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Summary 
The capsular polysaccharide is the major virulence factor of Streptococcus pneumoniae. Previously, 
we identified and cloned a region from the S. pneumoniae chromosome specific for the production 
of type 3 capsular polysaccharide. Now, by sequencing the region and characterizing mutations 
genetically and in an in vitro capsule synthesis assay, we have assigned putative functions to the 
products of the type-specific genes. Using DNA from the right end of the region in mapping 
studies, we have obtained further evidence indicating that the capsule genes of each serotype 
are contained in a gene cassette located adjacent to this region. We have cloned the region flanking 
the left end of the cassette from the type 3 chromosome and have found that it is repeated in 
the S. pneumoniae chromosome. The DNA sequence and hybridization data suggest a model 
for recombination of the capsule gene cassettes that not only describes the replacement of capsule 
genes, but also suggests an explanation for binary capsule type formation, and the creation of 
novel capsule types. 

S treptococcus pneumoniae produces a serotype-specific cap- 
sular polysaccharide that is required for virulence. The 

polysaccharide protects the organism from the host's immune 
system and prevents phagocytosis. More than 80 different sero- 
types have been identified (1), and the type of capsule ex- 
pressed may influence virulence (2-4). Griffith's purpose in 
studying pneumococci was to determine if interconversion 
of type occurred in patients infected with more than one sero- 
type and determine if this transformation affected the out- 
come of the infection (5). Today the importance of transfor- 
mation for the organism's potential ability to infect its host 
is still not clear. Transformation could result in an antigenic 
shift, allowing an organism to colonize a previously immune 
host. Epidemiologic studies have suggested that a significant 
amount of genetic exchange does occur in nature, i.e., mul- 
tiple combinations of antigenicaUy variable determinants such 
as capsular serotype, PspA serotype, electrophoretic type, and 
penicillin binding protein type have been observed (6-9). 

Classic experiments demonstrated that genes specific for 
the production of a given capsular polysaccharide are closely 
linked in the chromosome and can be transferred as a unit 
during genetic transformation (5, 10, 11). Except in rare cases, 
transformation to the new type results in loss of the ability 
to express the original polysaccharide (12). These data sug- 
gested that the capsule genes might be replaced in the 
recipient's chromosome through a cassette-type recombina- 
tion mechanism. Biochemical characterization of strains trans- 
formed to new types supported this hypothesis. Strains that 
produced a particular nucleotide sugar as an intermediate in 
capsule synthesis no longer produced the nucleotide sugar 

after being transformed to a new type that did not require 
it (12). These results, though suggestive, did not conclusively 
show exchange of the capsule genes since regulatory models 
could not be ruled out. Recently, we demonstrated that 
switching of capsular type by genetic transformation in vitro 
does result in replacement of the type-specific genes (13). How- 
ever, the mechanism of recombination resulting in exchange 
of capsule type has not been fully elucidated, nor is it known 
how the multiple different capsule types have evolved. 

Type 3 capsule synthesis has been characterized biochemi- 
cally and genetically. At least two functions are necessary for 
its production: the synthesis of the precursors UDP-glucose 
(UDP-Glc) 1 and UDP-glucuronic acid (UDP-GlcA), and 
their polymerization into the polysaccharide. Some 25 dis- 
tinct mutations resulting in a reduction or loss of capsule 
synthesis were mapped to a single locus thought to encode 
UDP-Glc dehydrogenase (UDP-Glc DH), the enzyme neces- 
sary for conversion of UDP-Glc to UDP-GlcA (14). Charac- 
terization of the nucleotide-sugar pools of several mutants 
revealed a loss of UDP-GlcA. In an in vitro polymerization 
reaction, a partially purified extract from a type 3 strain was 
used to produce type 3 polysaccharide (15). UDP-Glc and 
UDP-GlcA were the only molecules that served as substrates, 

1 Abbreviations used in this paper: Glc-l-P UT, glucose-l-phosphate uri- 
dylyltransferase; GlcNAc, N-acetyl glucosamine; HA, hyaluronic acid; IPTG, 
isopropyl-~-D-thiogalactoside; RBS, ribosome binding site; UDP-G|c DH, 
UDP-GIc dehydrogenase; UDP-Glc, UDP-glucose; UDP-GlcA, UDP- 
glucuronic acid. 
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and Glc and GIcA were incorporated in equal amounts. The 
enzyme copurified with the particulate (membrane and cell 
wall) fraction of cell extracts (16), and Mg z+ was required 
for activity (17). 

We previously localized the chromosomal region neces- 
sary for type 3 synthesis through mutation and cloning anal- 
yses (13). We have now sequenced this region and have fur- 
ther characterized the genes and their products. Our results 
provide molecular, genetic, and biochemical evidence for the 
roles of the gene products involved in type 3 capsule biosyn- 
thesis. They also suggest mechanisms for the transfer of cap- 
sule type-specific cassettes and the emergence of new capsule 
types. 

Materials and Methods 
Bacterial Strains. The parent S. pneumoniae type 3 strain WU2 

and the type 1, 5, 6B, 8, 9, and 22 S. pneumoniae strains have been 
described (4, 13, 18). Other strains are described in the table and 
figures. Culture conditions for S. pneumoniae and Escherichia coli 
have been described (13, 19). 

DNA Analysis. Denatured plasmid DNA was sequenced by 
the Sanger dideoxy method using the Sequenase 2.0 kit (US Bio- 
chemicals, Cleveland, OH). Oligonucleotide primers (Oligos, etc., 
Wilsonville, OK) 5'-GCCACTATCGACTACGCG-Y and 5'-TCA- 
TTTGATATGCCTCCG-Y, corresponding to bp 308 to 325 and 
445 to 428 of the cloning vectors pJY4163 and pJY4164 (20), respec- 
tively, were used routinely. Primers internal to the cps locus were 
used as necessary. PCK products were sequenced at least twice, 
from separate amplification reactions, using a PCR product- 
sequencing kit (US Biochem. Corp., Cleveland, OH). Greater than 
97% of the sequence was obtained for each strand. Sequences were 
analyzed using the GCG software programs (21). 

The digoxigenin labeling and chemiluminescent detection system 
(Boehringer Mannheim, Indianapolis, IN) was used in Southern 
blotting. All other DNA manipulations were performed as previ- 
ously reported (13). 

In Vitro Polysaccharide Synthesis. Type 3 polysaccharide was syn- 
thesized and quantitated in vitro using a modification of Smith 
et al. (16). Crude extracts containing membranes and cytoplasm 
were prepared from 200 ml of S. pneumoniae cultures harvested at 
an OD~ of 0.25 as described (22), except that cell material was 
concentrated 200-fold, and all steps were performed using a 
thioglycolate buffer (10 mM sodium thioglycolate, 5 mM MggO4, 
100 mM Tris-HC1, pH 8.3) to stabilize the enzymes (23). Diges- 
tion of cell wall material by mutanolysin was performed in this 
buffer and 20% sucrose. Protoplasts were sonicated three times for 
15 s at 0~ Polysaccharide synthesis was carried out at 34~ for 
2 h in a 1-ml reaction containing 100 #1 of extract, 5 mM UDP- 
Glc, 5 mM UDP-GlcA (where indicated), and I mM NAD in the 
thioglycolate buffer. The reaction was boiled 1 min then quickly 
cooled to 25~ in H20. Following centrifugation for 30 s at 
8160 g, the type 3-specific mAb 16.3 (24) was added in excess to 
the supernatant and incubation was continued at 37~ for 30 min. 
Specific Ag-Ab complexes were measured at 650 nm. Capsule was 
quantitated by comparison with a standard curve prepared using 
purified type 3 polysaccharide (American Type Culture Collection, 
Rockville, MD) (17). Reactions, done in triplicate, were standardized 
to protein content of the crude extract, as determined in duplicate 
using a protein assay kit (Bio Rad Labs., Hercules, CA). 

Expression of Cps3S. A 2.1-kb Sau3AI-PstI fragment containing 

the Y end of cps3D and the complete cps3S was cloned into the 
expression vector pKK223-3 (25) to yield pJD424. E. coli TG-1 (26) 
or TG-1 transformants were grown to exponential phase, and 
isopropyl-B-D-thiogalactoside (ItffG) was added to a concentration 
of 1 mM to induce expression from the tac promoter of pKK223-3. 

