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ABSTRACT While the plant host metabolome drives distinct enrichment of detri-
mental and beneficial members of the microbiome, the mechanistic interomics rela-
tionships remain poorly understood. Here, we studied microbiome and metabolome
profiles of two Arabidopsis thaliana accessions after Fusarium oxysporum f.sp. mathioli
(FOM) inoculation, Landsberg erecta (Ler-0) being susceptible and Col-0 being resist-
ant against FOM. By using bacterial and fungal amplicon sequencing and targeted
metabolite analysis, we observed highly dynamic microbiome and metabolome pro-
files across FOM host progression, while being markedly different between FOM-ino-
culated and noninoculated Col-0 and Ler-0. Co-occurrence network analysis revealed
more robust microbial networks in the resistant Col-0 compared to Ler-0 during
FOM infection. Correlation analysis revealed distinct metabolite-OTU correlations in
Ler-0 compared with Col-0 which could possibly be explained by missense variants
of the Rfo3 and Rlp2 genes in Ler-0. Remarkably, we observed positive correlations
in Ler-0 between most of the analyzed metabolites and the bacterial phyla
Proteobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, and Verrucomicrobia,
and negative correlations with Actinobacteria, Firmicutes, and Chloroflexi. The gluco-
sinolates 4-methyoxyglucobrassicin, glucoerucin and indole-3 carbinol, but also phe-
nolic compounds were strongly correlating with the relative abundances of indicator
and hub OTUs and thus could be active in structuring the A. thaliana root-associated
microbiome. Our results highlight interactive effects of host plant defense and root-
associated microbiota on Fusarium infection and progression. Our findings provide
significant insights into plant interomic dynamics during pathogen invasion and
could possibly facilitate future exploitation of microbiomes for plant disease control.

IMPORTANCE Plant health and fitness are determined by plant-microbe interactions
which are guided by host-synthesized metabolites. To understand the orchestration of
this interaction, we analyzed the distinct interomic dynamics in resistant and suscepti-
ble Arabidopsis ecotypes across different time points after infection with Fusarium oxy-
sporum (FOM). Our results revealed distinct microbial profiles and network resilience
during FOM infection in the resistant Col-0 compared with the susceptible Ler-0 and
further pinpointed specific microbe-metabolite associations in the Arabidopsis micro-
biome. These findings provide significant insights into plant interomics dynamics that
are likely affecting fungal pathogen invasion and could possibly facilitate future exploi-
tation of microbiomes for plant disease control.

KEYWORDS plant pathogen, root microbiome, glucosinolates, phenylpropanoids,
phytohormones, microbial co-occurrence networks, plant resistance

Plant-microbe interactions are of high agronomic importance for their beneficial or
detrimental effects on plant growth and productivity. For a holistic understanding of

these interactions, numerous recent studies have attempted to unravel the complex
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interactions occurring between plants and their associated microbiota. Together with
environmental factors, host traits, including plant metabolites mediate the assembly of
the plant microbiota (1, 2) by for instance serving as carbon and energy sources or as
chemical signaling molecules (3). Strong evidence exists that plant metabolites shape
the host-associated microbiome (4–6). For example, coumarins, flavonoids, glucosino-
lates, benzoxazinoids, and phytohormones such as salicylic acid (SA), jasmonic acid (JA),
and ethylene play profound roles in modulating root-associated microbiomes (5, 7–12).

During pathogen invasion, host metabolic reconfiguration mostly follows immune
signaling events triggered by the recognition of pathogenic signatures (13). A number
of studies have reported changes in metabolic compounds after pathogen infection,
followed by alterations in microbiomes composition (14–16). The composition and di-
versity of the host-associated microbiota determine pathogen invasion resistance (17–
19). Highly complex and diverse microbial communities characterized by a web of co-
operative and antagonistic interactions among microbial members (20, 21) have been
shown to be more resistant to pathogenic perturbations (22, 23). The host-associated
microbiota suppresses the invasion of pathogens by antagonizing effects or through
the activation of host-defense mechanisms (24, 25). Ecological network metrics are
used to predict the mechanisms of persistence and stability of microbial communities (17,
26). For example, Wei et al. (26), showed that bacterial community networks having low
nestedness and high connectance reduced the invasion success and progression of
Ralstonia solanacearum in tomato roots. Moreover, network analysis has highlighted eco-
logically important microorganisms such as indicator species or hub members in microbial
communities (21, 27–29). Hub species have, by definition, many network connections, so
their removal destabilizes the overall network structure (27) and thereby affect community
resilience to pathogen perturbations.

Because resistance to pathogen infection is likely a combination of plant and micro-
biota traits, it is equally important to gain insights into microbial community responses
to pathogen invasion for efficient disease control. Novel plant-mediated avenues for
designing pathogen-resilient plant microbiomes require in-depth knowledge of the
complex and dynamic interactions occurring between the metabolome and microbial
communities. However, studies deciphering links between soilborne pathogens, micro-
biota, and plant-metabolites are limited.

The Arabidopsis thaliana (hereafter, Arabidopsis) ecotypes Col-0 and Ler-0 have dif-
ferential resistance responses to species of the genus Fusarium (30–33). Fusarium oxy-
sporum is a hemi-biotrophic root pathogen with a broad host range infecting several
plants species, including the model plant Arabidopsis (30). Arabidopsis ecotypes exhibit
differential resistance levels to Fusarium oxysporum f. sp. matthiolae (FOM), one of the
formae speciales causing disease in the crucifers (30). This makes the Arabidopsis-FOM
system an ideal model for studying plant-pathogen interactions. The resistance to
Fusarium oxysporum in Arabidopsis Col-0 is controlled by six QTLs (26), located in genes
encoding the RFO1 (26), RFO2 (31), RFO3 (34), and RLP2 (31) proteins.

We hypothesized that Fusarium oxysporum pathogenicity and its impact on the
Arabidopsis microbiome and metabolome is dependent on the levels of disease resist-
ance. We further assumed that a successful FOM infection would result in more significant
global shifts in the microbiomes and metabolomes of the susceptible Ler-0 than in the re-
sistant Col-0. The objectives of our study were to (i) understand how FOM infection influ-
ences root-associated microbial community structures and Arabidopsismetabolite profiles,
(ii) examine the interomic dynamics during FOM infection in the two Arabidopsis acces-
sions with different resistance profiles, and (iii) assess microbiome-metabolome associa-
tions occurring in the inoculated and noninoculated Col-0 and Ler-0 lines. To test our
hypotheses, we studied omics profiles in a time series of FOM infection in Col-0 and Ler-0.

RESULTS

We summarize the response of Arabidopsis to FOM and the omics dynamics during
resistant and susceptible interactions. The quantified metabolites and their metabolic
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pathways are shown (Table S1; Fig. S1A, B). All supplemental materials are provided in
this link https://doi.org/10.6084/m9.figshare.19422260.v1.

FOM colonizes the susceptible Ler-0 faster than the resistant Col-0. After FOM
inoculation, the most remarkable symptoms of wilting were observed in Ler-0, were
strongest at 25 days after inoculation (DAI) (Fig. 1A). Symptoms of wilting characteristic
of F. oxysporum infection were also observed in noninoculated Ler-0 (Fig. 1A). qPCR
confirmed significantly higher F. oxysporum quantities in inoculated Ler-0 compared
with the noninoculated Ler-0 samples (Fig. S2A). No significant differences were
observed between inoculated and noninoculated samples at the individual DAIs,
although F. oxysporum levels were generally higher in the inoculated samples (Fig. 1B).
F. oxysporum DNA was detected at low levels in the noninoculated plants, most likely
due to some presence of F. oxysporum in the soil used for the experiments. F. oxyspo-
rum DNA levels increased at a slower rate in Col-0 and declined at 25 DAI (Fig. 1B).

