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Purpose: Radiation-induced lung disease (RILD), defined as dyspnea in this study,

is a risk for patients receiving high-dose thoracic irradiation. This study is a TRIPOD

(Transparent Reporting of A Multivariable Prediction Model for Individual Prognosis or

Diagnosis) Type 4 validation of previously-published dyspnea models via secondary

analysis of esophageal cancer SCOPE1 trial data.We quantify the predictive performance

of these two models for predicting the maximal dyspnea grade ≥ 2 within 6 months after

the end of high-dose chemo-radiotherapy for primary esophageal cancer.

Materials and methods: We tested the performance of two previously published

dyspnea risk models using baseline, treatment and follow-up data on 258 esophageal

cancer patients in the UK enrolled into the SCOPE1 multi-center trial. The tested models

were developed from lung cancer patients treated at MAASTRO Clinic (The Netherlands)

from the period 2002 to 2011. The adverse event of interest was dyspnea ≥ Grade

2 (CTCAE v3) within 6 months after the end of radiotherapy. As some variables were

missing randomly and cannot be imputed, 212 patients in the SCOPE1 were used

for validation of model 1 and 255 patients were used for validation of model 2. The

model parameter Forced Expiratory Volume in 1 s (FEV1), as a predictor to both validated

models, was imputed using the WHO performance status. External validation was

performed using an automated, decentralized approach, without exchange of individual

patient data.

Results: Out of 258 patients with esophageal cancer in SCOPE1 trial data,

38 patients (14.7%) developed radiation-induced dyspnea (≥ Grade 2) within

6 months after chemo-radiotherapy. The discrimination performance of the

models in esophageal cancer patients treated with high-dose external beam

radiotherapy was moderate, area under curve (AUC) of 0.68 (95% CI 0.55–0.76)

and 0.70 (95% CI 0.58–0.77), respectively. The curves and AUCs derived by

distributed learning were identical to the results from validation on a local host.
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Conclusion: We have externally validated previously published dyspnea models using

an esophageal cancer dataset. FEV1 that is not routinely measured for esophageal

cancer was imputed using WHO performance status. Prediction performance was not

statistically different from previous training and validation sets. Risk estimates were

dominated by WHO score in Model 1 and baseline dyspnea in Model 2. The distributed

learning approach gave the same answer as local processing, and could be performed

without accessing a validation site’s individual patients-level data.

Keywords: radiation-induced dyspnea, esophageal cancer, chemo-radiotherapy, prognostic model, distributed

learning

INTRODUCTION

In radiation therapy, radical radiation doses are expected to
provide better local control than lower palliative doses, however
the risk of radiation-induced adverse events is increased. Clinical
symptoms of radiation-induced lung disease (RILD) include
dyspnea, cough, and fever, which can have a serious effect on
the patient’s quality of life. Approximately 10–20% of patients
with lung cancer who receive (chemo)-radiotherapy developing
moderate to severe symptomatic RILD (1).

Radiation-induced dyspnea (RILD in this study) is a
side-effect for patients treated with high-dose thoracic
irradiation. Studies have reported the predictors for radiation-
induced dyspnea for lung cancer patients treated with
(chemo)radiotherapy (2, 3). The risk factors for RILD include
dosimetric factors, clinical factors, pathological factors and blood
biomarkers (2–16). In our knowledge, there is no published
study reporting the risk factors of radiation-induced dyspnea
for patients with primary esophageal cancer, which might be
explained by the fact that dyspnea is not routinely assessed
during follow-up of esophageal cancer treatment.

The current study conducted a TRIPOD (Transparent
Reporting of A Multivariable Prediction Model for Individual
Prognosis or Diagnosis) Type 4 validation (17) of previously-
published dyspnea models M1 (2) and M2 (3) via secondary
analysis of the SCOPE1 (18, 19) dataset. SCOPE1 was a
randomized controlled trial investigating the effects of chemo-
radiotherapy with and without additional cetuximab in patients
with esophageal cancer, including follow-up assessments of
dyspnea. We quantify the predictive performance of these two
models for predicting the maximal dyspnea grade ≥ 2 within
6 months after the end of high-dose chemo-radiotherapy for
primary esophageal cancer. The goal of this study is to verify
two hypotheses: (I) that a common thoracic RILD model may be
feasible for a different index tumor and (II) that it is feasible to
perform an external validation of a toxicity model between two
sites via a distributed learning approach without any exchange of
patient-specific records.