Chromosome Crawling and PCR. To isolate the 5' end of cps3D 
and upstream DNA, S. pneumoniae WU2 chromosomal DNA was 
first digested with Ed136 II (an isoschizomer of SacI that results 
in blunt ends) and separated on a 0.6% agarose gel. Purified frag- 
ments from 6 to 7 kb were ligated to a 35-bp XbaI UniAmp adaptor 
(Clontech, Palo Alto, CA). The desired fragment was amplified 
by using a primer for the adaptor and a primer corresponding to 
the predicted active site sequence (bp 1802 to 1781) of cps3D A 
1.8-kb PCK product extending from the active site to the SacI site 
upstream of cps3D (see Fig. 1) was obtained. PCK amplifications 
were performed using AmpliTaq DNA polymerase (Perkin-Elmer 
Corp., Norwalk, CT). In a similar manner, the 0.9-kb fragment 
from the cps3D active site to the EcoRV site upstream of cps3D 
was amplified from a 3.5-kb EcoKV fragment from the WU2 chro- 
mosome. 

Nomenclature. The capsule locus ofS. pneumoniae has been desig- 
nated cps (13). To distinguish between loci of different capsular sero- 
types, the locus name will be followed by the number of the sero- 
type, e.g., type 3 is indicated as cps3. The genes of the type 3 locus 
are named based on expected function (13). 

Results 
We previously described a region of the S. pneumoniae chro- 

mosome that contains genes involved in the production of 
type 3 capsular polysaccharide, and that is specific to type 
3 strains. An "~l-kb fragment of DNA flanking this region 
and common to apparently all capsular serotypes was also 
identified (13). A genetic and physical map of the region is 
presented in Fig. 1 A. The DNA and deduced amino acid 
sequences of the region containing the genes cps3D, cps3S, 
cps3U, and upstream flanking DNA were determined in the 
present study, and are presented in Fig. 1/~ 

Cps3D Is Homologous to UDP-glucose Dehydrogenase. Our 
previous genetic data indicated that we had cloned the 3' end 
of cps3D, the gene encoding UDP-Glc DH (13). The DNA 
sequence and derived amino acid sequence support this as- 
signment. The amino acid sequence is highly homologous 
(56% identity, 73% similarity) to that of the UDP-Glc DH 
(HasB) from Streptococcus ~ogenes (Fig. 2) (27), and to open 
reading frames from the E. coli and Salmonella enteritica rfo 
clusters (28). Although not shown biochemically or geneti- 
cally to be UDP-GIc DH, these latter sequences share a high 
degree of homology with HasB and Cps3D. 

The NH2-terminal amino acid residues 2-29 of CpsD 
have all the characteristics of an NAD-binding site (29), 
and this sequence is very homologous to regions from HasB, 
AIgD (the GDP-mannose dehydrogenase of Pseudomonas aeru- 
ginosa [30]), and the potential UDP-Glc DH from E. coli and 
S. enteritica. The homology with AlgD was previously noted 
by Garcfa et al. in the deduced amino acid sequence of the 
S. pneumoniae gene cap3-1 (31). They suggested that Cap3-1 
was the type 3 UDP-Glc DH. From the EcoRV site to our 
ScaI site (bp 883 to 1377, containing amino acids 1-117), our 
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A common type 3-sImcific common 

Sa SpH PPv SHEvHXBgPv XPHHEv Pv.Pv S. EvPHBg S Sp 
, , ,  , "~ , " ~  "~/p" ~'~'~" . _  . '~,( ~ , 

cps3D cps3S cps3U cps3M 'plpA 1 K b  

B 
GA~TCCAATCA~GTGTTTGTA~TTTTTGA~A~GGGT~TCG~TAGAc~ACAGCAAA~GG~CATAGTAGTGA~TCCAG~A~TAAAGcA~CAAAAGGGTTGC~AT~GGT 120 

ATAAAAT~TGTAGAGGG~TAGG~TAGGTGCGTGT~GGTA~G~T~TGTTGAGC~AAAACATC~GTA~GTTAGTTATTGCAAAG~TATAAAAGAGAGAGACGCTAAAAATGG 240 

TAAAAAAGAGTGAGGTTGGCCAAAATGAAGAAGTTCTTTG~GCTT~TCCCAT~GTG~TGC~T~GGT~GAAAAAG~TAGCCAGCAGGTCAATATT~TTTTGGTGCGGTA 360 

ACCAATTCCAATGGCTAGAGCAAT~CG CT~TCATTATT A A A T ~ A A T ~  GAA~G TC CTTT ~TTAGAATATAGAAA~G~TA~ TTC-AAG T T C ~ G ~ T A C T  GGGTGT CTT CT G A 600 

T~TAAGT~TT~ GT CJ~C ~TC~ARAT~ ~TAAATTGC~GGAA~ GCJ~ATC~T C CT ~TACTA~TA ~TG GTAT TA C~GTC ~ C  G TTCGCTATTTTA T CTTT~ 600 

CTTTAAGC~TGTA~A~CTTTTGC~TAGT~C~GGT~TTGGT~G~GAAAGTATG~GTTA~ATGTG~TTTATCGTGAAGACCA~CAT~C~CTGGATAAACG 720 

AC~T GCTT T TAAC~T~T~TATCGAAAAATGT GT~ATATTTTC TAAJ~ T~TGG TATTTT CTAAAAAA~CCT ~GCTA T C G&T G CAAAC~CGGTATAT~ C T G TA~ TTTGGAA 640 
R ~  -35  -Io 

~T T &TTTGGAAACAGAGGTTA GC*AAAGT~TCAGTT~C GG~TAT C TT TT CAAAGC T~TAC TAAGGCACAAAAAAAAGTT T~T AT T C CCCT T~CAATA~TAAAATTATTAy2L~ 960 
~S m~art ~,pe~ 

~TAAA~ATT~TTTTTAAATAAAGTGAGAATA~T~TG~GAGAAAGA~ACT~TA~AAAATGAAAATTG~CATTGC~GAAGTGGTTATGTAGGTCTGTCTTTAGC~TGCTA 1080 
M K I A I A G S G Y V G L S L A V L -  

~T~CTCAG~AT~TG~GTT~TCATT~TGTTATAAAG~T~G~T~AGTC~TAAAC~TAGAAAAT~TCC~TT~G~T~C~TT~GAAATACTTAGTTGAAA~A~G12~ 
L A Q H H E V K V I ~ V I K D K V R S I N N R K S P I K D E A I E K Y L V E K E -  

~619T~ 
TTG~TT~AA~CTCCTTA~TCCTGCACACGTTTATAAA~cGT~GTATGCTATTATTGCTACTCCGACT~TTAT~TGTA~CTTAAATCAGTTT~TACATCTTCACTTBAA 1320 
L N L E A S L D P A H V Y K D V E T A I Z A T P T N Y D V D L N Q F D T S S V E -  

S~al 

~GCTATCA~CTT~ATGG~TAT~TCATACTTGTAc~TCGT~TCA~GTACTATTCCTGAAGGGTATACTAAAG~GTCAGG~A~AGTTT~TACA~ATCGTATTATTTTT144~ 
A A I K T C M E Y N D T C T I V I K S T I P E G Y T K E V R E K F N T D R I I F -  

HJnd~T1 
TCTCCAGAGTTTCTACGTGAATCCAAAGCTTTATA~T~TTTGTATCCATCTAG~TTGTTGTAGG~CT~TTTGGATGATTCTGAGTT~CAAAAAGAGCATGGCAG~TTGCA~T 1560 
S P E F L R E S K A L Y D N L Y P S R I V V G T D L D D S E L T K R A W Q F A D -  

�9 J0982 
CTACTTAAAGGT~GCTATT~GGAAGAGGTTCC~TACTGGTTGTTGCTTTT~TG~GCAGAGGTTGCAAAATTGTTTAGT~CACTTACTTGG~CTCGCGTAGCTTATTTT~T~66~ 
L L K G G A I K B E V P I L V V A P N E A E V A K L F S N T Y L A T R V A Y F N -  