Microbiome structures. We characterized the Col-0 and Ler-0 root-associated
(roots and finely attached soils) microbiomes during FOM progression. We obtained a
total of 2,138,612 bacterial sequence reads (range 1,420 to 72,161; median 16,985 per
sample) resulting in 8,359 operational taxonomic units (bOTUs) while the fungal com-
munity profiling yielded 2,995,948 reads (range 11,192 to 37,255; median 18,122 per
sample) resulting in 438 fungal OTUs (fOTUs) (Table S2). The microbial read distribution
and rarefaction curves are reaching an asymptote, indicating satisfactory representa-
tion of the most common microbes in the studied samples (see Fig. S2B to E). Relative
abundances at class and genus levels for bacteria and fungi, respectively, are shown
(Fig. S3A, B). The bacterial classes Alpha/Gamma-proteobacteria and Actinobacteria
were the dominant taxa in both inoculated and noninoculated samples. Fungal reads
from FOM-inoculated samples were, not surprisingly, dominated by Fusarium oxysporum

FIG 1 Fusarium oxysporum f.sp. mathioli (FOM) symptoms, quantity, and effects on Arabidopsis root-associated microbiomes.
(A) The Arabidopsis genotypes Col-0 and Ler-0 showing wilting symptoms caused by FOM at 25 days after inoculation (DAI).
(B) Boxplot of quantitative PCR (qPCR) data of the abundance of Fusarium oxysporum in stems of noninoculated and inoculated
Col-0 and Ler-0 samples at 10, 15, 20, and 25 DAI. Figure A and data for Figure B have been published in Hooshmand et al. (35).
(C) Principal-coordinate analysis (PCoA) of Arabidopsis root bacterial communities across DAI using Bray-Curtis dissimilarity
distances.
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(fOTU1), as also supported by qPCR (Fig. S3C, D), and the appearance of symptoms
(Fig. 1A).

We assessed the impact of DAI, host genotype, and FOM treatment on the bacterial
and fungal communities. Bacterial alpha diversity was significantly higher in noninocu-
lated than inoculated Ler-0 samples at 5, 10, and 15 DAIs (Fig. S3E). Bacterial and fungal
communities showed distinct clustering across the different DAIs in PCoA plots accord-
ing to genotype and FOM inoculation (Fig. 1C [bacterial communities] and Fig. S3F
[fungal communities]). Bacterial communities were clearly separated based on FOM
treatment in Ler-0 at early DAIs but became indistinguishable at later stages. A permu-
tational multivariate analysis of variance (PERMANOVA) showed that in the whole data
set, DAI had the highest effect on bacterial communities (Adonis; R2 = 0.17, P , 0.001,
Table 1), while FOM inoculation, not surprisingly, explained the highest variation in
fungal communities (Adonis; R2 = 0.37, P , 0.001) (Table 1). By subsetting data sets,
DAI was having the strongest effect on bacterial communities in the inoculated Col-0
(Adonis; R2 = 0.42, P , 0.001) (Table S3), and on fungal communities in the inoculated
Ler-0 (Adonis; R2 = 0.59, P , 0.001) (Table S3). Using the data sets partitioned for indi-
vidual DAIs, the strongest effect of FOM inoculation was at 5 and 10 DAI (Table 1). The
effect of FOM inoculation diminished with time, whereas the genotype effect on fungal
community increased with increasing DAI it had the highest effect on the bacterial
communities at 20 DAI (Table 1).

FOM inoculation and host resistance affect OTUs. For an overview of microbial
relative read abundances in the treatments, a heatmap visualization of the 50 most
abundant bacterial and fungal OTUs is shown (Fig. S4A, B). In the bacterial data set, we
observed a remarkable enrichment of bOTU6 (Rhizobium) and bOTU10 (Pseudomonas
protegens) in inoculated samples (Fig. S4C). Also, the relative abundances of bOTU4
(Streptomyces) was found to be significantly higher in Col-0 that in Ler-0 and depleted
during FOM infection in both genotypes (Fig. S4D). Differential analysis revealed signif-
icantly different OTUs in Col-0 and Ler-0 samples. bOTU99 (Flavobacterium) and

TABLE 1 Summary of permutational analysis of variance (PERMANOVA) using the “adonis”
test on Bray-Curtis distance matrices for bacterial and fungal community dissimilarity
assessment using 1,000 permutations

Dataset Factor Bacteria R2 Fungi R2
Whole Genotype 0.02***a 0.05***

DAI 0.17*** 0.08***
FOM inoculation 0.06*** 0.37***
Genotype*DAI 0.10*** 0.07***
Genotype* FOM inoculation nsb 0.02***
DAI* FOM inoculation 0.05*** 0.08***
Genotype*DAI* FOM inoculation 0.04** 0.05***

DAI
5 Genotype 0.13*** 0.04*

FOM inoculation 0.20*** 0.69***
Genotype * FOM inoculation ns ns

10 Genotype 0.13*** ns
FOM inoculation 0.15*** 0.60***
Genotype * FOM inoculation ns ns

15 Genotype 0.15*** 0.11**
FOM inoculation 0.14*** 0.41***
Genotype * FOM inoculation 0.07* 0.10**

20 Genotype 0.17*** 0.16***
FOM inoculation 0.09* 0.46***
Genotype * FOM inoculation ns 0.10**

25 Genotype 0.14*** 0.32***
FOM inoculation ns 0.21***
Genotype * FOM inoculation 0.08* 0.12**

aSignificance of test indicated as ***, P, 0.001; **, P. 0.01; *, P, 0.05.
bThe ns denotes not statistically significant and R2 is the proportion of variation explained.
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bOTU248 (Pedobacter) were the most enriched in Col-0 and Ler-0, respectively
(Fig. S5A). Both fOTU14 and fOTU39 (both Cladosporium) and Rhizophlyctis (fOTU267)
were the most enriched fungal genera in noninoculated Col-0 and Ler-0, respectively
(Fig. S5B). In contrast, the family Leptosphaeriaceae (fOTU57) and an uncultured
Agaricomycetes (fOTU43) were strongly enriched in inoculated Ler-0 and Col-0, respec-
tively. bOTU6 (Rhizobium) and bOTU10 (Pseudomonas protegens) but also bOTU65
(Delftia), bOTU94 (Stenotrophomonas) and fOTU1 (FOM) were found to be strongly
enriched in inoculated samples compared with noninoculated samples (Fig. S5C, D).