METHODS AND MATERIALS

Model Development Cohorts
Patient characteristics in the development and validation cohorts
are detailed in Table 1. The first radiation-induced dyspnea
model (M1) (2) was developed from 438 patients with either

non-small cell lung cancer (NSCLC) Stage I-IIIB or limited
disease small cell lung cancer, treated with curatively-intended
(chemo)radiotherapy between January 2002 till January 2007.
Patients in this cohort were predominantlymale (328/438, 74.8%)
with confirmed NSCLC histology (292/438, 66.7%) and a spread
of chemotherapy regimens (concurrent 70/438, 16%; sequential
203/438, 46%; no chemotherapy 159/438, 36%, unspecified 6/438,
1%). RILD, including dyspnea, was scored according to CTCAE
(v3.0) (20) during radiotherapy (RT) and up to a maximum of 6
months after RT. A range of radiotherapy prescribed doses from
46.9 to 79.2Gy were used, with fraction doses not exceeding 2 Gy.

A second radiation-induced dyspnea model was developed
from 259 lung cancer patients treated with curatively intended
chemo(radiotherapy) between 2008 and 2011, Stage I-IIIB
and fractional dose ≤ 3Gy were used to develop a second
radiation-induced dyspnea model (M2) (3). These patients were
treated in two hospitals, underwent PET/CT for radiotherapy
treatment planning and had lung volumes delineated in the
planning system. This cohort was drawn from an earlier
iso-toxicity dose escalation radiotherapy trial (clinicaltrials.gov
identifier NCT00572325 and NCT00573040) with maximum
tumor dose not exceeding 69Gy. This cohort was predominantly
male (163/259, 62.9%) with confirmed NSCLC histology
(198/259, 75.6%), received concurrent chemotherapy (148/259,
57.1%) and had no surgery prior to radiotherapy (236/259,
91.1%). Carboplatin and gemcitabine were given for sequential
chemotherapy, and cisplatin and etoposide for concurrent
chemotherapy. RILD, including dyspnea, was scored according
to CTCAE (v3.0), by either thoracic physicians or radiation
oncologists, at baseline and every 3 months following RT.

External Validation Cohort
Two hundred and 58 esophageal cancer patients were enrolled in
the SCOPE1 (18, 19) trial from 36 UK centers between February
7, 2008 and February 22, 2012. The inclusion criteria were: non-
metastatic, histologically confirmed carcinoma of the esophagus
(adenocarcinoma, squamous-cell, or undifferentiated carcinoma)
or gastro-esophageal junction (Siewert type 1 or 2 with <2 cm
extension into the stomach); selected for definitive chemo-
radiotherapy by a designated multidisciplinary team; aged 18
years or older; WHO performance status 0 or 1; stage I-III
disease (TNM stage 6); and esophageal tumor length < 10 cm as
measured by endoscopic ultrasound. The study protocol has been
published (19) and the trial was coordinated by theWales Cancer
Trials Unit (WCTU). Recruitment in SCOPE1 was halted due to
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TABLE 1 | Patient characteristics.

Variable D1

Maastro clinic

(N = 438)

D2

Maastro clinic

(N = 259)

V1

SCOPE1

(N = 212)

V2

SCOPE1

(N = 255)

GENDER

Male 328 (74.9%) 163 (62.9%) 120 (56.6%) 145 (56.2%)

Female 110 (25.1%) 96 (37.1%) 92 (43.4%) 113 (43.8%)

AGE (YEARS)

Mean 68 (SD 9) Mean 67.5 (SD

10.1)

Mean 72.8

(SD 8.95)

Mean 72.9

(SD 9.02)

SMOKING STATUS

Current

smoker

77 (29.7%) NA NA NA

WHO-PS

0 119 (27.9%) 63 (24.3%) 110 (51.9%) 130 (50.9%)

1 223 (52.3%) 153 (59.1%) 102 (48.1%) 125 (49.1%)

≥2 84 (19.7%) 43 (16.6%) 0 0

CCI

0 132 (30.9%) No: 184 (71.0%) NA NA

1 128 (30.0%) Yes: 75 (29%)