GAGATA~TACATATAGC~GGTAAAAGG~CTT~TCCC~C~TTATT~ATATTGTTTGTTATGATCCTAG~TTG~TCAGACTAT~T~CCCTAGCTTTGGTTACGGAGGGTAT 1000 
E I D T Y S E V K G L N P K T I I D I V C Y D P R I G S D Y N N P S F G Y G G y -  

PvuT! 
T~TTACCA~GACAC~GC~TTG~AAGC~GTTTTAGGGATGTTCCTG~AATCTGATTACAGCTGTCCTGC~TCT~TAA~AC~GA~AAGATTATATAGCTGGAGCTATTCTAt920 
C L P X D T K O L K A S F R D V P E N L I T A V V Q S N K T R K D Y I A G A I L ~  

~A ~611 A66R~ AA~ TCT Rx l  
GcTAAAC~CCTAGTGTTGTAGGTATTTATAG~TTATGAAATCTCATTCTGATAA~TT~TTCTA~T~CTGTT~GGGAGTTATGG~CGTTTGG&C~TTATGGTAAAGA~TT2~4~ 
A K Q P S V V G I Y R L I M K S D S D N F R S S A V K G V M E R L D N Y G K E I ~  

K c Ssol 
GTTATTTACG~CCTAcTATTGAGTGTGATACTTTTATGGGATACACAGT~TTA~ATCTTTACATG~TTT~G~TATTTCTGACATTGTT~TAGCCAATCGTATG~CGATGATTTA 2160 
V I Y E P T I E C D T ~ M G Y R V I K S L O E F K N I S D I V V A N R M N D D L -  

end cp$3O ~s ~ta rc  cps3S �9 JDgE3 
AGGGATAT&C~GAAAAACTCTAT~CACGCG~TTTATTTGGC~GAG~T~GG~A/~T~TTTTTATGTAT~CATTTATTTT~TGTTGTTGGATTTTTTTCAG~TC~TGATTTTCAT22~ 
R D I O E K L Y T R D L F G R E *  M Y T F ~ L M L L ~ F F Q N ~ D F H -  

TTcTTTATGTTGTTTTTTGTCTTTATTCTTATTCGTTGGGCGGTTATATATTTTCATGCT~T~TAT~GTCCTA~A~TT~TACTGT~GTGATGAG~GTTATTTA~TTCTGT~TT 2400 
F F M L F F V F I L I R W A V I Y F H A V R Y K S Y S C S V ~ D E K L F S S V ] -  

ATCCcT~TCGTG~TG~C~CTT~TCTTTTTGAAAGTGTACTC~ATAGAATTTcCAGAcATA~CCATC~GAAATTATTGT~GTTATT~C~CCCAA~CGA~CTT~TAAAA~2~ 
I P V V D E P L N L F E $ V L N R ~ S R H K P S E I I V V I N G P K N E R L V X -  

CTTTGTCATGATTTT~TGAAA~TTAGAAAAT~TAT~CTCC~TTC~TGTTATTAcAcTCCTGTTcCTG~C~GACAAATGCTATCCGCGTTGGGCTG~GCATGTGGATTCG~G 2640 
L C H D F N E K L E N N M T P I ~ C Y Y T P V P G M R N A I R V G L E H V D S O -  

AGTGATATTACAGTTCTAGTAGATAGTGATACAGTATGGAC~CCTAGAACCTTGAGTGAGTT~CTGAAGCCTTTTGTTTGCGATAAAAA~TAGGT~GG~T~CGAC~CA~TT 27g0 
$ D I T V L V D S D T V W T P R T L S E L L K P F V C D K K I G G V T T R Q K I -  

CTT~ACCCTGAGCGT~TCTCGT~C~TGTTTGCT~CTT~TTAGAG~AAATTAGGGCAG~GG~CTATGAAAGc~T~GTGTGACTGGTAAAGTA~GGTGCTTACCTGGTCGAACA 2660 
L D P E R N L V T M F A N L L E E I R A E G T M K A M S V T G K V G C L P G R T -  

ATTGCTTTTAGAAATATAGTGGA~AGAGTGTATACAAAGTTTATAG~GAuACTTTCAT~GATTTCAT~GG~GTTTCTGATGATAG~GTCTTAcAAATTT~CTTTAAA~GGC 3000 
I A F R N I V E R V Y T K F I E E T F H G F H K E V S D D R S L T N L T L K K G -  

TATAAAACTGTTATGCAGGATACTTCTGTTGTGTATACA~AT~TCCTAC~GTT~GAAAAAGTTCATTAGACAGCAACT~GGTGGGCA~GGTTCTCAGTAT~C~TCTAAA~TG 3120 
Y K T V N ~ D T S V V Y T D A P T S W K K F I R Q O L R W A E G S Q Y N N L K M -  

ACTCCTTG~TGATTAGAAATGCCCCTCTTATGTTTTTTATTTATTTTACAGATATGATTTTACCTAT~CTACTTATTAGCTTTGGTGTG~TATATTCCTGTT~AA~TAT~AAATATA 3240 
T P W M I R N A P L M F F I Y F T D N I L P M L L I S F G V N I F L L K I L N I -  

ACTACA~TTGTTTATACAGCTTCAT~GTGGGAAATTATTTTATATGTTCTTTTGG~TGATTTTTAGCTTTG~G~GAAACTTTAAAGCTATGTCTAG~TGAAGTGGTATTATGTA 33K0 
T T I V Y T A S W W E I I L Y V L L G M I F S F G G R N F K A M S R M K W Y y V -  

�9 J06~7 e ~  u ~ 3 s  
TTTCTTATTCCTGTTTTTAT~TCGTTTT~GTAT~TTATGTGCCCTATTAGGCTATTAG~ACTTAT~GATGTTCTCATGATTTAGGGTGGGG~TAGGAATTT~CAGAGTGAGAT 3400 
F L I P V F I I V L S I I M C P I R L L G L M R C S D D L G W G T R N L T E *  

AAATAGTAGTGCGTATATAGAGTATTTACTCA~GTATT~TTCATTTTTGAAAA~GAAAAGTGTTTTTT~TGTTAAGAAAG~CTTGAAATATCA~TT~CAC~GCTGGAACAA 3600 
-35 - lO - - -  

TTTTAGCTATCTTGTTTTTCATTATATTAGGGATTATTG~TC~cTTTTGTTTT~GGCTCATT~TcATcTGTAGTGGCTCACTT~AGACGT~GGGTCATATTTT~TGTCAA~A~GT372~ 
. . . . . . . . . . .  ~S  ~ tac t  cp~3U 
GTT~TT~TCACTTATATTATTTT~TA~/~TAGT~T~T~cTTATGAAA/U~A~.~AAAAGCTcTTATTCCTGCTGCAcGGCTG~CACAC~TTTTTGCCT~CCACT 3040 

N K K V g ~ A V I P A A G L G T R F L P A T -  
M l n d I l l  H~ndIll 

AAAG~TTGGCA~AA~AAATGCTTCCAATTGTAGACCGCCCCAC~TTC~TTTTGTC~TTG~G~GCTTT~CGTTCG~GT~TTGA~TATTCT~GTAGTTACTGGAAA~GTAAACGT 39&0 
K A L A K R H L P I V D ~ P T I H F V I E E A L R S ~ I E D I L V V T G K S K R -  

TCTATTG~GATT~TTTTGATT~CTTTTG~V~TTG~TAT~TCTTAG~C~GGAJ~GATG~CTTCTT~TCAGTT~CGAATC~CT~ATATTA~t`GTACATTTCGTTCGT 4080 
S I E D Y F D S T F E L ~ Y S L R K O C K M E L L K S V N E S T D I K V H F V R -  

C~AAGTTCACCAC~TGGTCTTGGT~CGCTGTTCTCC~GCGAA~TCTTTTGTTGGTGACGAT~CCTTTGTTGT~TGCTTGGT~TGACCTTATG~T~TCACCGACTC~CTGCT~T~42~ 
Q S S P R G L G D A V L Q A K S F V G ~ D P F V V N L G D D L M D ~ T D S T A V  

~900  
CCTTT~C~C~TT~TGG~TGATT~C~CGC~CAC~G~CTTC~CTATCGC~GT~T~CCTGTTAGATATG~TGTTT~TTCTTAT~TGT~TTTCTCCTA~TTGCJ~AACT 4320 
P L T R ~ L M D D Y N A T Q A S T I A V H P V R Y E D V S S Y G V ~ S P R L E S -  