Indicator species analysis identified the highest numbers of indicator bOTUs in Col-0,
especially in the noninoculated samples (Fig. S6A; inserted table; Table S5). Most of the
indicator bOTUs belonged to Proteobacteria and Actinobacteria, while Sordariomycetes,
Eurotiomycetes, and Dothidiomycetes distinctively dominate inoculated and noninoculated
samples (Fig. S6A, B). Actinobacteria and Planctomycetes were strongly enriched in inocu-
lated Col-0. Similarly, while Alphaproteobacteria was depleted, Gammaproteobacteria
and Verrucomicrobiae were highly enriched in inoculated versus noninoculated Ler-0.
Furthermore, we found distinct patterns of enrichment of indicator OTUs across different
DAIs, particularly within bOTUs (Fig. 2; Table S5). In Col-0, indicator bOTUs were most actively
recruited at 25 DAI, while indicator bOTU numbers moderately increased in Ler-0 with
increasing DAIs (Fig. 2A, B). bOTU10 (P. protegens) was the most abundant indicator in inocu-
lated Col-0 and Ler-0, while bOTU61 (Duganella) was highly depleted in inoculated Col-0,
and bOTU6 (Rhizobium) was depleted in inoculated Ler-0 (Table S5). There were weaker pat-
terns of enrichment of fOTU indicators across DAI, peaking at 25 DAI in Col-0 (Fig. S6C;
Table S5).

Microbial networks break down in the susceptible Ler-0 after FOM inoculation.
Co-occurrence networks visualized microbial co-occurrences and highlighted indicator
OTUs in the overall OTU networks (Fig. 3; Table S6). Network robustness determined by
node degree was highest in the noninoculated networks (Col-0: 8.49; Ler-0: 7.24) compared
with the inoculated networks (Col-0: 7.06; Ler-0: 5.02). Communities in noninoculated

FIG 2 Enrichment of bacterial indicator OTUs across different DAIs. Bacterial indicator OTU enrichment in
noninoculated and inoculated samples of (A) Col-0 and (B) Ler-0 at different days after inoculation (DAI).
Highly significant OTUs (P , 0.01) with an indicator value of at least 0.4 was used to define indicator
species.
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samples had more nodes and edges, while inoculated Ler-0 had the highest relative
number of negative edges (Fig. 3). Networks of Col-0 had a dense core cluster with
most of the indicator bOTUs found within this cluster (Fig. 3A, B). In contrast, Ler-0 networks
were less dense and had smaller microbial clusters especially in inoculated samples.
Indicator fOTUs were mostly located outside the main clusters, particularly in inoculated
samples (Fig. 3C, D).

The total number of positive co-occurrences were notably smaller in inoculated
samples (Ler-0, 2740; Col-0, 6196) than in noninoculated samples (Ler-0, 4837; Col-0,
8196), and was smallest in Ler-0. (Table S6). A remarkably higher proportion of nega-
tive co-occurrences was observed in inoculated Ler-0 (11.3%) compared with the other
treatments (2.8% to 5.1%) (Fig. 3).

The number of hub OTUs (representing the 5% OTUs having the highest numbers
of connections to other OTUs) were highest in the networks of noninoculated samples
(Fig. 3; Table S6). Microbial OTUs acting as both indicators and hub members were dis-
tinct and varied in numbers in inoculated and noninoculated genotypes. Some of the most
highly connected hubOTUs included Caulobacteraceae), bOTU998 (Xanthomonadaceae),
bOTU885 (Chitinophagaceae), bOTU188 (Mycobacteriaceae), bOTU4664 (Xanthobacteraceae),

FIG 3 Microbial co-occurrence networks of Col-0 and Ler-0. Networks depicting bacterial and fungal inter- and intrakingdom interactions in noninoculated
Col-0 (A) and Ler-0 (B) and the inoculated Col-0 (C) and Ler-0 (D). Positive and negative correlations are shown as gray and red edges, respectively.
Bacterial and fungal nodes are represented as square and circle symbols in the network, respectively. Indicator OTUs are shown as larger nodes.
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bOTU15 (Xanthobacteraceae), bOTU12 (Nocardioidaceae), bOTU 27 (Methyloligellaceae),
fOTU6 (Fusicolla), fOTU8 (Chaetomiaceae), and fOTU29 (Piskurozymaceae) (Table S6).

Finally, the highest number of bOTUs that were negatively correlating with FOM
(fOTU1) (Spearman’s r . 0.05, P , 0.05) was observed in noninoculated Ler-0 samples
mostly, including taxa belonging to Proteobacteria, Actinobacteria, and Planctomycetes
(Table S7).

FOM infection alters metabolite profiles in Arabidopsis. We profiled a range of
root metabolites that are supposedly playing roles in plant-microbe interactions in
Arabidopsis (Table S8). Orthogonal partial least-squares discriminant analysis (OPLS-DA)
showed increasingly distinct clustering of the treatment groups across time (Fig. 4).
FOM inoculation affected Ler-0 metabolites from the onset of the experiment, while
inoculation did not notably affect Col-0 metabolites at the early time points but
formed separate clusters at later stages (Fig. 4A). There were significant temporal and
cultivar-specific changes in levels of the individual metabolites. Ler-0 and Col-0 varied
in their glucosinolate (GLS) content after FOM inoculation. Almost 98% of the total GLS
detected in Ler-0 were indolic GLSs (iGLS), whereas Col-0 contained higher concentra-
tions of aliphatic GLSs (aGLS) (10% to 30% of the total GLS). FOM inoculation of Col-0,
but not Ler-0, increased levels of glucoraphanin, sulforaphane, glucoerucin, and glucoi-
berin in roots 5 DAI (approximately 4-fold increases) as well as 25 DAI (4-, 10-, and 3.5-
fold increases, respectively) (Fig. 4B; Table S8).

In inoculated Col-0 roots, neoglucobrassicin and 4-hydroxyglucobrassicin concentrations
increased 2- to 3-folds at 5 DAI, while levels of glucobrassicin, 4-methoxyglucobrassicin and

FIG 4 Metabolite data-derived OPLS-DA, heatmap representation of the metabolites identified in the roots of Arabidopsis Col-0 and Ler-0 after Fusarium
oxysporum f.sp. mathioli (FOM) inoculation at different days after inoculation (DAI). (A) OPLS-DA score plots at different DAIs for inoculated and noninoculated
Col-0 and Ler-0. Hotelling’s T2 statistical test cut-off was set at 95% to identify extreme outliers. (B) A heatmap comparison of secondary metabolites;
glucosinolates (aliphatic glucosinolates [aGLS], indolic glucosinolates [iGLS], glucosinolates hydrolysis products, coumarins, phenolic acids, monolignols, lignans,
and hormones) with log2-fold changes (mean inoculated/mean noninoculated) and significance levels in inoculated and noninoculated Col-0 and Ler-0 (n = 5)
at different DAI. Yellow color intensity representing higher values compared with noninoculated, and blue lower values compared with noninoculated.
Significant differences between inoculated and noninoculated samples are indicated by asterisks (*, P , 0.05; **, P , 0.01; ***, P , 0.001). (C) Fusarium
resistance genes and the numbers of their coexpressors. Publicly available transcriptome-data comprising .1,000 experiments on Arabidopsis thaliana were
used and co-regulated genes were selected with a Pearson’s correlation coefficient higher than 0.75 and a Mutual Rank of at least 2.2. (D) Pathway
enrichment analysis highlights different pathogen response mechanisms in which the co-expressed genes are involved. (E) The Rlp2 and Rfo3 specific co-
regulated genes which are involved in glucosinolate, camalexin, lignin, jasmonic acid, salicylic acid, ethylene, abscisic acid, and auxin biosynthesis and
signaling. Rlp2, AT1G17240; Rfo3, AT3G16030; Rfo2, AT1G17250; Rfo1, AT1G79670.
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4-hydroxyglucobrassicin decreased at 15 DAI (2-fold). A significant increment in the levels
of several indole glucosinolates occurred in Ler-0 inoculated roots at 10 DAI. An increase in
camalexin concentrations in response to FOM inoculation occurred at a much greater
extent in Ler-0 compared with Col-0, especially at 10 (8-fold), 20 (2.5-fold), and 25 DAI
(4-fold). Among the quantified lignans and lignan precursors, sinapaldehyde, sinapyl
alcohol, and pinoresinol diglucoside increased in inoculated Ler-0 at 15 DAI, while sinapal-
dehyde, sinapyl alcohol, pinoresinol diglucoside, lariciresinol, and pinoresinol decreased
and coumaric acid, sinapaldehyde, coniferyl aldehyde, and syringin increased in inoculated
Col-0 at 20 DAI. Among the hormones investigated, a significant increase (2.5-fold) in the
concentration of abscisic acid in Col-0 occurred at 5 DAI. In addition, the level of SA
decreased significantly in roots of inoculated Ler-0 at 25 DAI.