2 95 (22.2%)

≥3 72 (16.8%)

Missing 0

CARDIAC COMORBIDITY

No 132(30.9%) No: 184 (71.0%) 208 (98.1%) 252 (98.8%)

Yes 295 (69.0%) Yes: 75 (29.0%) 2 (1.0%) 3 (1.2%)

Missing 1 (0.1%) 2 (1.0%) None

BASELINE DYSPNEA SCORE

0 NA 78 (30.1%) 197 (92.9%) 238 (93.3%)

1 NA 140 (54.1%) 10 (4.7%) 14 (5.5%)

≥2 NA 38 (14.7%) 3 (1.4%) 3 (1.2%)

Missing NA 3 (1.1%) 2 (1.0%) None

DYSPNEA SCORE AFTER RT

0 NA NA 135 (63.7%) 164 (64.3%)

1 NA NA 46 (21.7%) 53 (20.8%)

≥2 NA NA 31 (14.3%) 38 (14.9%)

Missing NA NA

FEV1 (%)

Mean 70.0 (SD 23) Mean 76.0 (SD

21.86)

NA NA

CHEMOTHERAPY

No 159 (36.8%) 44 (17.0%) 0 0

Yes 273 (63.2%) 197 (76.1%) 212 (100%) 255 (100%)

Missing 0 18 (6.9%) 0 0

TUMOR LOCATION

Lower/middle

lobe

245 (56.3%) 76 (29.3%) NA NA

Upper lobe 190 (43.7%) 83 (32.1%) NA NA

MEAN LUNG DOSE (GRAY)

13.5 (SD 4.5) 15.7 (SD 4.44) 9.8 (SD 2.8) 9.83 (SD 2.8)

Min 0.01 0.01

Max 17.9 17.9

Median 10.0 9.9

Missing None 45 (9.80%)

V20 (%)

Mean 21.0 (SD

7.3)

Mean 25.5 (SD

9.9)

NA NA

WHO-PS, World Health Organization performance scale; CCI, Charlson comorbidity

index; FEV1, forced expiratory volume (1s); V20, volume of the lung receiving ≥ 20Gy,

SD, standard deviation. D1 and D2 are development cohorts for the validated model 1(2)

and model 2 (2). V1 and V2 are validation cohorts.

futility, but follow-up of at least 24 weeks on all recruited patients
was available for secondary analysis.

All patients received four cycles of cisplatin and capecitabine;
two cycles were given prior to commencement of RT,
and two cycles were given concurrently with RT. This
chemotherapy regimen was the most commonly used for
esophageal cancer treatment in the UK. Chemotherapy
dose was modulated for potential hematological toxicity
(based on neutrophil and platelet counts) and kidney
function (based on glomerular filtrate rate). Chemotherapy
cycles were also withheld for serious non-hematological
adverse events until resolution to grade 0 or 1. Half of
these patients were randomized to additional cetuximab for
their chemotherapy.

All 3D conformal RT plans were based on contrast CT 3mm
slices, for a prescribed dose of 50Gy in 25 once-daily fractions.
The esophageal clinical target volume (CTV) was manually
delineated as a 2 cm distal and 2 cm proximal expansion along
the esophagus from the gross primary tumor, and a 1 cm radial
expansion. The planning target volume was an additional 1 cm
proximal-distal expansion from the CTV and an extra 0.5 cm
radially. Lung volume receiving 20Gy or higher was constrained
to be <25% of the total lung volume.

None of the SCOPE1 patients in the validation cohort received
post-RT surgery. The majority of patients were male (145/258,
56%) with either mid- or lower-esophageal tumors (226/258,
87.6%) and mean endoscopy-defined tumor length of 5.6 cm.
Toxicity scoring according to CTCAE (v3.0) was carried out at
baseline, during each chemotherapy cycle, at 24 weeks and then
every 3 months thereafter.

