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ABSTRACT

Multiple driver genes in individual patient samples
may cause resistance to individual drugs in precision
medicine. However, current computational methods
have not studied how to fill the gap between per-
sonalized driver gene identification and combinato-
rial drug discovery for individual patients. Here, we
developed a novel structural network controllability-
based personalized driver genes and combinatorial
drug identification algorithm (CPGD), aiming to iden-
tify combinatorial drugs for an individual patient by
targeting personalized driver genes from network
controllability perspective. On two benchmark dis-
ease datasets (i.e. breast cancer and lung cancer
datasets), performance of CPGD is superior to that
of other state-of-the-art driver gene-focus methods
in terms of discovery rate among prior-known clin-
ical efficacious combinatorial drugs. Especially on
breast cancer dataset, CPGD evaluated synergis-
tic effect of pairwise drug combinations by mea-
suring synergistic effect of their corresponding per-
sonalized driver gene modules, which are affected
by a given targeting personalized driver gene set
of drugs. The results showed that CPGD performs
better than existing synergistic combinatorial strate-

gies in identifying clinical efficacious paired combi-
natorial drugs. Furthermore, CPGD enhanced can-
cer subtyping by computationally providing person-
alized side effect signatures for individual patients.
In addition, CPGD identified 90 drug combinations
candidates from SARS-COV2 dataset as potential
drug repurposing candidates for recently spreading
COVID-19.

INTRODUCTION

The combination therapy has been widely used in the dis-
ease treatment, because it is difficult to achieve the desired
clinical effect for monotherapy and the multiple drugs has
demonstrated great advantages in overcoming drug resis-
tance and improving clinical outcomes in disease therapy
(1). As well known to us, many complex diseases such as
cancer are heterogeneous diseases, and the tumor genes co-
operate as well as adapt and evolve to the changing condi-
tions for individual patients (2,3). Thus, it is essential to con-
sider the individual heterogeneity during combination ther-
apy in the disease treatment. However, the number of po-
tential combinatorial drugs is astronomical, and these can-
didate compound combinations cannot all be validated in a
rational and rigorous manner for individual patients. There-
fore, it is quite challenging to predict the individual tar-
geted combinatorial drugs in the era of precision medicine,
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rather than conventional patient-cohort targeted combina-
torial drugs.

Current methods of identifying combinatorial drugs have
two main categories. (i) Machine learning-based methods
extract the feature vector of the known synergistic drug
combinations on a large variety of cancer cell lines, then uti-
lize the machine learning to predict drug combinations (4–
6). However, because of the limited number of the personal-
ized samples information (e.g. the personalized omics data),
it is difficult to select/find the effective individual patient-
specific synergistic drug combinations. (ii) Along with the
rapid development of high-throughput biological molecule
screening, the emergence of systems biology or network bi-
ology has raised the possibility of exploring multi-targets
intervention methods with drug synergistic effects for dis-
ease treatment (7–9). From a network perspective, many
studies have demonstrated that targeting driver genes (i.e.
candidate drug targets) can provide the critical information
for drug discovery and drug repurposing (10–13). Conse-
quently, some methods have been developed for driver gene
identification with multi-dimensional genomic data, such
as DriverML (14), DriverNet (15), MutSigCV (16), Onco-
DriveFM (17), SCS (18) and DawnRank (19). But those ex-
isting methods did not fill the gap between the anticancer
combinatorial drugs discovery and the targeting personal-
ized driver genes (PDGs) identification, and new algorithms
are urgently required to recommend the personalized com-
binatorial drugs in the disease treatment.

In the past decade, some researches have studied the
structural network controllability principles, such as max-
imum matching set (MMS) (20), minimum dominating set
(MDS) (21) and feedback vertex set (FVS) (22). Further-
more, a wealth of sample-specific network construction
methods in single samples has been proposed recently to
support the personalized driver genes analysis on individ-
ual patient-specific biological data (23). These methodolog-
ical advances have raised the possibility of exploring more
precise mathematical models on high throughput personal-
ized multi-omics data for the discovery of efficacious per-
sonalized drug combinations. However, the existing struc-
tural network controllability methods still face several lim-
itations. The first is that a proper network structure is not
available to characterize the gene regulatory mechanism of
an individual patient, which is a rate-limiting step of struc-
tural network controllability methods. The second is that
current structural network controllability methods focus on
the selection of minimum number of driver nodes but over-
look the weight information of network edges/relations,
which may generate multiple configurations with same min-
imum number of driver nodes, resulting in a potential bot-
tleneck for identifying the combinatorial drugs of individ-
ual patients. And the third is that gold standard evaluation
metrics are not available when evaluating the performance
of identifying the personalized combinatorial drugs with
different structural network controllability methods.

