)

67
(±9)

77
(±7) #Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 11 
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Figure 2. Correlation between the percent difference in HR and DFA a1 at T45 of ECC vs. CON session ((ECC T45—CON
T45/CON T45) × 100). Pearson’s r, p value and SEE (standard error of estimate) listed.

4. Discussion

The intent of this study was to explore the behavior of the nonlinear HRV index DFA
a1 during eccentric cycling. In view of the potential usage of this type of exercise for cardiac
disease rehabilitation [26], a clinically relevant question is whether an unaccustomed bout
of moderate duration ECC may lead to a change in DFA a1 compared to CON. Since ECC
may trigger higher sympathetic activity than CON [1,8], along with complex interaction
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between mechanoreceptors, metaboreceptors and baroreceptors, a greater decline in DFA
a1 was anticipated. In this study, the initial workload was set to have the same HR at
the beginning of CON and ECC (54% of HRMAX). As expected, the power output was
higher during ECC than CON and remained stable throughout the 45 min of exercise. VO2
remained stable and similar in both CON and ECC at T10 and T45. However, the results
indicate a heterogenous response in HR and DFA a1 at ECC T45, despite a cycling intensity
well below the first ventilatory threshold. In regard to mean HR, the results were consistent
with what has been reported with a significant rise in ECC T45 values [1,8]. DFA a1
showed a significant decrease in T45 during ECC on a group level, with some participants
having deep declines. When assessed at 10 min elapsed time, no significant difference
in either DFA a1 or HR were seen between CON or ECC. Of interest, the difference in
DFA a1 between ECC vs. CON was correlated with that of the HR (r = 0.73), meaning
that the more the HR increased during ECC vs. CON, the more DFA a1 decreased. In
contrast, the decline in DFA a1 was not well correlated with the differences seen at T45 for
norepinephrine, lactate, or systolic or diastolic blood pressure. Further studies are required
to better understand the mechanisms behind the DFA a1 decrease with ECC exercise.
However, the implication of the particular DFA a1 values from the exercise intensity and
“organismic demand” [10] standpoints should be noted. Mean DFA a1 during both ECC
and CON at the 10 min mark, as well as CON at 45 min, were about 1.0, corresponding to
well correlated fractal patterns normally seen at very low exercise intensities well below
the VT1 [10,11]. In contrast, mean DFA a1 during the ECC T45 sampling interval was 0.877,
with 5 out of 11 participants having values near or below the 0.75 value. A DFA a1 of 0.75
has been associated with intensities near the VT1 during incremental tests while cycling
with conventional, concentric contractions or running [11,15]. One participant had a value
below 0.5, which corresponds to exercise intensities above the anaerobic threshold [12].
This same participant showed the largest HR rise during ECC T45 of nearly 50 bpm. The
design of the present study does not allow us to fully explain such behavior. However,
we believe that DFA a1 monitoring in patients with cardiovascular disease may help to
forewarn inappropriate exercise intensities during ECC during rehabilitation training.