Previously Published Dyspnea Model
Parameters
The model M1 (2) consisted of the following predictors: age,
WHO performance status (WHO-PS) before start of RT, nicotine
use (non-/ex-smoker vs. current smoker), FEV1 at baseline and
mean lung dose in Gy. The predictors used in model M2 (3) were
dyspnea score before start of RT, cardiac comorbidity, FEV1 at
baseline, tumor location (upper vs. middle/lower lobes of lung)
and sequential chemotherapy. Multivariate logistic regression
analysis was performed to build M1 and M2. The coefficients
used in the models are summarized in Table 2. Both models
defined adverse outcomes as dyspnea grade 2 or higher within
6 months of the end of (chemo)-radiotherapy.

Model Assumptions and Missing-Values
Imputation
The previous M1 and M2 had been developed on, and validated
in, primary lung cancer patients. However, Forced Expiratory
Volume (i.e., FEV1), smoking status and lung tumor location
(lobe) were uniformly absent from the esophageal SCOPE1
dataset. We assumed (based on the trial protocol) that all
SCOPE1 patients received chemotherapy and we simulated
different population scenarios for smoking status. For the model
M2, we further assumed that unintended radiation dose for
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TABLE 2 | Coefficients obtained from the multivariate logistic regression in the first

(M1) (2) and second (M2) (3) dyspnea models.

Variable Model coefficients

(M1)

Model coefficients

(M2)

Intercept −2.2767 −1.512

PERFORMANCE STATUS

WHO-PS = 1 0.28 –

WHO-PS ≥ 2 0.57 –

Current

smoker

−0.45 –

Age 0.02 –

Mean lung

dose

0.05 –

Baseline

dyspnea

– 0.990

Cardiac

comorbidity

– 0.826

Sequential

chemotherapy

– 0.610

Tumor in

middle/lower

lung lobe

– −0.290

Baseline FEV1 −0.02 −0.007

esophageal cancers were most analogous to RT for lung tumors
in lower and/or middle lung lobes.

Since FEV1 was a predictor in both M1 and M2, we imputed
the missing FEV1 measurements of the SCOPE1 patients from
available data in the model M1 development cohort while
blinded to the dyspnea outcome. The imputation was based on
categorical regression for WHO-PS = 0, WHO-PS = 1 and
WHO-PS≥2. A statistically significant fit for FEV1 (in % of total
expired volume) was found using the model:

FEV1 (in %) = 82.0 if WHO− PS = 0

FEV1 (in %) = 74.7 if WHO− PS = 1

FEV1 (in %) = 67.3 if WHO− PS ≥ 2

Distributed Learning
External validation was performed using the same distributed
methodology as published by Deist et al. (21), Jochems et al. (22)
and Shi et al. (23) using the Varian Learning Portal (VLP, Varian
Medical Systems, Palo Alto, CA) v1.0. A validation algorithm
containing model coefficients of M1 and M2 were remotely
distributed from the investigator site to the validation site via
a secured http channel. The SCOPE1 data was parsed using
a radiation oncology-specific semantic ontology into the Web
3.0-standard resource descriptor format (RDF). The distributed
validation algorithm executes as a purely site-specific local
computation by querying the local RDF repository. Only the
summary classification results of validation on the SCOPE1
cohort was returned to the investigator site. Security and privacy
settings within VLP blocked transfer and exposure of patient-
level records from the validation site to the investigator. Previous
studies (21–23) have proven that the algorithm converges to the

same result as if all of the patient data was locally processed on
site by an investigator. The workflow of the distributed learning
approach is shown in Figure 1.

Statistical Analysis
The validation algorithm was deployed in MATLAB, version
9.0 (MathWorks, Natick, MA). Discrimination of predictive
model was evaluated using the area under the receiver-
operator curve (AUC) metric (24). The AUC metric was
estimated by bootstrapping (1,000 resamples). Calibration of the
predictive model was assessed using calibration plots. The logistic
recalibration was performed through fitting a logistic regression
model by the linear predictor as the only covariate, which
leads to an updated model without changing discrimination
performance (25, 26).

RESULTS

Out of 258 available validation cases in the SCOPE1 dataset, 46
and 3 patients, respectively, were excluded from the validation
due to missing values of mean lung dose for validation of model
M1 and baseline scores of cardiac comorbidity and dyspnea for
validation of model M2. A total of 212 patients and 255 patients
were available to externally validate model M1 and M2. In the
validation cohort for M1 (V1), there were 31 patients (14.3%)
manifesting dyspnea grade 2 or higher within 6 months of RT. In
the validation cohort forM2 (V2), 38 patients (14.9%)manifested
dyspnea at the equivalent time point.