To overcome above problems, we developed a novel
structural network controllability-based algorithm (namely
CPGD) to detect PDGs and further identified the per-
sonalized combinatorial drugs for an individual patient.
We firstly used the paired single sample-network method

(paired-SSN) (24) to construct the personalized gene inter-
action network (PGIN) whose interactions determine the
state transition of an individual patient during disease de-
velopment. Instead of directly using paired-SSN method
on gene expression data, we introduced a measurement
(i.e. network edge score) to score the edges of PGIN by in-
tegrating the co-mutation score across cancer type-specific
data and the personalized co-expression score of each indi-
vidual patient. Then, according to a FVS-based controlla-
bility perspective, we developed a novel nonlinear structural
network controllability method (namely weight-NCUA) to
identify the PDGs for determining the state transition of
the individual biological system between disease state and
normal state. In contrast with other structural network con-
trollability approaches, weight-NCUA considers the edge
weight information (i.e. network edge score) for the driver
node optimization. Finally, the information of the drugs–
PDGs interactions and PDGs interactions were used for: (i)
prioritizing the personalized combinatorial drugs to evalu-
ate the ability of predicting clinical efficacious combinato-
rial drugs; (ii) exploring the risk assessment of individual
patients on the basis of paired combinatorial drugs and (iii)
enhancing the cancer subtyping by side effect quantification
on PDGs.

We have evaluated the effectiveness of CPGD on the
breast and lung cancer datasets which were derived from
The Cancer Genome Atlas (TCGA). On one hand, CPGD
can effectively predict clinical efficacious combinatorial
drugs, compared with other state-of-the-art driver gene
methods. By simultaneously considering the disease related
gene module information and multi-sources drug func-
tion information, CPGD can measure the synergistic ef-
fect of the corresponding personalized driver gene modules
for evaluating the synergistic effect of pairwise drug com-
binations. On the other hand, CPGD has detected three
novel pairwise drug combinations (i.e. CETUXIMAB and
CARBOPLATIN, CARBOPLATIN and CYCLOPHOSP
HAMIDE, CYCLOPHOSPHAMIDE and GEMCITAB
INE), and they can significantly divide the breast cancer
patients into the discriminative risk groups with the per-
sonalized co-targeting driver genes of paired combinatorial
drugs. Those results were also supported by TCGA-BRCA
cancer dataset and the independent GSE5327-BRCA can-
cer dataset. By quantifying the side effect of the personal-
ized combinatorial drugs on the personalized driver genes
for each individual patient, CPGD further identified two
new subtypes on breast cancer with significant differences
in survival. In addition, we have applied CPGD on severe
acute respiratory syndrome coronavirus 2 (SARS-COV2)
dataset, which consists of gene expression data of patients
with SARS (25) and 332 SARS-COV2 related proteins
for identifying drug combination candidates (26). Con-
sequently, CPGD identified 90 drug combination candi-
dates. Among these drug combination candidates, a pair-
wise drug combination (i.e. DEXAMETHASONE and TH
ALIDOMIDE) is predicted as the potential promising drug
combination candidates, both of which are currently be-
ing tested in clinical trials for coronavirus disease 2019
(COVID-19) as a recent report (https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7280907/).
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MATERIALS AND METHODS

Gene expression datasets

Considering the sufficiently available gold-standard clini-
cal combinatorial drug information, we considered breast
cancer and lung cancer datasets as two benchmark disease
datasets and the detailed information of cancer samples
used in this study was summarized in Supplementary note
4 of Supplementary file 1 and Supplementary file 2. Conse-
quently, we collected two cancer gene expression datasets
from breast and lung cancer patients. The breast cancer
dataset is breast invasive carcinoma (BRCA), and the lung
cancer dataset consists of lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC). The paired (or
matched) samples for each individual patient (i.e. a normal
sample and a tumor sample from the same patient) were
filtered, then obtaining them from the TCGA data portal.
In addition, to identify drug combination candidates for re-
cently speading COVID-19, we also collected SARS-COV2
related dataset which consists of gene expression data of pa-
tients with SARS (25).

Somatic mutation data of cancer type-specific datasets

To score the edges in PGIN, we obtained the single nu-
cleotide variations (SNVs) data of BRCA, LUAD and
LUSC datasets from TCGA, which contains 90 490, 72
541 and 65 304 nonsynonymous somatic mutations, respec-
tively.

Prior-known cancer subtype information

We collected subtype information of cancer patients from
TCGA (https://xenabrowser.net/datapages/). For breast
cancer patients, we obtained four subtypes of basal-like
(Basal), HER2-enriched (HER2), Luminal A (Lum A) and
Luminal B (Lum B). For lung cancer dataset, we obtained
two subtypes of LUSC and LUAD.