Arabidopsis resistance genes and the metabolome. To infer the relationship
between FOM resistance genes and metabolites, we analyzed genes involved in
Fusarium resistance using genomic and transcriptomic data. We identified;3,000 genes
co-expressing with at least one of the known Fusarium resistance genes Rfo1, Rfo2, Rfo3,
and Rlp2 (30, 35) (Fig. 4C). Our analysis mapped these co-expressed genes to pathogen
response pathways, e.g., responses to SA and JA, GLS metabolic processes, and xenobi-
otic detoxification (Fig. 4D; Table S9). We found 72 genes that were co-expressed with all
four resistance genes, of which the indole-glucosinolate biosynthesis related genes
Igmt3 (AT1G21110), Pen2 (AT2G44490), Pen3 (AT1G59870), Cad1/Pcs1 (AT5G44070), the
salicylic acid signaling related genes Npr1 (AT1G64280), Wakl10 (AT1G79680), and the
pathogen-associated molecular pattern triggered genes Exo70B2 (AT1G07000), Pub23
(AT2G35930), and Pub24 (PUB24) were notable. Next, we analyzed the resistance genes
and found many missense variants in RFO3 and RLP2 of Ler-0 while RFO1 and RFO2
were identical between the ecotypes (Fig. S7). Based on these observations, we analyzed
the Rfo3 and Rlp2 specific responses against Fusarium that are conceivably perturbed in
Ler-0 due to the missense mutations. Interestingly, we identified Rfo3 and Rlp2-specific
co-regulated genes involved in jasmonic acid, salicylic acid, abscisic acid, ethylene, and
auxin biosynthesis and signaling as well as biosynthesis of lignins, indol-glucosinolates,
and aliphatic-glucosinolate (Fig. 4E).

Distinct metabolite-OTU correlations in Col-0 and Ler-0. Inter-omics analysis was
performed using Spearman’s rank correlations of root metabolites and microbial OTU
data sets generated from inoculated and noninoculated samples of genotypes, and
significant microbial-metabolite correlations were visualized using heatmaps (Fig. 5).
The highest numbers of correlations were found in the susceptible Ler-0, both for
bOTUs and fOTUs (Fig. 5; Table S10). Strikingly, in Ler-0, several bOTUs belonging
to Actinobacteria, and few bOTUs assigned to Chloroflexi, and Firmicutes generally
correlated positively with the targeted metabolites. In contrast, bOTUs belonging to
Proteobacteria, Verrucobacteria, and a few bOTUs assigned to Acidobacteria, Bacteriodetes,
and Planctomycetes negatively correlated with the targeted metabolites (Fig. 5A; Table S10).

Cinnamic acid, glucoerucin, indole-3-carbinol, and sinapyl alcohol had the highest
numbers of both negative and positive correlations with bOTUs in Ler-0 (Fig. 5A;
Table S10). In the Col-0 data set, vanilic acid and 4-methyoxyglucobrassicin were posi-
tively correlating with several OTUs, while glucoerucin was negatively correlating with
many bOTUs (Fig. 5B; Table S10). A higher relative number of negative metabolite-
fOTU correlations were identified in Col-0, and neoglucobrassicin, glucoraphanin, SA,
and ferulic acid negatively correlated with fOTUs in both Col-0 and Ler-0 (Fig. 5C, D;
Table S10). In the total data set, we found that 4-methoxyglucobrassicin, indole-3 car-
binol, syringin, and glucobrassicin had the strongest effects on bacterial communities,
each explaining app. 2% to 4% of the variation (Fig. 6A), while neoglucobrassicin,
camalexin, and coumaric acid had the strongest effects on fungal communities
explaining 4% to 6% of the variation (Fig. 6B).

To test for direct metabolite effects on FOM, we specifically looked at FOM (fOTU1)-
metabolite correlations. Correlations were weak but significant for all associations in Ler-
0, with neoglucobrassicin and camalexin positively, and scopolin negatively correlating
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FIG 5 (Continued)
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FIG 5 Microbial OTU-metabolite correlations. The bOTU-metabolite correlation in Ler-0 (A) and Col-0
(B). The fOTU-metabolite correlations in Ler-0 (C) and Col-0 (D). All microbiome and metabolite data
sets generated for Col-0 and Ler-0 was used in this analysis. Metabolite-OTU associations with strong
correlations (20.4 . r . 0.4 and P , 0.01) were visualized (A to C).
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with FOM (Table S11 in the supplemental material). Both scopolin and fraxin displayed
minor but significant negative correlations with FOM in Col-0 ().

Next, we examined how indicator OTUs were affected by specific metabolites and
found that several of these OTUs were correlating with the metabolites having the
strongest general effects on microbial community structures (Fig. 6C; Table S12). For
example, 4-methoxyglucobrassicin had mostly positive correlations with indicator
OTUs in inoculated Col-0. Similarly, indole-3-carbinol positively correlated with several
indicator OTUs, for example, bOTU281 (Paenibacillus), bOTU12 (Nocardioides), and
bOTU27 (Methyloligellaceae), in inoculated Ler-0. Surprisingly, camalexin did not asso-
ciate with indicator OTUs or hubOTUs, although it had notable overall effects on fungal
communities.

Several OTUs that were acting as both indicator and hub OTUs were correlating with spe-
cific metabolites (Fig. 6D; Table S12). Strikingly, metabolite and hubOTU correlations were all
negative in the inoculated Ler-0 and positive in the noninoculated Ler-0. In inoculated Ler-0,
indole-3-acetic acid and sinapic acid negatively correlated with bOTU14 (Saccharimonadales)
and bOTU70 (Leptothrix), respectively. Indole-3-carbinol correlated negatively with bOTU14
(Saccharimonadales) and positively with bOTU538 (Solirubrobacteraceae), while SA correlated

FIG 6 Metabolites with strongest effects and association with important microbial taxa. Metabolites with the highest effects on bacterial (A) and fungal (B)
community diversity. Indicator and metabolites co-occurrence network in inoculated and noninoculated Col-0 and Ler-0 (C). Indicator-hubOTU and
metabolites co-occurrence network in inoculated and noninoculated Col-0 and Ler-0 (D). Metabolite names corresponding to assigned numbers in C and D
are shown in the table.
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positively with bOTU24 (Gemmatimonadaceae) and negatively with bOTU61 (Duganella).
There were also negative correlations between SA and bOTU61, and sinapic acid and
bOTU70 (Leptothrix) in inoculated Ler-0 (Table S12 in the supplemental material). Cinnamic
acid correlated positively with bOTU24 and bOTU27 (Methyloligellaceae) and negatively with
several indicator/hub OTUs such as bOTU4 (Streptomyces), bOTU259 (Niastella), bOTU885
(Chitinophagaceae), and bOTU70 (Burkholderiaceae). In noninoculated Col-0, bOTU14
(Gemmatimonadaceae) negatively correlated with indole-3-acetic acid and indole-3-carbinol,
while 4-Methoxyglucobrassicin positively correlated with fOTU35 (BLAST hit: Setophoma
terrestris) and fOTU48 (Clavicipitaceae).