To investigate the effect of smoking status on the performance
of M1 in the external validation cohort, smoking status was
assigned to (i) all smokers, (ii) non-smokers, and (iii) randomly
and repeat 1,000 iterations. The test yielded the AUC of 0.68 ±

0.053, 0.68 ± 0.054, and 0.65 ± 0.04, respectively by bootstrap
sampling. Although the smoking status a missing predictor for
esophageal validation cohort, there was no statistically significant
difference in performance observed based on a bootstrapped
Wilcoxon test between the three scenarios (p = 0.34, p = 0.17,
p= 0.11). Therefore, we set it randomly in the validation cohort.

The receiver operator curves (ROCs) of the models on
external validation sets V1 and V2 are shown in Figure 2.
The AUC of both models measured in the previous studies
were 0.62 and 0.72 in internal validation and 0.61 and 0.67
in external validation. Compared to the previous studies, the
AUC of the two models on V1 and V2 were 0.68 (95%
CI: 0.55–0.76) and 0.70 (95% CI: 0.58–0.77), respectively. No
statistically significant difference in performance was observed
betweenM1 andM2 in the previous training cohorts and current
external validation cohorts (AUC of M1 0.62 vs. 0.68, p =

0.17; AUC of M2 0.72 vs. 0.70, p = 0.45, Wilcoxon test). The
detailed assessment of accuracy, sensitivity, specificity, positive
predictive value and negative predictive value are shown in
the Supplementary Table 1. Both prognostic models (M1 and
M2) showed poor calibration performance and tended toward
underestimation of dypsnea in the test population, which is
shown in the calibration plots (Figures 3i,iii). Recalibration was
performed to update the prognostic models (Figures 3ii,iv).
As expected, the recalibration resulted in higher predicted
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FIGURE 1 | Generalized workflow of the distributed learning approach used in this study. D1 and D2 indicate the development cohorts used to develop the original

RILD models M1 and M2. V1 and V2 indicate the validation cohorts for M1 and M2, respectively. CI indicates confidence interval.

risks without changing the AUCs. The calibration line of
the recalibrated M1 was shifted be closer to the ideal line,
whereas the calibration line of M2 was not improved overall by
the recalibration.

DISCUSSION

The current study has tested two previously-published RILD
models M1 and M2 (2, 3) on the independent validation
sets V1 and V2 of the SCOPE1 trial data (18, 19), which
comprises esophageal cancer patients treated with chemo-
radiotherapy. Moreover, external validation was successfully
implemented using an automated and decentralized approach
without exchange of individual patient data.

As is well known, high-dose of thoracic radiation can often
provide better local tumor control and survival for patient with
cancer. Previous studies have shown that additional radiation in
an appropriate range can improve locoregional tumor control
and increase survival of patients with lung cancer (27–29).
However, the irradiation dose in the radiotherapy treatment of
esophageal cancer can have an adverse effect on lung tissue
resulting in RILD, such that it leads to disutility of care and
have a serious negative impact on patients’ quality of life. RILD
usually manifests itself in the acute (<6 months) phase as
radiation pneumonitis (RP) and in the later (>6 months) phase
as chronic pulmonary fibrosis (30, 31). RP is the most common
dose-limiting complication of thoracic radiation with clinical
symptoms such as dyspnea, cough, and sometimes fever (32).
Therefore, it is a trade-off between better tumor control (i.e.,
better survival or lower death rate) and RILD.

The prognostic models are regarded as the basis of clinical
decision support systems (CDSS) (33) that can relieve clinicians
from the pressure of analyzing the large volume of publications

and data by applying discoveries from research into a data-
analytics architecture (34, 35). However, it is difficult to apply
the results of research in clinical practice to predict which
patients with esophageal cancer will likely suffer from RILD.
The first reason is that many studies have investigated the risk
predictors of RILD including dosimetric, clinical, pathological
factors or blood biomarkers (2–16), but results between studies
are highly variable or even contradictory (1, 32). In themeantime,
there is no standardized lung toxicity grading system and no
standard data models (so-called umbrella protocols) to guide
prospective collection on routine cases. On the other hand,
few publications report the risk predictors of RILD (e.g., severe
dyspnea), for patients with esophageal cancer. This difficulty
might be explained by the fact that dyspnea is not routinely
assessed during diagnosis and prognosis of esophageal cancer.