AGT~T~GCCTCTATAGTGTTGATGCTTTTGTAGAGAAAcCAAAAC~AAG~GCGCCTAGCCATTTAGCTATTATTC~CA~GTTATCTACTTACTCCT~TT~TT~AT&TTAGAA 4640 
S N G L Y S V D A F V E K P K P E g A P S H L A I I G R Y L L T P ~ | F S I L E -  

ACCCAAAA~AG~C~AGG~TC~TT~TTGACA~AT~TA~TA~TTG~T~A~A~GTGTT~T~GCGCGTC`AATTTGTGGG~AAACG~Ac~TGTT~T~T~G45~ 
T Q K P G A G R E I Q L T D A I D T L g K T ~ $ V P A R E F V G K R Y D V G D K -  

TTT~TT~ATGA~CATC~TTGATTA~TCTTC~CATCCTCA~TTAAA~G~TTAAAAAATTAC~TTATT~CACT~GT~GC~TT~GAAGCTA~T~CTGTTC~TCA 4650 
F N F M K T S I D Y A L O H P O I K s  

end cp~3U 
AGTG~CACCTATG~TTGTATAGAAAGTTATCAAAAATGGCT~TGTCCCTGATCTTC 4740 
S G H L *  
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Figure 1. (A) Map of the type 3 
capsule locus. Triangles indicate the 
endpoints of insertion mutations: 
filled, loss of capsule production; 
open, no apparent effect on capsule 
production. Restriction sites: Bg, 
BgllI; Ev, EcoRV; H, HindlII; P, 
PstI; Pv, Pvull; S, Sacl; Sa, SalI; S/,, 
SphI. (B) DNA sequence of the re- 
gion containing cps3D, cps3S, and 
cps3U, and upstream flanking 
DNA. Putative promoters were 
identified using the FIND program 
and scored as in (52). A region of 
dyad symmetry upstream of cps3 U 
is overlined. Endpoints of insertion 
mutations shown in A are indicated 
by triangles and are labeled with the 
name of the strain containing the 
mutation. Point mutations in cps3D 
are labeled with the sequence of the 
mutation and the name of the strain 
containing the mutation. Se- 
quencing of the PvulI-SspI fragment 
of A66R2 began at bp 1921, thus 
additional mutations between the 
PvulI site and this point are possible. 
Selected restriction sites are shown. 
These sequence data are available 
fzom EMBL/C-enBank/DDBJ under 
accession number U15171. 



Cps3D I M~AI~S~LSI~%'L~RBZVKVIDVIKDKVESINN~SPIKDEAI 50 
I l l l : l l l l l l l i l l : l l [ .  : : l l . : : l : : - - [ l : . l l l  I I 1 . / I  I 

HasB 1 b~IA%'AGSG~Cr 50 

51 EKYLVEKELNDEASLDPAHVYKDVEYAIIATPTNYDVDLNQFDTSSIrEAA 100 
I I I  . l : l , : . l . l l .  . 1 1 : . 1 . . 1 1 1 1 1 1 1 1 :  :1 I l l  I I . .  

51 EYYLKSKQLSIKATLDSKAAYKEAELVIIATPTNYNSRINYFDTQHVETV i00 

1 0 1  IKTCMEYNDTCTIVIKSTIPEGYTKEVREKFNTDRIIFSPEELRESKALY 1 5 0  
I 1 , . : .  I .  . l : : l l l l l l  I : . . l : l : l l . l l l l l [ l l l l l l l l l l l l  

I01 IKEVLSI~NSHATLIIKSTIPIGFITEMRQKFQTDRIIFSPEFLRESKALY 150 

151 DNLYPSRIVVGTDLDDSELTK.RAWQFADLLKGGAIKEEVPILWAYNEA 199 
llllilil:l:.: :If. .I i .If lil::[ l::ll:i::: . 

151DNLYPSRIIVSCEENDSPKVKADAEKFALLLKSAAKKNNVPVLIMGASEA 200 

200 EVAKLFSNTYLATRVAYFNEIDTYSE%rKGLNPKTIIDIVCYDPRIGSDYN 249 
l..]]l.lliJ] }lllill:lil.l : li-- II: ::il.lll .If 

201 EAVKLFA~TYLALRVAYFNELDTYAESRKLNSHMIIQGISYDDRIGMHYN 250 

250 NPSFGYG~CI~EDTKQLKASFRDVPENLITAWQSNKTP/<DYIAGAIL, 298 
lllllililillii~lll I.:.::I:.II.I:I ll,.ll.ill .I: 

251NPSF~GGYCLPEDTKQLLANYNNIPQTLIEAIVSSN~SYIAKQIIN 300 

299 ..... AKQPSWGIYRLIMKSDSDNFRSSAVKGVMERLDNYGKEIVIYEP 343 
. . . . .  I I 1 : 1 1 1 ; 1 1 1 : 1 1 1 1 1 , 1 1 : 1 : 1 : :  I . ,  : . 1 : 1 1  

301 VLKEQESPVKVVGVYRLIMKSNSDNFRESAIKDVIDILKSKDIKIIIYEP 350 

344 TIECDTFMGYRV.IKSLDEFKNISDIWANP/MNDDLRDIQEKLYTRDLFG 392 
:: . : .i :,.l::ii- .:l:i.il :::l.l:.:l:i.ll:l{ 

351MLNKLESEDQSVLVNDLENFKKQANIIVTNRYDNELQDVKNKVYSRDIFG 400 

393 ~* 395 

401RD* 402 

as an attenuator ofcps3U expression. The cps3U open reading 
frame, 918 bp in length, is transcribed in the same direction 
as cps3D and ct~s3S, and is predicted to encode a protein of 
34 kD. 

Cps3S Is Homologous to Polysaccharide Synthases. The 
predicted Cps3S protein has significant homology to poly- 
saccharide synthases, including HasA, the hyaluronic acid (HA) 
synthase from S. Fyogenes (23% identity, 50% similarity) (34, 
35), and NodC from Rhizobium meliloti (21% identity, 47% 
similarity) (Fig. 3). HA and the pneumococcal type 3 cap- 
sule are composed of fl(1-4)-linked repeating disaccharide units 
containing GlcA. HA consists of alternating N-acetyl glucos- 
amine (GlcNAc) and GlcA residues. Both contain fl(1-3) and 
B(1-4) linkages, however the linkage to GlcA is/~(1-4) in HA 
but/~(1-3) in type 3 capsule (36). NodC is necessary for the 

Figure 2. Homology of the Cps3D deduced amino acid sequence with 
HasB. The NAD-binding region (residues 2 to 29) and the active site 
(residues 251 to 263) are indicated in bold. An asterisk marks the essential eps3s 

FBFI5 
Cystein@ of the active site. HasA 

Node 

Cps3S sequence is in complete agreement with theirs. However, no rBrz5 
other homology was seen, suggesting that these investigators ~asA 

Node 

had cloned only the 5' end of the gene. 
The Cps3D sequence at residues 251-263 is consistent with 

Cps3S this being the active site of the enzyme. This region is iden- rBrls 
tical to that of HasB (Fig. 2) and the putative E. coli and ,,,A 

NodC 

S. enteritica enzymes. The homology of the active site region 
of HasB with that of bovine UDP-Glc DH and AlgD has 

Cps3S been described (27). The cysteine at residue 259 of Cps3D mr15 
contains the essential thiol group of the reactive site (32). .~,A 

Node 

The predicted size of Cps3D (45 kD) is also similar to that 
of the E. coli enzymes (47 kD) (33). 

Cps3S Sequences ofcps3S and cpsU. The  region downstream o f  rBr15 
cps3D contains a second gene, cps3S, that is required for type Hasa 

NodC 

3 capsule synthesis (13). A 1,248-bp open-reading frame is 
transcribed in the same direction as cps3D and is in the same 

Cps3S reading frame. This direction is in agreement with that pre- rsrls 
viously determined using cat insertions (13). Only 15 bp sep- NodCHaSA 
arate a potential start codon for Cps3S from the stop codon 
of Cps3D. The sequence AGGGGjust upstream of the puta- 

Cps3S tive start codon (Fig. 1 B ) may serve as a ribosome binding rSrlS 
site (RBS), or due to the close proximity of cps3D, no RBS ,ssA 

Node 

may be necessary. The predicted Cps3S is 48 kD in size, if 
the first start codon at bp 1 (bp 2227 in Fig. 1 B) is used. 
Other potential start codons are located at bp + 19 (2245) rBrlsCps3s 

HasA and + 61 (2287), however neither of these are positioned near Noac 
a RBS. 