DISCUSSION

The dynamic nature of plant-pathogen interactions require interomics analyses of tem-
poral relationships (11, 36, 37). By following FOM progression over time, we tracked the
orchestration of metabolites and root-associated microbiome assembly in two ecotypes of
Arabidopsis with different FOM susceptibility levels (38). In agreement with previous stud-
ies (39–41), we found distinct microbial compositions not only between ecotypes but also
among developmental and infection stages.

FOM invasion differentially affect resistant and susceptible Arabidopsis micro-
biomes. Microbiome profiling revealed distinct microbial communities in the resistant
Col-0 and susceptible Ler-0 after FOM inoculation and also in noninoculated roots. In
both ecotypes, the effect of FOM inoculation on microbial communities was strongest
at the early time points, which could be attributed to high initial FOM densities result-
ing from the inoculation. Genotype effects on microbial communities increased with
DAI, and although the relative importance of genotype on microbial communities has
been shown to decline over time (42), our results showed the opposite trend, espe-
cially for the bacterial communities. These genotype response trajectories on the
microbiome of inoculated plants could possibly play a role in disease resistance.

The temporal dynamics of indicator OTUs showing high numbers of indicator OTUs
at 25 DAI in Col-0, revealed (i) a large diversity of the Arabidopsis root-associated micro-
biota that was distinctively affected by the infection of the host; (ii) a time-dependent
assembly of microbial communities as previously reported (39, 40, 43), for example,
Edward et al. (39) found that the host-associated microbiota in field grown rice was
affected by host developmental stage and plant age; (iii) genotype-specific assembly
of microbiota, as also demonstrated by Wagner et al. (44). Notably, the dramatic
enrichment of bOTU10 assigned to Pseudomonas protegens in inoculated plants and
the strong enrichment of Streptomyces in Col-0 suggest that Arabidopsis enriches specific
microorganisms to enhance FOM resistance. P. protegens is a plant growth-promoting
endophytic bacterium with broad-spectrum antifungal activity (45), while Streptomyces is
known for its unparalleled synthesis of antibiotics (46) that could contribute to the
observed FOM resistance in Col-0 (46, 47). The genus Flavobacterium found to be signifi-
cantly enriched in Col-0 was reported to suppress F. oxysporum in the Allium fistulosum
microbiome (48). Moreover, the enrichment of numerous taxa in Col-0 at 25 DAI further
supports distinct genotype effects on microbiome assembly. Previous studies have also
reported a strong enrichment of the bacterial genera Pseudomonas and Streptomyces
during F. oxysporum infection of chili pepper (Capsicum annuum L.) (49), common bean
(Phaseolus vulgaris) (50), and also in Fusarium wilt suppressive soils (51, 52). In combina-
tion, these results strongly suggest Pseudomonas and Streptomyces as highly active in
Fusarium induced microbiomes and could potentially be exploited for engineering sus-
tainable Fusarium control strategies.

Microbial communities in Col-0 compared with Ler-0 as demonstrated by stronger
network parameters (node degree, hub numbers, and link densities) indicated higher
robustness. In contrast, connectance (the proportion of all possible interactions that
are realized in a network) was highest in Ler-0, corroborating an earlier study where
high connectance promoted Ralstonia solanacearum host colonization (26). In addition,
network breakdown (assessed using node degree) during FOM invasion was highest in
Ler-0. Altogether, these results support our hypothesis of stronger networks in resistant
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plants that are contributing to overall pathogen resistance. Also, the positive and nega-
tive correlations between bacterial and fungal OTUs support previous studies of cooper-
ative and antagonistic microbial interactions among microbial kingdoms (20, 28). The
higher number of negative co-occurrences in inoculated Ler-0 could be due to a rapid
colonization by saprophytic bacteria in the root tissues (53) degraded by FOM. We only
found few negative co-occurrences between FOM (fOTU1) and bOTUs, and these were
observed mostly in noninoculated Ler-0. Most of these bOTUs belonged to
Proteobacteria and Actinobacteria, which are known for their prevalence in the
Arabidopsis microbiome (54), as well as their profound role in disease suppression (52).
The differences in co-occurrence network structures underscore the distinct interactions
in FOM-inoculated and noninoculated Col-0 and Ler-0 and also explain aspects of host
defense (17, 28). The microbial networks further highlighted how indicator species are
affected during FOM invasion. Surprisingly, keystone species and indicator species were
mostly observed in the networks of the inoculated Col-0, and we speculate that recruit-
ment of these species in the presence of pathogens could serve as an important factor
in disease resistance (55).

The Arabidopsismetabolome is distinctively altered in Arabidopsis during FOM
attack. Plant metabolites are strong modulators of microbial communities in general
and more specific of pathogen invasion resistance (56). The observed separation of
metabolites in the OPLS-DA at individual DAIs and the fact that this coincide with the
assembly of host-associated microbiota is a notable indication of omics interdepend-
ence (5, 57). The observed differences in iGLS, aGLS, camalexin, and phenylpropanoid
concentrations in Col-0 and Ler-0 during infection could contribute to their differential
FOM resistances. For example, aGLSs that are having higher inhibitory effects on micro-
organisms (58) had higher levels and conceivably higher FOM-suppression effects in
inoculated Col-0 than in inoculated Ler-0 at 5 DAI. Accordingly, the elevated concentrations
of sinapyl aldehyde, syringin, sinapyl alcohol, and coniferyl aldehyde in inoculated plants
support previous findings of the suppressive effects of Arabidopsis phenylpropanoid deriva-
tives on Verticillium longisporum (59, 60).

Microbial OTUs are affected by specific metabolites in Arabidopsis. There were
distinct metabolome-microbiome correlative patterns in Ler-0 and Col-0. Remarkably,
we found that most of the analyzed metabolites positively correlated with the bacterial
taxa Proteobacteria, Bacteriodetes, Planctomycetes, Acidobacteria, and Verrucomicrobia,
and negatively correlated with Actinobacteria, Firmicutes, and Chloroflexi in Ler-0. This
finding is compelling and could indicate that host genotypic variation, including factors
underlying both disease resistance differentials and chemical diversity affect microbial
community assembly (61). We further posit that the unique interomics associations
observed in Col-0 and Ler-0 could be explained by the identified missense variants in
the resistance genes Rfo3 and Rlp2 in Ler-0. In Ler-0, both Rfo3 and Rlp2 have a high
number of missense mutations and were also found to be co-regulated with genes
involved in metabolic pathways leading to GLS, phenolic metabolites, and phytohor-
mones. We therefore propose that the missense mutations in Rfo3 and Rlp2 cause
altered metabolomes in Ler-0, and that this could likely drive metabolite-microbial OTU
associations.