At present, it is widely acknowledged that a prognostic model
cannot be applied in clinical practice before its feasibility and
practicability have been certified via validation on different
levels (17, 36). External validation of a prognostic model should
be performed on an/some independent cohort(s), because
most models present optimistic results in the development
cohorts. Validation of prognostic models involves two
aspects (37). First, generalizability of a prognostic model
can be described by validation on similar (reproducibility) or
different (transferability) cohorts. The similarity or difference
between cohorts refer to temporal, geography, methodology or
investigator, which aims to distinguish from the development

cohort of the original model (17, 38, 39). One primary goal

of the current study to investigate the transferability of two

previously-published lung toxicity models M1 and M2 under
these “different” situations.

Second, accuracy performance of a prognostic model shows
the statistical validity (40). Discrimination and calibration, in
general, measure the accuracy performance. (i) Discrimination
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FIGURE 2 | Receiver operating characteristic curves of the prognostic models (A): M1 and (B): M2 with 95% CI of area under the receiver-operator curve (AUC). CI,

confidence interval.

describes whether an individual with higher predictive
probability is indeed experience RILD more often. Area
under the receiver-operator curve (AUC) (24) was used to assess
the discrimination performance, which is shown in Figure 2. The
model M1 achieved a better discrimination performance (i.e.,
AUC) on V1 compared to the internal and external validation
performed in the original study. The M2 obtained a better
AUC on V2 than the AUC of the external validation but was
consistently degraded in AUC from the internal validation of the
original study. (ii) Calibration reflects the agreement between
observed event and predicted risk. The calibration performance
was assessed by calibration plots, which are shown in Figure 3. A
perfectly calibrated model means that the predicted probabilities
of RILD are identical to the observed frequencies of RILD for
all patient groups. The calibration-in-the-large (i.e., intercept)
of M1 and M2 were 3.79 (p = 0.08) and 0.42 (p = 0.46), and
calibration slope were 2.60 (p = 0.007) and 1.99 (p < 0.0001),
which indicates that predicted risks of M1 and M2 in SCOPE1
were systematically under-estimated and there was insufficient
variation of covariates in V1 and V2 sets. A possible explanation
may involve systematic under-reporting of clinical toxicity in
the retrospectively-collected training sets. By testing different
assumptions about smoking status in the test cohorts, there is no
evidence to support an effect of smoking in either aggravating
or protecting against dyspnea. It is also possible that the original
models in lung cancer were improperly calibrated, but there was
no additional information in the published articles to confirm
this. However, a systematic underestimation of the dyspnea
rate would be consistent with an offset error in the linear fit
of FEV1 using the WHO performance score. This potential
source of error could only be circumvented by measuring
the FEV1 for the SCOPE1 test cases, which was not done.
To correct poor calibration performance, recalibration can
be performed through fitting a logistic regression model by
the linear predictor as the only covariate, which leads to an
updated model without changing discrimination performance

(25, 26, 41). The calibration performance of M1 was moderate
after conducting recalibration. The M2 model still had poor
calibration performance even after recalibration, which means
care should be taken applied in real clinical practice.

Strengths of the Analysis
The SCOPE1 trial data, as an independent validation cohort,
satisfied the conditions of separation in terms of temporal
(different treatment time of patients in SCOPE1 and previous
training cohorts), geographic (different regions, Cardiff vs.
Netherlands) and investigator (different people from different
institutes) from the development cohort of lung cancer. It
means that the SCOPE1 was a sufficiently challenging dataset
to externally validate the transferability of a prediction model
between different index cancers (38, 40). Second, we have shown
the RILD models (e.g., M1) can be robustly transferred to other
diseased sites (e.g., esophagus) that only having the incidentally
irradiated normal tissues in common without losing accuracy
performance. Thirdly, this study was implemented using an
automated and distributed approach without exchanging any
patient data. Due to the confidentiality of patient data, local
laws and technical issues, it can be prohibitively difficult
to exchange patient data among hospitals. Compared to the
centralized learning approach, the distributed learning approach
can avoid privacy-related issues by sending research questions
among institutes. The distributed learning can be achieved
by transferring a machine learning algorithm to a target
site and returning the results back to the sender rather
than transferring real data. This process means knowledge
exchange occurs without important clinical data leaving hospitals
and there is no loss of validation integrity when performed
distributed learning.