One of the major attractions of ECC, especially in cardiac rehabilitation scenarios,
revolves around the concept of training with more challenging muscular loads at a relatively
low oxygen consumption [1–5]. This is felt to encourage muscular growth along with
oxidative metabolic shifts despite a reduced cardiac strain during training. However,
recommendations for training intensity distributions have been problematic due to the
altered HR and/or power relationships to oxygen consumption during eccentric exercise [1].
In addition, many of the best candidates for an ECC program, such as those with congestive
heart failure or ischemic disease will be on beta adrenergic blockade, further altering
heart rate targets [27]. Even under optimal circumstances, prescribing training intensity
targets based on predetermined formulas can be problematic [28,29]. Leveraging the
well-established relationship of DFA a1 to exercise intensity levels [10–12] may therefore
provide needed exercise prescription guidance. This could be in the form of estimating an
ECC related aerobic threshold, as well as prevention of excessive exercise intensities. The
present results also point to the possibility of untoward autonomic stress, as manifested
by a decline in DFA a1 during the initial acclimation phases of ECC in some participants.
Previous studies have noted a relative rise in HR during ECC compared to CON at the
same VO2 [1,8]. This has been hypothesized to be due to a primary reduction in stroke
volume with a secondary rise in HR [8]. Underlying factors involved include higher
vascular afterload, altered respiratory kinetics, rib cage expansion, and noradrenaline
increase [1,8]. However, it is also possible that the rise in HR is the primary event related to
a change in autonomic balance. The autonomic driven, primary rise in HR would therefore
lead to the stroke volume reduction. This scenario is perhaps analogous to that of HR
elevation during exercise in the heat [30]. Over the years, it has been argued whether the
HR rise during heat exposure is due to cutaneous volume sequestration with a resulting
decline in preload/stroke volume (and secondary HR elevation) vs. heat exposure induced
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autonomic alteration with a primary HR rise (and secondary stroke volume reduction). In a
series of studies [30], it has been shown that the later scenario (primary HR elevation) may
be the underlying mechanism, illustrating the importance of autonomic balance in exercise
physiology. In fact, skin and core body temperature have been shown to correlate with the
degree of HR elevation seen during ECC [31]. It would be of interest to see whether body
temperature elevation also relates to the heterogeneous DFA a1 decline in this situation,
as an influencing factor due to organismic system demands. The rise in core temperature
during ECC may provide the common linkage to the change in autonomic balance seen.

5. Limitations and Future Directions

The present study investigated the effects of an initial bout of unaccustomed ECC
on DFA a1 over time compared to CON. As has been previously shown, slow acclima-
tion to ECC training is important to minimize discomfort, local muscular damage, and
inflammatory changes [18]. It is certainly possible that gradual acclimation training would
have produced different results to what was seen here but might not have provided the
stimulus we wanted to provoke for this initial study. No female participants were included,
and further study comparing male and female response is recommended. An interesting
metric that was not assessed in our study was skin and core body temperature. Given
the relationship of core temperature and HR elevation during ECC [30], future studies
examining DFA a1 could incorporate this as part of the monitoring protocol. RR data were
acquired with an ECG, not a typical consumer heart rate monitoring device. Recent study
indicates minimal device bias between high quality ECG vs. consumer wearables [22];
therefore, an extension of DFA a1 agreement to commonly used chest belt monitoring
devices seems reasonable. A significant limitation to the use of DFA a1 for exercise intensity
assessment in general is the presence of artifact and subsequent correction. Artifact levels in
this study were below 5%, which has been shown to have minimal effect on DFA a1, but RR
data with greater degrees of artifact may be unreliable [23]. Recent work points to specific
DFA a1 values that correspond to either the aerobic (0.75) or anaerobic (0.5) threshold in
recreational runners [11,12]. In addition, the 0.75 transition concept appears to be valid in a
population with heart failure, ischemic heart disease, and beta blocker usage [15]. If the
variable DFA a1 decline seen with unaccustomed ECC is due to a corresponding variation
in autonomic stress, real-time monitoring of this metric could be of great value in assuring
patient safety as well as providing individual training intensity prescription guidelines.
A smartphone application developed for many available devices (Android and iOS) using
consumer grade heart rate monitors has also been explored for both DFA a1 threshold
testing and in adhering to a polarized training model [32]. Further assessment of the usage
of DFA a1 for real-time monitoring during ECC seems a worthwhile endeavor especially in
at-risk patient populations.

6. Conclusions

During a session of unaccustomed ECC, DFA a1 and HR were stable at an elapsed
time of 10 min but had variable changes at 45 min in comparison to CON at similar oxygen
consumption below the first ventilatory threshold. Although mean HR rose and DFA a1
declined after 45 min of ECC, some participants had variable responses. The rise in HR
was correlated with the decline in DFA a1, pointing toward changes in autonomic balance
as a potential mechanism. Given the interest in ECC as an initial rehabilitation modality
for those with cardiovascular disease, further research into DFA a1 behavior during this
activity for training intensity guidance is recommended.
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