The observation that cinnamic acid and glucoerucin had the highest numbers of posi-
tive and negative correlations with indicator/hub OTUs demonstrates their high bioactivity.
Importantly, the compounds explaining the highest effects on microbial communities,
such as 4-methoxyglucobrassicin, indole-3-carbinol, and syringin showed the strongest
correlations with bOTUs, while neoglucobrassicin, camalexin, and coumaric acid were cor-
relating with fOTUs. Both inhibitory and chemoattracting effects of cinnamic acids and
GLS has been demonstrated (62–65). The glucosinolates aGLS and iGLS were mostly active
against bOTUs and fOTUs, respectively, highlighting differential effects of these metabo-
lites on microbial communities as also observed previously (6, 66). The iGLSs 4-methoxy-
glucobrassicin and indole-3-carbinol displayed strong positive correlations with some of
the bOTUs while the aGLSs glucoerucin, glucoraphanine, and sulforaphane showed strong
negative correlations with the indicator taxa Gammaproteobacteria and Bacteroidetes.
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These results suggests a higher microbial toxicity of aGLSs compared with iGLSs, as
reported earlier (67). We also showed that 4-methoxyglucobrassicin correlated positively
with the fungal indicator/hubs OTU35 and OTU48 in Col-0. Similarly, Zeng et al. (68),
reported 4-methoxyglucobrassicin as a growth stimulator of ectomycorrhizal fungi, while
indole-3-carbinol is known for its broad antimicrobial activity against bacteria and yeasts
(69). Glucoerucin is also toxic against a number of pathogens (64, 65). Also, sulforaphane
which is known for its selective effects toward different microbial taxa (70), negatively
correlated with Niastella (bOTU259) and Leptothrix (bOTU70) and positively correlated
with Nocardioides (bOTU12) and Duganella (bOTU61).

In addition to the GLS effects, we also found differential effects of phenylpropanoids.
For instance, sinapyl-alcohol and sinapic acid were negatively correlating with the family
Chitinophagaceae in Ler-0. This finding provides evidence of lignin precursors (71, 72)
antagonizing a lignin degrading microbial taxa (73, 74), and could thus constitute a modu-
lating mechanism employed to enhance Ler-0 defense. The potential of other phenylpro-
panoids, for example coumarins, to differentially inhibit both beneficial and pathogenic
microorganisms has been reported (57, 75). In addition, the phytohormone SA showed
negative correlations with indicator/hub OTUs, suggestive of their modulating effect on
the microbiota, thus, corroborating previous studies (10, 76).

Hub microorganisms are important for maintaining network structure and function
(28). Interestingly, in our analysis, all identified hub OTUs were also identified as indica-
tor species, reaffirming their importance in the microbiome and for maintaining net-
work stability after pathogen infection. We observed unique metabolite-indicator/hub
OTU correlations, mostly positive in noninoculated Ler-0 while being negative in inocu-
lated Ler-0, suggesting that the host uses metabolites to selectively enrich specific
microbes under different physiological conditions (77). For instance, the indicator/hubs
bOTU259 (Niastella) and bOTU538 (Solirubrobacteraceae) had mostly negative and
positive correlations, respectively, with metabolites in Ler-0. Solirubrobacteraceae has
been found to suppress common scab disease of potatoes (78), while Niastella is
reported to improve soil health and promote root growth (79, 80). In noninoculated
Ler-0, the indicator/hub OTUs Paenibacillus (bOTU281), Nocardioides (bOTU12), and
Methyloligellaceae (bOTU27) exclusively showed positive correlations with metabo-
lites. Interestingly, these taxa are considered ecologically important and are either
involved in nitrogen fixation or could be acting as antagonists against pathogens (81,
82). For example, the plant growth-promoting Paenibacillus polymyxa induces host
defense responses against F. oxysporum (81, 83). Altogether, these results support our
hypothesis of genotype specific metabolome-microbiome interactions primarily due to
the differential FOM resistances. Specifically, we speculate that in the lack of a strong
direct plant defense response due to the missense variants of resistance genes Rlp2
and Rfo3, Ler-0 recruits FOM antagonistic microorganisms by synthesizing an array of
metabolites to combat progression of the pathogen.

Conclusions. This study showed evidence of the dynamic relationships that exist
between the plant metabolome and the root-associated microbiome of FOM-inoculated
and noninoculated Arabidopsis with different FOM susceptibilities. Both the microbiome
and the metabolome in the two Arabidopsis genotypes were distinct and significantly
shifted during FOM infection. Microbial networks in the resistant Col-0 were more robust
compared with networks in the susceptible Ler-0 during FOM infection, indicating a role
of the microbiome in Arabidopsis pathogen resistance. Pseudomonas protegens (bOTU10)
and Rhizobium (bOTU6) were highly enriched in inoculated samples of both genotypes,
suggesting a prominent role of these OTUs in the plant response to FOM infection. The
genus Streptomyces (bOTU4) was strongly enriched in Col-0 than in Ler-0, suggesting a
possible role in resistance against FOM in Col-0. We found distinct associations between
metabolites and the bacterial phyla Proteobacteria, Bacteroidetes, Planctomycetes,
Acidobacteria, and Verrucomicrobia, and negative correlations with Actinobacteria,
Firmicutes, and Chloroflexi in Ler-0, which could be explained by the highly mutated re-
sistance genes Rfo3 and Rlp2. The GLS 4-methyoxyglucobrassicin, glucoerucin, and
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indole-3 carbinol, but also phenolic compounds, were correlating with indicator and hub
OTUs and were thus highly active in structuring the A. thaliana root-associated micro-
biome. Considering the major role of indicator/hub microbial taxa in overall microbiome
composition, we infer that metabolites correlating with these taxa could be pivotal in
structuring the Arabidopsis root microbiome. It is worth emphasizing that, although cor-
relation-based analyses are not definitively causal, the identified associations deepen our
understanding of interomics interactions in resistant and susceptible plant microbiomes.
In future studies, it will be interesting to study the possible microbiome-mediated direct
effects of Rfo3 and Rlp2 resistance genes.

MATERIALS ANDMETHODS
Arabidopsis thaliana genotypes and Fusarium isolate.We used the Arabidopsis ecotypes Columbia-0

(Col-0) and Landsberg erecta-0 (Ler-0) lines in this study. While Col-0 is a natural accession and maintained
as a clean homozygous line, the Ler-0 carries mutations that are caused by X-ray irradiation in the ERECTA
gene (31). These accessions have been shown to exhibit distinct root morphologies (84, 85), chemical pro-
files (86), and disease resistances against F. oxysporum (30). Both accessions were supplied by the
Nottingham Arabidopsis stock center (NASC), United Kingdom. FOM isolate 726 (87) was kindly provided
by Dr. H. Corby Kistler at USDA ARS CDL-University of MN, USA.

Experimental design. Arabidopsis seeds were sown in pots (8 � 8 � 6 cm) containing field soil (fine
sand 32.2%, coarse sand 52.8%, humus 4.7%, clay 3%, silt 7.3%) (88) and pH 5.95, collected from the
Jyndevad Experimental station (54.9023° N, 9.1511° E), Denmark in 2016. We sowed approximately 20
seeds per each pot. In total, we maintained 100 pots allocated to the two genotypes, (Col-0 and Ler-0),
two treatments (FOM-inoculated or water-inoculated, noninoculated), five replicates of each treatment,
and destructively sampled at five different time points.