A short region of dyad symmetry was detected downstream 
Cps3S of cps3S at bp 3718-3738. The scores for primary and sec- rBrxs 

ondary structure ~ = 3.95, s = 22; GCG TERMINATOR HasA 
Node 

program) suggest that this region could function as a weak 
rho-independent terminator. However, this sequence is 241 
bp past the Cps3S stop codon and closer to the start of Cps3U. 
A potential cps3U promoter was detected upstream of the 
region of dyad symmetry, suggesting the structure could serve 

1 
MYTFILMLLD FFQNHDFHFF MLFF .... VF 
..... MELFP I .... QILFL VVLMNRYILG 
..... MYLFG ...TSTVGIY GVILITYLVI 
..... MYLLD TTSTAAISIY ALLLTAYRSM 
..... M-L ........ i--y --II--Y--- 

51 
SVSDEKLFSS VIIPVVDEPL NLFESVLNRI 
..... TV..A IIIPLFNEGE GIYHA.IRSL 
KPHDYKV..A AVIPSYNEDA ESLLETLKSV 
RPLP.AV..D VIVPSFNEDP GILSACLASI 
...... V--- vIIP-fNE .... I---L-Si 

101 
ERLVKLCHDF NEKLENNMTP IQCYYTPV.P 
DDSYVWALKAAEQHP .... N VMVMRNPENM 
TDAIQLIEEY VNREVDICRN VIVHRSLVNK 
R~I~VRAF YS~PRFSFI LLPE .... 
-d-i ..... f .......... v ....... N- 

151 
VLVDSDTVWT PRTLSELLKP FVCDKKIGGV 
VSVDSDVIVD RGAVRQLVRR FL.HPRIAAV 
LTVDSDTYIY PNALEELLKS FN.DETVYAA 
LNVDSDSTIA FDWSKLASK MR.DPEVGAV 
--VDSD--I ....... L--- F--D .... AV 

201 
LEEIRAEGTM KAMSVTGKVG CLPGRTIAF. 
KFHFAQEWLK DLERGFRSVM CLSGCLTAYR 
RYDNAFGVER AAQSLTGNIL VCSGPLSIYR 
EYWLACNEER AAQSRFGAVM CCCGPCAMYR 
-y--A ...... A-S--G-Vm C--G .... YR 

251 
KEVSDDRSLT NLTLKKGYKT VMQDTSVVYT 
IKYGEDRFLT RQIIKAGYET IYTTAAVCFT 
VSIGDDRCLT NYAIDLG.RT VYQSTARCDT 
SDFGEDRHLT II24LKAGFRT EYVPDAIVAT 
--fGeDR-LT .... K-Gy-T vY---Av--T 

301 
QYNNLKMTPW MIRNAPLMFF IYFTDMILPM 
LVDMLGGLSH AWRLHPVVAV .... HYVSQF 
FRESIISVKK ILS.NPIVAL .... WTIFEV 
FRDTFLALPL LRGLSPFLAF DAVGQNIGQL 
f-d-i .......... P--A ....... I--- 

351 
VYTASWWEII LYVLLGMIFS 
FWDILAMHVL TVGIMGFIYR 
LDLIKLFAFL SI.I..FIVA 
WWTILIIACM TI.IRCSVVA 
-w-I ..... 1 -i-I---I-- 

401 
MCPIRLLGLM RCSDDLGWGT 
FSPL...ALL TLDSG.SWET 
LQPLKLYSLC TIKNT.EWGT 
ILPLKAYALC TLSNS.DWLS 
--PL .... L- T ...... W-T 

FGGRNFKAMS 
WETRHLPDDQ 
L. CRNVHYMV 
LHARQLRFL. 
1--R-l--m- 

50 
ILIRWAVIYF HAVRYKSYSC 
PLMRRVRGDQ FDATNDAYEP 
KL ....... G LSFLYEPFKG 
QVLYAR91 DG PAVAAEPVET 
-L ............. e-y-- 

100 
SRHK...PSE IIWINGPKN 
LLQDYPPDKL SIVVVDDCSK 
LAQTYPLS. E IYIVDDGSSN 
ADQDYPGELR VYVVDDGSRN 
--Q-YP .... i-VV-DG--N 

150 
GKRNAIRVGL EHVDSQSDIT 
GKRKGINRGV RA..TQSEII 
GKRHAQAWAF ER. .SDADVF 
GKRKAQIAAI GQ. .SSGDLV 
GKR-A ......... S--Di- 

200 
TTRQKILDPE RNLVTMFANL 
GGRTYVTNRH QNWMTRMIEI 
TGHLNARNRQ TNLLTRLTDI 
MGQLTASNSG DTWLTKLIDM 
-G ..... N-- -N-IT-I-d- 

250 
RN IVERVYTK FIEETFMGFH 
RHVLEELEP I LEARSIAGVA 
REVI IPNLER YKNQTFLGLP 
RSALASLLDQ YETQLFRGKP 
R-v ....... y---tF-G-- 

300 
DAPTSWKKFI RQQLRWAEGS 
ATPANIAGYF AQQLRWRRSN 
DVPFQLKSYL KQQNRWNKSF 
VVPDTLKPYL RQQLRWARST 
--P---K-Y 1 -QQLRW--S- 

35O 
LLISFGVNIF LLKILNITTI 
GLLLSYPWI VHNILTG.. E 
VMFMMLIVAI GNLLFNQAIQ 
LLALSVVTGL AHLIMTATVP 
-L-I ......... Ii ..... 

4OO 
R/~YYVFLI P~/FIIVLSI I 
R~GLSFLPM AIAMMP I T Y~.L 
KHPA. SFLLS PLYGILHLFV 
..... GFV.. . LHTPINLFL 
...... F1 -- -L---I .... 

RNLTE* . . . . . . . . . . . . . . . . . . . . . . . .  

RGVPRECGHT GPQRHFPHAS PAAEGLST*. 
RKKVTIFK* . . . . . . . . . . . . . . . . . . . . .  

RYSAPEVPVS GGKQTPIQTS GRVTPDCTCS 
R ............................. 

Figure 3. Bacterial polysaccharide synthases. The alignment was per- 
formed using PILEUP. The consensus sequence was prepared using 
PRETTY and a plurality of 3/4. Lower case letters indicate that the con- 
sensus amino acid is representative of a class. 
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synthesis of nodulation factor, a substituted oligosaccharide 
consisting of 8(1-4) linked GlcNAc residues (37). It has been 
noted that HasA and NodC are homologous to polysaccha- 
ride synthases, including FBF15 of Stigmatella aurantiaca, 
pDG42 of Xenopus laeveis, and chitin synthases from both 
Saccharomyces cerevisiae and Candida albicans (34, 35, 38, 39). 
Cps3S is also homologous to these proteins. The results sug- 
gest that Cps3S is the type 3 capsular polysaccharide synthase. 

Four hydrophobic stretches identified in Cps3S are found 
in all four bacterial synthases. As indicated for NodC, these 
regions may span the cell membrane (40, 41). Earlier studies 
indicated that the type 3 synthesizing activity also has a mem- 
brane location (16). The last hydrophobic stretch in Cps3S 
may be required for function since the insertion in JD897 
which eliminated this region (the last 45 amino acids of the 
protein) resulted in loss of capsule production (Fig 1 B). High 
level expression of Cps3S in E. coli was, like that of NodC, 
lethal to the host (data not shown). 