Weakness of the Analysis
The current study has some limitations worthy of mention. First,
some outcome data and predictor variables were missing in
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FIGURE 3 | Calibration and recalibration plots of M1 and M2 on the V1 and V2 cohorts, respectively. Perfect calibration is represented by the solid line through the

origin with slope = 1. Ten quantile groups were used to compare the predicted probability and the corresponding observed frequencies with a triangle. Histogram of

outcomes (i.e., dyspnea or no dyspnea) is shown below each plot. a, calibration-in-the large; b, calibration slop; c, area under the receiver-operator curve (AUC).

the validation cohorts, and data was not missing completely at
random. If the missing data were compulsory predictors for the
prognostic models (M1 and M2) and cannot be imputed, the
corresponding patients had to be removed from the validation
cohort. In addition to this, there are non-random missing data,
which might be explained by the fact that the information
about lung cancer were not be registered for patients with
esophageal cancer in the SCOPE1 trial, such as tumor location,
smoking status, and FEV1. For tumor location, we assumed that
all of these esophageal cancer patients treated with radiation
were similar to lung patients with a tumor in the lower lung
lobe. For the missing FEV1, WHO-PS was used to impute as
mentioned above. Second, there are some differences between
the development (D1 and D2) and validation cohorts (V1 and
V2), of which the effect on the model performance are the
subject of future work. (i) SCOPE1 randomized half of the
patients between cetuximab or not, whereas patients in D1 and
D2 were not treated with cetuximab. (ii) All patients received
chemo-radiotherapy in V1 and V2, while only 273 (63.2%)
and 197 (76.1%) patients received chemotherapy in D1 and

D2. (iii) The numbers of patients in D2 with baseline score 0,
1, ≥2 are 78 (30.1%), 140 (54.1%), and 48 (14.7%), whereas
these numbers in V2 are 238 (93.33%), 14 (5.49%), and 3
(1.18%). It indicates that more patients had low-grade or no
dyspnea overall in V2 compared with patients in D2. The
effects of these uncertainties on the performance of prognostic
models M1 and M2 remain unclear and are the subject of
future studies.

Finally, another potential limitation is about the validated
models’ selection, that is the performance of M1 is moderate
in terms of AUC and M2 does not include lung dose volume
parameters. Although the discrimination performance of M1
is moderate, we found it achieved a similar and even better
discrimination performance in the external validation cohort,
which demonstrated that M1 has a good generalization. M2 was
developed using multivariable regression approach. The original
study (3) did evaluate mean lung dose and V20Gy as potential
risk factors, but then dropped it from the final regression model
because their contributions were small and/or could not be
shown to be statistically significant.
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Future Work
Future work would involve two aspects. First, the M1 could be
tested on a similar dataset to validate the reproducibility. Second,
we would like to re-train the lung toxicity model on D1 and
D2 via combining different types of features, such as image,
pathological or generic features.

CONCLUSION

In this study, we have externally validated previously published
dyspnea models using an esophageal cancer dataset. First, the
discrimination performance of the models in esophageal cancer
patients treated with high-dose external beam radiotherapy are
moderate, AUC of 0.68 (95% CI 0.55–0.76.) and 0.70 (95% CI
0.58–0.77), respectively. Second, risk estimates were strongly
determined by WHO score in Model 1 and baseline dyspnea
in Model 2. Third, the distributed learning approach gave
the same answer as local validation but is feasible without
accessing a validation site’s patient-level data. Finally, the
clinical contribution of the dyspnea prognostic model is that
it would help doctors to identify patients who will likely
suffer from severe dyspnea and who could therefore benefit
from dose de-escalation in (chemo)-radiotherapy. Although
we cannot conclude that a common thoracic RILD model is
feasible for a different primary tumor, it can be deemed as
a “benchmark” for further investigation of RILD prognostic
models of thoracic tumor.
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