The pots were arranged in trays, loosely covered with plastic wrap, and the seeds were stratified in
the dark at 4°C for 3 days. Thereafter, the pots were completely randomized and maintained under
greenhouse conditions (16 h light, 8 h dark and 18°C to 23°C) for the entire duration of the experiment.
After germination, thinning-out was done, leaving 10 seedlings in each pot. Seedlings were watered
(100 mL/pot) 2 times per week and weeds removed regularly upon emergence.

Pathogen culture and inoculation. FOM was cultured on sporulation-induced synthetic nutrient-
poor agar (SNA) medium: 1 g KH2PO4, 1 g KNO3, 0.5 g MgSO4�7H20, 0.5 g KCI, 0.2 g glucose, 0.2 g sucrose,
20 g agar, 1 L distilled water) and incubated 1 week under day/night light conditions at 20°C to 23°C.
Mycelial plugs (6 plugs/100 mL from 7-day-old FOM plates) were transferred into a 400 mL sterile liquid
carboxymethylcellulose (CMC) medium: 15 g CMC sodium salt (high viscosity, #C5013: Sigma-Aldrich, St.
Louis, MO, USA), 1g NH4NO3, 1g KH2PO4, 1g yeast extract, 0.5 g MgSO4�7H2O and 1 L of distilled water
and cultured for 3 days at 22°C in the dark with gyratory shaking (125 rpm). We harvested fungal spores
by filtering through sterile Miracloth to remove mycelia and centrifuged (4,500 g) the filtrate containing
FOM spores for 15 min at room temperature to pellet spores. The spores were washed twice with sterile
deionized distilled H2O, followed by centrifugation at 7,500 g for 5 min at room temperature before dis-
carding the supernatant. We resuspended the spore pellet in sterile water and estimated spore concen-
trations using a hemocytometer before adjustment to 1.1 � 106 spores/mL. The soils surrounding the 2-
week-old seedlings were inoculated each with 300 mL of the adjusted spore suspension by carefully
pipetting into soils close to the roots of the seedlings (50 pots), while the 50 noninoculated pots
received 300 mL distilled water.

Sample collection. Root samples were collected at five different sampling times at intervals of
5 days with the first sampling performed at 5 DAI with FOM. Roots were harvested by pressing the sides
of each pot to loosen the soil around the roots. Subsequently, each root system was carefully pulled out
and shaken gently to remove loosely attached soil, then cut with sterile scissors. Roots with adhering rhi-
zosphere soil of the 10 plants in the individual pots were pooled into sterile 2 mL collecting tubes. The
root samples were divided to allow for both metabarcoding and chemical analysis. Samples for chemical
analysis were placed into prechilled tubes. Half of the root samples determined for chemical analysis
were used in this study, the other half used in another study (38). Shoot (stems and leaves of plants)
samples were taken for FOM quantification. Harvested samples were immediately snap-frozen in liquid
nitrogen and stored at 220°C (samples for metabarcoding) or 280°C (samples for chemical analysis).
Root and shoot samples were lyophilized for 3 days. All lyophilized samples were stored at 220°C prior
to downstream processing.

DNA extraction. Lyophilized samples were ground using sterile steel beads in a Geno/Grinder2000
(Spex, Metuchen, NJ, USA) at 1,500 rpm for 3 � 30 s. For both root and shoot DNA extraction, we used
250 mg of ground sample. Root DNA extraction was done using the PowerLyzer PowerSoil DNA isolation
kit (Mo Bio Laboratories, Carlsbad, CA, USA). Shoot DNA was extracted using the DNeasy Plant minikit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. The extracted shoot and root
DNA samples were stored at2 20°C and subsequently used for FOM quantification or sequencing library
preparation.

FOM quantification in shoots.We estimated F. oxysporum biomass in inoculated and noninoculated
shoot samples, using quantitative PCR (qPCR) using the F. oxysporum specific primers F 59-CCTGTTC
GAGCGTCATTTCA-39 and R 59-GAATTAACGCGAGTCCCAACAC-3. The PCR consisted of 2.5 mL template,
0.375 mL each of forward and reverse primers (10 mM stock), 3 mL of water, and 6.25 mL of Bio SyGreen
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Mix Lo-Rox (PCR Biosystems, Ltd., London, UK). For positive and negative controls, 2 mL of template
(dilutions of FOM DNA, or sterile water) were added. Amplification reactions were performed with two rep-
licates per sample using a ViiA 7 real-time PCR system (Life Technologies, CA, USA). Thermal cycling condi-
tions included an initial denaturation at 95°C for 10 min followed by 40 cycles of 95°C for 15 s and 58°C for
1 min. Standards were included in the run using a 10x dilution series of FOM DNA with an initial concen-
tration of 2.05 ng/mL. A standard curve was obtained by plotting the cycle threshold (CT) values as a func-
tion of log10 of the amount of fungal DNA added in a 10-fold serial dilution (1 to 1029).

Library preparation. For the microbiome analysis, we followed 16S and ITS library preparation pro-
cedures as previously described (5). Briefly, the bacterial 16S rRNA V3/V4 amplicon library was generated
using the PCR primers (S-DBact-0341-b-S-17/S-d-Bact-0785-a-A-21) (89). For amplification of the fungal
internal transcribed spacer 2 (ITS2) region, we used the fITS7 (90) and ITS4 (91) primer pair. Both bacte-
rial and fungal libraries for Illumina MiSeq sequencing were generated by a two-step dual indexing strat-
egy as previously described (5) and sequenced at Eurofins MWG (Ebersberg, Germany). The raw
sequence files were deposited at the National Centre for Biotechnology Information (NCBI) sequence
read archive with the SRA accession number PRJNA756534.

Metabolite extraction. Metabolic pathways of the quantified metabolites are shown (Fig. S1). Prior
to metabolite extraction, approximately 5 mg of dried tissue was ground to a fine powder by using a
Geno/Grinder 2010. Metabolites from root material were extracted by the addition of 1 mL of 70% (vol/vol)
methanol/water solution to the plant material (38). The tubes were vortexed for 20 s before heating at
72°C for 10 min to avoid myrosinase-mediated glucosinolate breakdown (92). Samples were cooled to
room temperature and placed in a sonication bath for 5 min. Next, the samples were shaken at 30 rpm for
15 min at 4°C before centrifugation for 5 min at 15,000 g, and transfer of the supernatant into new tubes.
The supernatant was diluted in Milli-Q water, filtered through a 0.22-mm KX syringe filter (PTFE 13-mm di-
ameter) (Mikrolab, Aarhus, Denmark) and injected into the LC-MS/MS system.

Liquid chromatography-tandem mass spectrometry analysis. Samples were analyzed in multiple
reaction mode (MRM) on an Agilent 1260 infinity HPLC system (Santa Clara, CA, USA) connected to an
AB Sciex 4500 triple-quadrupole trap mass spectrometer (QTRAP/MS) (AB Sciex, Framingham, USA)
equipped with electrospray ionization (ESI) source in negative and positive ion mode. MRM-transitions
and compound-dependent parameters are summarized in Table S1. The information with respect to
mass spectrometry parameters for multiple reaction monitoring can be found in supplemental material
together with additional information about the liquid chromatography-tandem mass spectrometry (LC-
MS/MS) method. Chromatographic separation for glucosinolates and plant hormones (negative mode)
(Table S1) was performed at 40°C on a reversed-phase Synergi Fusion-RP C18, 80A column (250 mm � 2 mm
i.d., 4 mm, Phenomenex) equipped with a Security Guard Cartridge (KJ0-4282, Phenomenex) (93). For com-
pounds related to lignin and lignan biosynthetic pathway (Table S1), plant hormones (positive mode), coumar-
ins, and phenolic acids, the separation was carried out on a Kinetex EVO C18 (150 � 2.1 mm i.d., 5 mm,
Phenomenex) protected by a Security Guard ULTRA Cartridge (AJ0-9298, Phenomenex). Further details on the
stepwise gradient used in the LC-MS/MS analysis can be found in the supporting information. All data were
collected using ABSciex Analyst software (version 1.6.2). Quantitation was performed using ABSciex MultiQuant
software (version 3.0.2). Samples were run in randomized order.