Cps3U Is Homologous to Glucose-l-phosphate Uridylyltrans- 
ferases. The amino acid sequence of Cps3U has a high de- 
gree of homology with glucose-l-phosphate uridylyhrans- 
ferases (Glc-I-P UT) from several other bacterial species, 
including GtaB from Bacillus subtilis (55% identity, 73% 
similarity) (Fig. 4 A). The active sites of bacterial GIc-I-P 
UT have not been characterized, however the active site in 
the enzyme from potato tuber has 5 lysine residues (42). One 
of these residues is important for function, and a second is 
absolutely required (43). Cps3U contains 24 lysines, six of 
which are conserved among the six bacterial Glc-l-P UT in 
the database (Fig. 4 A). Only one region from Cps3U con- 
taining a conserved lysine can be aligned well with the potato 

A 

Cps3U i MKICVKKAVIPAAGLGTRFLPATKALAKEMLPIVDRPTIHFVIEEALRSGI 50 
ilLl:il:lllllLlililillil::ilLlllli:lil:::ii11: .ll 

GtaB i MKKVRKAIIPAAGLGTRFLPATKAMPKEMLPIVDKPTIQYIIEEAVEAGI 50 

51 EDILVVTGKSKRSIEDYFDSTFELEYSLRKQGKMELLKSVNESTDI.KVH 99 
Lll::lillLll.lll.li . III -I ..II III..I .... :: .:I 

51 EDIIIVTGKSKRAIEDHFDYSPELERNLEEKGKTELLEKVKKASNLADIH 100 

i00 FVRQSSPRGLGDAVLQAKSFVGDDPFVVMLGDDLMDITDSTAVPLTRQLM 149 
::ll..l:lll. II: l:.l:ll:li-l:llll::: ...I IIII 

101 YIRQKEPKGLGHAVWCARNFIGDEPFAVLLGDDIVQ .... AETPGLRQLM 146 

150 DDYNATQASTIAVMPVRYEDVSSYGVISPRLESSNGLYSVDAFVEKPKPE 199 
L:I: I .i.l:l .i. l:. .II:I.I I.I.. I i..Illll..: 

147 DEYEKTLSSIIGVQQVPEEETHRYGIIDP.LTSEGRRYQVKNFVEKPPKG 195 

200 EAPSHLAIIGRYLLTPEIFSILETQKPGAGNEIQLTDAIDTLNKTQSVFA 249 
�9 lll:llL:III::lllil .ll.l..lil.lllliliL:.ll..l.lll 

196 TAPSNLAILGRYVFTPEIFMYLEEQQVGAGGEIQLTDAIQKLNEIQRVFA 245 

250 REFVGKRYDVGDKFNFMKTSIDYALQHPQIKESLKNYVIALGKQLEKLDD 299 
:i iIl1111:1:.i:.l-:::l:l..:::: I :: :I .. i 

246 YDFEGKRYDVGEKLGFITTTLEFAMQDKELRDQLVPFMEGLLNKEEI . 292 

300 C$SSGHL* 

B 

Cps3U 16 TRFLPATKA 24 
:llli. II 

UDPGP 361 SRFLPV.KA 368 

Figure 4. (A) GAP comparison of Cps3U with GtaB. The six lysines 
conserved among the bacterial Glc-I-P UT are indicated in bold. (B) Align- 
ment of a region of Cps3U with the region from the potato tuber UDP- 
Glc pyrophosphorylase (Glc-l-P UT) required for enzyme function. 

tuber enzyme sequence. It is homologous to the region con- 
taining the required lysine (Fig. 4 B). 

Mutations Affecting Type 3 Capsular Polysaccharide Produc- 
tion. Two mutations resulting in the capsule-negative pheno- 
type were previously mapped to cps3D (13). To determine 
the nature of these mutations, the regions were amplified from 
the chromosomes of the mutant strains and sequenced. Each 
mutant 019611 and JD619) contained a single base pair trans- 
version resulting in a premature stop codon (Fig. 1 B). 

We also identified three mutations upstream of the JD611 
and JD619 mutations, near a site where a mutation appar- 
ently affecting type 3 capsule polymerization had previously 
been mapped (13, 14). These mutants produced capsular ma- 
terial that was detectable in cell lysates, but the cells could 
not be agglutinated with type 3-specific antisera, and they 
produced non-mucoid colonies. We tentatively identified the 
locus containing these mutations as cpsB, and, based on the 
phenotypes and map positions, suggested that cpsB might 
encode a polysaccharide polymerase (i.e., be cpsP) (13). To 
better localize the mutations, we amplified fragments from 
the parent type 3 chromosome that contained either the 5' 
end of the cps3D coding sequence (bp 1027-1802), the pro- 
moter and the 5' end of cps3D (bp 885-1802), or the 5' end 
of cps3D plus '~1 kb of upstream DNA (bp 1-1802). Each 
of the fragments was used to transform the capsule-deficient 
mutants JD614 and JD692. JD692 was transformed to en- 
capsulation using the 5' end coding sequence, whereas JD614 
was not. JD614 was restored by the fragment containing the 
5' end plus 141 bp of upstream DNA, including the pro- 
moter. Both mutants were restored by the 1.8-kb fragment 
containing the 5' end of cps3D and upstream DNA, and nei- 
ther was restored with a fragment containing the 3' end of 
cps3D (bp 1759-2385, data not shown). Thus, these upstream 
mutations are not located in a separate gene but are in either 
the cps3D structural gene or its promoter. Since some cap- 
sule material is produced by these mutants, a mutation within 
the coding region (as in JD692) must be a missense muta- 
tion or an in-frame deletion or insertion that reduces the ac- 
tivity of the enzyme. The mutation in JD614 may be in the 
promoter, and thus, a promoter down mutation, or it may 
be in the structural gene but too close to the beginning of 
the gene for recombination and repair to occur with the frag- 
ment used. 

Two other mutations in cps3D resulting in reduced amounts 
of type 3 capsule were restored to normal encapsulation with 
the 250-bp PvulI-SspI fragment from the parent strain (13). 
Amplification and sequencing of this same fragment from 
the mutant strains A66R2 and Rxl showed that each con- 
tained a missense mutation in the cps3D coding sequence 
(Fig. 1 B). 

Use of fragments subcloned from the cps3DSU region to 
direct insertion-duplication mutations in the parent type 3 
chromosome (13) resulted in several mutants that produced 
no detectable capsule and exhibited the extremely rough pheno- 
type described by Taylor (44). DNA sequencing revealed that 
the mutations are in cps3S (Fig. 1). The lack of capsule in 
these mutants must be due to loss ofcps3S expression, rather 
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than to a polar effect on downstream genes, since insertions 
within cps3U or cps3M had no apparent effect on capsule 
production, as judged by growth on blood agar medium. 

cps3S and cps3D Are Transcribed as an Operon. Sequence 
analysis revealed no potential promoter sequences in the re- 
gion upstream ofcps3S (Fig. 1 B). The phenotypes of several 
insertion-duplication mutants also suggest that no promoter 
is located in the 3' end ofcps3D and that cps3S is transcribed 
from the cps3D promoter. The sites of these insertions are 
shown in Fig. 1 and their structures are illustrated in Fig. 
5. Insertion of the plasmids results in a duplication of the 
cloned fragment. Therefore, mutant strains such as JD908, 
in which the duplicated fragment contains both the 5' end 
of cps3S and the 3' end of cps3D, have a full-length copy of 
cps3S downstream of the plasmid insertion. In addition, the 
full-length copy is contiguous to the 3' end ofcps3D There- 
fore, if cps3S had its own promoter, or if one were located 
in the 3' end of cps3D, these insertions should not result in 
loss of cps3S expression. However, four such insertions have 
been made in the WU2 chromosome 019846, JD897, JD898, 
and JDg08), and even with a duplication of 450 bp of the 
3' end of cps3D, a loss of capsule production was observed. 

Two internal insertions in cps3D also eliminated capsule 
production (Fig. 5 A). However, since cps3D and cps3S are 
transcribed as an operon, this result does not prove that cps3D 
is required for capsule synthesis. That fact is demonstrated 
by the lack of capsule production seen in strains containing 
non-polar point mutations in cps3D (see below). 

In Vitro Polymerization Assay. It is not possible to per- 
form the standard UDP-GIc DH assay on extracts of S. pneu- 
moniae due to the presence ofa NADH oxidase, that copurifies 
with the enzyme (23, 45). Therefore, the ability of the mu- 
tants to synthesize type 3 capsule was examined in an in vitro 
polymerization assay. MutantsJD611 andJD619, which con- 
tain stop mutations in cps3D, produce no detectable capsular 
material (13). However, both synthesized high molecular 
weight type 3 polysaccharide in vitro when provided with 
UDP-Glc and UDP-GlcA (Table 1). No capsule was produced 
when UDP-GIcA was omitted from the reaction. These results 
support the conclusion that Cps3D is the UDP-Glc DH, and 
confirm that stop mutations in cps3D are not polar on cps3S. 