Sequence data and statistical analysis. Bacterial and fungal sequence reads were analyzed as
described earlier (5). Briefly, paired-end reads were demultiplexed for internal barcodes, using Mr_Demuxy
using command pe_demuxer.py (https://pypi.org/project/Mr_Demuxy/). Subsequently, paired-end reads
were assembled and joined reads were processed, using vsearch v.2.6 (94). Primers were removed, using
cutapdapt (95). Dereplication, chimera screening, and clustering of sequences were performed using
vsearch v.2.6 (94). Extraction of fungal ITS reads was carried out prior to clustering, using ITSx extractor ver-
sion 1.0.6 (96). Taxonomy assignments were performed using the SILVA 132 (97) and UNITE (v7.2) (98) ref-
erence databases, respectively, for bacteria and fungi, in QIIME (v1.9) using assign_taxonomy.py (99).
Unassigned OTUs at kingdom level or OTUs assigned as chloroplast or mitochondrial sequences were
removed. Also, OTUs found in less than three samples in the total data set were removed.

Statistical analyses and data visualizations were carried out in R v4.0.5 (100), using vegan (v2.5.7) (101), phy-
loseq (v1.34.0.) (102), ggplot2 (v3.3.2) (103) packages. Before diversity analysis, samples with less than 1,000
reads were removed from the data sets. OTU tables were rarified 100 times at a depth of 1,000 reads for both
data sets, and the mean of the diversity estimates of 100 trials was used to estimate each alpha diversity metric
(observed and Shannon diversity). Significant differences between alpha diversities were evaluated, using
Kruskal-Wallis rank sum test. OTU tables were transformed to relative abundances (RAs) prior to beta diversity
analysis. Bray-Curtis dissimilarity matrices were visualized, using unconstrained principal coordinates analysis
(PCoA), and permutation analysis of variance (PERMANOVA) was performed for both bacterial and fungal
communities, using the “adonis” function from the “vegan” package. We performed indicator species anal-
ysis, using the labdsv function in R (104) to determine abundance differentials of the bacterial (bOTUs) and
fungal OTUs (fOTUs) associated with inoculated and noninoculated samples of Col-0 and Ler-0. Data sets
were partitioned and analyzed separately for Col-0 and Ler-0 for identification of indicator OTUs. Highly
significant OTUs (P# 0.01) with indicator values. 0.4 were considered indicator species (105).

We performed differential abundance analysis of microbial OTUs based on negative binomial distribution
between inoculated and noninoculated data sets Col-0 and Ler-0 using “DESeq2” R package (102, 106).

Microbial network analysis.Microbial interaction patterns in roots of noninoculated and inoculated
samples of Col-0 and Ler-0 were examined by Spearman’s rank correlation analysis. We pooled bacterial
and fungal data sets generated for the 5 time points in the construction of the respective networks.
Next, bacterial and fungal OTUs were pooled and normalized, using trimmed mean of M values (TMM)
method using the BioConductor package EdgeR in R (107). For microbial network construction, we used
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OTUs that were present in at least 10 samples with Spearman’s rank correlations . 0.7 for positive corre-
lations and , 20.7 for negative correlations, and P values , 0.001. The correlated OTUs were visualized
in networks with OTUs set as nodes and correlations as edges. OTUs that were identified in the indicator
analysis and appeared in the co-occurrence analysis were shown as larger nodes. Network properties
were computed, using the “igraph” package with defined parameters as described in (5). We used
Spearman’s rank correlations to determine associations between fOTU1 and bOTUs.

Statistical analysis for targeted metabolomics. The absolute concentrations (mg/g) from the tar-
geted metabolomics analysis were subjected to the time-series and two-factor data analysis by
MetaboAnalyst 4.0 (108) with Bonferroni correction to determine the level of significance between the fac-
tors and their interaction. Bonferroni-corrected and adjusted P values less than 0.05 were considered signifi-
cant. SIMCA-P (ver. 15.0.2, Umetrics AB, Umeå, Sweden) was used to perform orthogonal partial least
square-discriminant analysis (OPLS-DA) to determine the metabolites that were contributing to the variation
between treatment groups at different infection stages. OPLS-DA models were performed on cubic root-
transformed and Pareto-scaled data to identify clustering behavior related to treatment groups. OPLS-DA
models were validated by correlation (R2) and predictability (Q2) parameters. In addition, a permutation
test (n = 100) was performed to validate the robustness and overfitting of the OPLS-DA models. The assess-
ment of the validated models was performed by inspecting the intercept of the permutation plot (permQ2).
The significance of the OPLSDA model was assessed by the cross-validated analysis of variance (CV-ANOVA).
A heatmap was generated with MultiExperiment Viewer application (109) and visualized, showing log2-
transformed significant differences between FOM inoculated plants and control. Fold changes between ino-
culated and noninoculated plants were calculated and Student’s t-tests for two group-comparisons were
performed by SigmaPlot software (version 11.0). The nonparametric Mann-Whitney Rank Sum test was used
when the data violated the assumption of normality. Metabolites with a threshold of fold change (FC) . 1
as well as P, 0.05 were considered significant. Bar plots were generated, using ggplot2 in R to observe var-
iation in metabolite concentrations shown as means6 standard error.

OTU-metabolite correlation analysis. We examined metabolite microbial OTU associations by per-
forming Spearman’s correlation analysis, using the rcorr function. Prior to the analysis, we filtered low
abundance OTUs by removing OTUs occurring in less than four samples and less than 50 read counts fol-
lowed by a transformation to relative abundance. The metabolome data were also transformed to fit the
normal distribution pattern. Metabolite-OTU associations with strong correlations (r . 0.4 or , 20.4
and P , 0.01) were visualized in heatmaps. In addition, relative abundance patterns of the correlated
metabolite OTUs across different DAI were visualized, using bubble plots.

Resistance gene-metabolome relationship. To assess the relationship between FOM resistance
genes and metabolites, we analyzed genes involved in Fusarium resistance using transcriptome data
downloaded from The Botany Array Resource (110) and ATTED-II (111). Genes with a Pearson’s correla-
tion coefficient larger than 0.75 and a mutual Rank (111) of at least 2.2 were defined as co-expressed
genes. Metascape (112) was used for pathway enrichment analysis. The Arabidopsis data from the 1001
Genomes Consortium (113) were used for gene polymorphism analysis of the ecotypes.

Data availability The MiSeq paired end reads for bacterial 16s rRNA gene (V3 to V4) and fungal ITS2
regions have been deposited in NCBI SRA database using accession code PRJNA756534. Sequence process-
ing in QIIME and data analysis in R were performed using the pipeline and scripts from Kudjordjie et al. (5).
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