Mutants containing insertions in cps3S 0D902), or between 
the full-length copies ofcps3D and cps3S (JD908, JD897) were 
unable to synthesize significant amounts of capsule even with 

Figure 5. Location of insertion mutations in the type 3-specific region. (A) Schematic illustration of the insertions. The schematic was derived from 
Southern blot analysis such as that shown in B and C. Restriction sites: F, Fspl; H, Hindlll; K, KpnI; Ms, MscI; P, PstI; Pv, PvulI; X, XbaI. (B) 
Ethidium bromide-stained agarose gel of chromosomal DNA from insertion mutants digested with MscI/Fspl for JD982, MscI/Sall for JD983, and 
MscI/KpnI for JD908, JD902, and JD900. (C) Southern blot of gel in part B probed with the vector pJY4164. Increasing distance from the Mscl 
site to the end of the vector is demonstrated by the increase in size of the upper band. The faint band in the JD982 lane is likely a result of partial 
digestion. The 4.7- and 4.8-kb bands in JD982 and JD908, respectively, indicate that these mutants contain a duplication of the inserted plasmid. 
The vector is homologous to the 1.6-kb fragment of the molecular size standards, M. 
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Table 1. In Vitro Capsule Synthesis Assay 

Cps CPS 
St ra in  phenotype* UDP-GlcAS (#g/nag protein) 

JD611 Cps3D-S § + 9.8 _+ 0.6 
- 0.9 _+ 0.2 

JD619  Cps3D-S + + 5.7 _+ 0.3 
- 0.2 _+ 0.1 

JD614  Cps3D*S* NA Ij 5.4 _+ 0.4 (to) I 
+ 5.9 _+ 0.5 (0.5) I 

JD692  Cps3D*S* NA 4.8 _+ 0.3 (to) 
+ 7.0 _+ 1.0 (2.2) 

JD902  Cps3D§ - + 1.7 _+ 0.3 
JD908  Cps3D+S - + 1.5 _+ 0.1 
JD897  Cps3D+S - + 1.1 _+ 0.1 
WU2 Cps3D§ § NA 3.8 _+ 0.2 (to) 

+ 16.6 _+ 0.3 (12.8) 
- 1 6 . 3  + 0.8 

D39"* Cps2 + + 0.5 + 0.3 

* Capsule phenotypes are based on the cps3D and cps3S genotypes. 
~ Indicates either a missense or in-frame deletion or insertion in cps3D 
that apparently also affects cps3S. - indicates either a stop or insertion 
mutation (see Fig. 1 B and 5 A for locations of mutations). 
S The presence or absence of UDP-GlcA in the reaction is indicated by 
a + o r - .  

II NA, not applicable. 
I For strains that produce capsule in vivo, the amount of polysaccharide 
present at the start of the assay (to) is given, and the amount of poly- 
saccharide produced during the assay is indicated in parentheses. 
"* D39 is a type 2 strain and thus produces no type 3 capsule. 

both precursors present. These results emphasize the role of 
Cps3S in capsule synthesis and support the conclusion that 
cps3D and cps3S are transcribed as an operon. 

The capsule-deficient mutants JD614 and JD692 synthe- 
sized only small amounts of additional polysaccharide in the 
in vitro assay. This result is somewhat surprising since J'D692, 
which contains a missense mutation in the cps3D coding re- 
gion, should still make a functional Cps3S (i.e., the cps3D 
mutation must not be polar since intact cells synthesize some 
polysaccharide). The result may suggest that the defective 
UDP-Glc DH interferes with the ability to synthesize normal 
polysaccharide. Alternatively, the stability of the cps3DS tran- 
script may be altered by the mutation, resulting in a reduced 
amount of Cps3S. 

Biochemical Pathway. Based on genetic analysis, amino acid 
homologies, biochemical and immunochemical characteriza- 
tion of mutants, and previous biochemical analyses (12, 13, 
15-17), we propose a pathway for the biosynthesis of type 3 
capsular polysaccharide (Fig. 6). The last of the type 3-specific 
genes, cps3M, is homologous to phosphoglucomutases from 
several bacterial species and is described in a forthcoming pub- 
lication (Caimano, M., J. P. Dillard, and J. Yother, manu- 
script in preparation). 

GIc-6-P 

phosphoglucomutase Cps3M 

Glc-l-P 

UTP ~ glucose-l-phosphate 
uridylyltransferase Cps3U 

UDP-GIc + PPi 

NAD+~ ' UDPG d e h y d r o g e n a s e  Cps3D 
N A D H  " -  

UDP-GlcA 

UDP-glc ~ l  type 3 capsular 
polysaccharide synthase Cps3S 

(-GlcA--Glc-) n 

Figure 6. Biosynthetic pathway for type 3 capsular polysaccharide. Func- 
tions of proteins encoded by the type 3-specific genes are shown. Addi- 
tional functions may be necessary for capsule transport or attachment. 

Mapping Other Capsule Types. We previously showed that 
a 1.2-kb SacI-HindlII fragment flanking the type 3 capsule 
locus contains sequences common to apparently all capsule 
types (13). Sequence analysis showed that the fragment con- 
tained the 3' end of cps3M and the 5' half of a gene with 
50% identity to the S. pneumoniae amiA. The amiA-like se- 
quence has recently also been identified by Pearce et al. and 
named expl (46), and subsequently renamed plpA (47). Fur- 
ther Southern hybridizations showed that the non-type-specific 
homologous DNA in the 1.2-kb SacI-HindlII fragment is 
plpA (data not shown). 

The homologous fragment is closely linked not only to 
the type 3-specific capsule genes, but also to the type-specific 
genes of types 2, 5, and 6B (reference 13 and our unpub- 
lished data). Mapping studies using this fragment showed 
that, as in type 3, it is directly adjacent to the type-specific 
genes of other serotypes. The chromosome maps of the cap- 
sule regions in strains of types 2, 3, and 6B are highly con- 
served for at least 4 kb to the right of plpA (Fig. 7). The 
type 3 strain differs slightly in this region due to a deletion 
of the 5' end of plpA. The sites located to the left of plpA 
are divergent among the capsule types, further suggesting 
that this region contains the type-specific genes in all three 
capsule types. 

The Region Upstream of the Type 3-specific Genes Is Common 
to All Capsule Types and Is Repeated in the Pneumococcal Chro- 
mosome. To isolate DNA 5' of the biosynthetic genes, a 1.8- 
kb fragment extending from the upstream SacI site to the 
cps3D active site was amplified from the type 3 WU2 chro- 
mosome. When this fragment was used to probe HindlII- 
digested chromosomal DNA from seven S. pneumoniae sero- 
types, multiple bands were detected in all strains (Fig. 8). 
When chromosomal DNAs of types 2, 3, and 6B were 
digested with PstI, PvulI, or SacI/HindlII, and probed with 
the cloned 610-bp SacI-HindlII fragment upstream of cps3D 
(Fig. 1), 4-10 bands were detected in each (data not shown). 

Transformation experiments were performed to examine 
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Figure 7. (A) Chromosome maps of the capsule regions in types 2, 3, and 6B. The 1.2-kbSacI-HindllI fragment (pJD377) from type 3 used for 
the probe is shown below the maps. Restriction sites are Bg, BgllI; F, FspI; H, HindlII; S, SalI; Sac, SacI; Sp, Sphl. (B) Ethidium bromide-stained 
agarose gel and (C) Southern blot showing chromosomal DNA from strains of types 2, 3, and 6B probed with pJD377. Faint bands in addition 
to the band of interest may be due to the detection of fragments containing the arniA-like genes that have homology to plpA. 

linkage of the upstream region to the type-specific genes. A 
plasmid (pJD392) containing the 610 bp SacI-HindIII frag- 
ment was introduced into the chromosome of the type 3 strain. 
The insert, located in the 2.2-kb HindIII fragment adjacent 
to the type 3-specific genes, did not affect capsule produc- 
tion. When the resulting strain was used to transform 
recipients of types 2 and 6B, greater than 95% of the 
erythromycin-resistant isolates expressed type 3 capsule. How- 
ever, when pJD392 was transformed into strains of types 2 
and 6B, the plasmid inserted into an 8-kb HindlII fragment, 
and the type-specific genes could not be moved to strains of 
heterologous types (i.e., 2, 3, or 6B) by transformation and 
selection for linkage to the erythromycin marker in the in- 
sertions. 

Discussion 

Based on genetic, molecular, and biochemical data we have 
assigned putative functions to the type 3-specific genes. Two 
of the genes, cps3D and cps3S, are required for capsule syn- 
thesis. Our previous genetic data, along with the sequence 
and biochemical analyses reported here, provide substantial 
evidence that cps3D encodes UDP-Glc DH. Cps3D is highly 
homologous to HasB, and contains sequences homologous 
to the active and the NAD-binding sites in HasB and other 
known UDP-Glc DH. Extracts from Cps3D mutants could 
synthesize type 3 capsule in vitro if supplied with UDP-GlcA, 
i.e., they lacked the ability to convert UDpoGlc to UDP-GlcA 
and thus lack UDP-Glc DH activity. 

Cps3S is new member of a family of polysaccharide syn- 
thases. All of these synthases, for which the structures of the 

polysaccharides are known, produce 3(1-4) linked polysac- 
charides. Thus, Cps3S may form the 3 (1-4) linkage in the 
type 3 disaccharide cellobiuronic acid (GlcA 311-4] Glc), and 
a second enzyme may create the ~(1-3) linkages required to 
polymerize the disaccharides into full length polysaccharide. 
However, HasA creates both linkages in the production of 
HA capsule (34), and is sufficient for HA synthesis in heter- 
ologous bacteria, given the nucleotide sugars (48). There- 
fore, Cps3S, like HasA, may synthesize the polysaccharide 
by monomer addition. 

Neither cps3U nor ClOs3M appears to be required for type 
3 synthesis. Cps3M and Cps3U should function to convert 
Glc-6-P into Glc-I-P, and Glc-l-P into UDP-Glc, respectively 
(Fig. 6). Since UDP-Glc is necessary for the production of 
essential cell constituents, including teichoic acid and lipo- 
teichoic acid (12), the products of other genes may comple- 
ment functions lost in the mutants. However, retention of 
these genes in the type-specific region may indicate that part 
of their function cannot be duplicated by the second enzymes. 
Possibly, this function is the ability to be regulated under 
specific conditions, such as those that might be encountered 
during infection. The large noncoding region upstream of 
cps3U might be a site of regulation. An alternative explana- 
tion is that these genes were obtained along with the type- 
specific genes in a horizontal transfer from another organism 
and have not been lost. This theory is consistent with hy- 
bridization data indicating that none of the type 3-specific 
genes could be detected in strains of six other pneumococcal 
types, including types with related capsule structures (13). 
However, if these genes serve no necessary function, it is sur- 
prising that they have been maintained in the type 3 cassettes 
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exchanged as cassettes, there has always been one glaring ex- 
ception-binary encapsulation. At low frequency, strains of 
certain types transformed with DNA from strains of certain 
other types were found to produce both polysaccharides (12). 
Stable binary strains contained the second set of type-specific 
genes at a site unlinked to the recipient's type-specific genes. 
Once integrated, these genes could not be moved to the normal 
location in a strain of heterologous type. These observations 
led Bernheimer et al. to suggest that recombination involved 
strong homology at only one end (49, 50). Unstable binary 
strains frequently lost the donor type-specific genes, which 
were usually linked to the recipient type-specific genes (49, 51). 

A. Cassette-type recombination 

v/peX 

a r .............. 

- < ~ - ~ - - 4 ~ o  -. tyl~e X 
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Figure 8. Repeated element. (/t) Ethidium bromide-stained agarose gel 
and (B) Southern blot of S. pneumoniae chromosomal DNA from seven 
different serotypes digested with HindllI, The blot was probed with the 
1.8-kb fragment containing the region from the Sacl site upstream of the 
type-specific genes to just before the Pvull site in c!os3D (bp 1 to 1802). 
Identical results were obtained using pJD392 (containing bp 1 to 610) as 
the probe. 

of multiple strains; i.e., the restriction maps of the type 3 
regions of five non-clonal strains are identical, and all have 
cps3U and cps3M (our unpublished data). 

There are three requirements for a DNA region to be con- 
sidered a gene cassette: (a) more than one copy of a gene 
or set of genes must exist, each specifying the production 
of a different, but related, product; (b) each copy must be 
flanked by DNA that is common to all the copies; and (c) 
cassettes must recombine to cause replacement of one copy 
by another. There is strong evidence to indicate that the type- 
specific genes are arranged as a cassette. First, the presence 
of more than 80 different serotypes implies that as many 
different sets of genes exist. Second, the type 2, 3, 5, and 
6B type-specific genes are flanked to the right by a fragment 
common to apparently all types, and containing plfd. Al- 
though the left flanking region from type 3 is common to 
all capsule types we have examined, it may not flank the type- 
specific genes in other types. If not, then presumably other 
common DNA is located further upstream of these genes. 
The third requirement for a cassette is fulfilled by previous 
biochemical evidence (12) and our recent molecular evidence 
(13) demonstrating replacement of type-specific enzymes and 
genes, respectively, following transformation of capsule type. 

Since the proposal was put forth that capsule genes are 

B. Binary encapsulation via homologous and illegitimate 
recombinations 

type X 

�9 --o.-r X_ ~_~,;._ " t y p e Z  

C. Binary encapsulation via a transposition-like event 
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Figure 9. Models for the transfer of type-specific genes. (A) Cassette 
type-recombination. Replacement of the recipient's type-specific genes with 
those of the donor results from homologous recombination between regions 
that flank the type-specific genes and are common to all types. O ,  
sequence containing repeated element; I ,  common DNA upstream of 
type-specific cassettes; [---'1, common DNA (indudingp2pA) downstream 
of type-specific cassettes. (B) Binary encapsulation by recombination in- 
volving homology at only one end. Homologous recombination at one 
end of the type-specific cassette would occur through the repeated ele- 
ment. Integration at the other end would result from an apparent illegiti- 
mate recombination. Linkage of the two type-specific cassettes would re- 
sult if the integration occurred in a repeat element in or closely linked 
to the recipient's capsule genes. (C) Binary encapsulation via a transposition- 
like event. Type-specific cassettes flanked by the repeated element would 
resolve out of the chromosome and be transferred to recipient cells as cir- 
cular intermediates. Recombination into the recipient chromosome could 
occur at a repeat element unlinked (as shown) or linked to the recipient's 
type-specific genes. Transfer of linear DNA could also yield binary strains 
as a result of recombination with two repeats that are closely linked in 
the recipient chromosome. 
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Based on our data and the extensive work of Bernheimer 
concerning binary encapsulation (14, 49-51), we can propose 
models for capsule type change and binary capsule forma- 
tion. Cassette-type recombination would result from cross- 
over events in the homologous flanking regions, leading to 
replacement of the type-specific genes (Fig. 9 A). Binary en- 
capsulation may be mediated through the repeated element 
identified upstream of the type 3 capsule genes. Linkage analysis 
showed that at least one copy of the repeat is unlinked to 
the type 2 and 6B type-specific genes. In type 3, one copy 
is linked but, based on transformation experiments, another 
is not (our unpublished observation). The mechanism pro- 
posed by Bernheimer et al. for stable binary strains could in- 
volve homologous recombination at a repeat element unlinked 
to the capsule locus; the recombination at the other end of 
the capsule genes would occur by an apparent illegitimate 

recombination event (Fig. 9 B). An alternative possibility 
involves a transposition-like event that could result if certain 
type-specific genes are flanked on both sides by the repeat 
element (Fig. 9 C). Unstable binary strains could result from 
either type of integration occurring at repeated elements in, 
or closely linked to, the recipient's type-specific genes. Insta- 
bility could result from recombination through genes common 
to both capsule types, as suggested by Bernheimer et al., for 
the UDP-Glc DH of types 1 and 3. Our present results pro- 
vide the basis for examining these possibilities. Binary strains 
containing the two sets of genes linked are of particular in- 
terest since they might recombine to form a novel capsule 
type. Examination of strains producing related capsule struc- 
tures may help elucidate the possible mechanisms involved 
in novel capsule type formation. 
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