Combinatorial drug–gene interaction network

The interactions between combinatorial drug and gene
have been collected by Quan et al. (27) from Drug Com-
bination Database (DCDB) (28), drug–gene interaction
database (DGIdb) (29), DrugBank (30) and Therapeutic
Target Database (TTD) (31). Such combinatorial drug-gene
interaction network contains 342 combinatorial drugs and
5788 interaction edges (Supplementary file 2). Among these
342 combinatorial drugs, 122 of these combinatorial drugs
are efficacious for treating cancer. Especially, 32 and 17
prior-known combinatorial drugs (Supplementary file 2)
derived from DCDB are efficacious in treating breast cancer
and lung cancer, respectively.

Collection of disease related genes

For breast cancer and SARS-COV2 disease dataset, we col-
lected 2341 breast cancer related genes (27) and 332 SARS-
COV2 related proteins (26) for identifying pairwise drug
combination candidates respectively.

Human drug–target network with activation and inhibition
interactions

To analyze the risk assessment of cancer patients, the hu-
man drug–target network with activation and inhibition in-
teraction information was further added into the network-
based investigation of drug–target interactions (32).

Construction of personalized gene interaction networks by us-
ing paired-SSN method

For paired-SSN method (24), the co-expression networks of
the tumor sample and normal sample for an individual pa-
tient are separately built by using SSN method (33). Then,
the personalized gene interaction networks are constructed
by using the following criterion. When the P-value of edge
between gene i and gene j is <0.05 in the tumor sample net-
work but larger than 0.05 in the normal sample network (or
the P-value of the edge is >0.05 in the tumor sample net-
work but <0.05 in the normal sample network), this edge
is retained to constitute the PGIN. More details of paired-
SSN were shown in supplementary note 3 of Supplementary
file 1.

Supplementaryly, we developed a weight measurement
(i.e. network edge score) for scoring the edges of PGIN
by integrating somatic mutation data across cancer type-
specific data into PGIN based on following scores.

ePatient k
i j = Norm(co-mutation(i, j ))

∗Norm(co-expression(i, j, k)) (1)

co-mutation(i, j ) = |G(i ) ∩ G( j )|
|G(i ) ∪ G( j )| (2)

co-expression(i, j, k) =
∣∣∣∣∣log2

∣∣∣∣∣
�PCCTumor

i j,k

�PCCNormal
i j,k

∣∣∣∣∣
∣∣∣∣∣ (3)

�PCCTumor/Normal
i j,k = PCCn+1

i j,k − PCCn
i j (4)

where Norm denotes the min-max normalized function;
G(i) and G(j) denotes the set of individual tumors for mu-
tated gene i and gene j respectively by inspecting somatic
mutations in a given cancer dataset; PCCn

i j is the PCC be-
tween gene i and gene j in the reference network with n refer-
ence samples, and PCCn+1

i j,k is the PCC in the perturbed net-
work with one additional sample (i.e. tumor sample or nor-
mal sample) for individual patient k.

The co-mutation score (i.e. Equation 2) is defined as the
jaccard coefficient between two mutated genes/nodes of one
edge among the population (i.e. the fraction of tumors in
which both two genes are the mutated genes and tumors
in which either of two genes is mutated gene), which in-
dicates the co-mutation probability to promote tumorige-
nesis and anti-disease drug responses (34). The score of
the personalized co-expression (i.e. Equation 3) represents
the significant difference of two genes’ expression associa-
tion (i.e. Equation 4) between normal sample and tumor
sample for individual patient k. Therefore, the measure-
ment ePatient k

i j (i.e. Equation 1) could more accurately repre-
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sent the personalized state transition of an individual pa-
tient in cancer development, which integrates the gene so-
matic mutations, personalized gene expression and network
topology information in the prior-known human genetic in-
teraction network.

And based on the network edge scores related to each
gene in PGIN, the node weight wi was calculated with the
following formula:

wi =
∑

j∈N(i )

ei j (5)

where N(i) represents the neighboring node set of node i
in PGIN. Therefore, the PGINs can reveal the significant
gene interactions between the normal and tumor samples
for each patient during disease development, with weight
information on nodes and edges.

Weight-NCUA method

In network systems with adequate knowledge of the un-
derlying wiring diagram, disregarding specific functional
forms, the FVS-based controllability (FC) methods can
identify driver nodes to drive the system state into any
desired dynamical attractor. Under the FC framework,
NCUA has been proposed to investigate the controllabil-
ity of undirected structural networks, selecting a minimum
set of driver nodes to realize a undirected structural net-
work controllable (24). However, NCUA does not consider
potential multiple sets of driver nodes, which would cause
the underestimation of different drivers’ importance. Thus,
here we proposed the weight-NCUA method to find opti-
mal driver node set by using the network edge weight infor-
mation (i.e. network edge score).

Theoretically, weight-NCUA uses the following dynamic
equation to represent the dynamic behavior of a PGIN.

dxk
i /dt = f (xk

i , xk
Ii

) (6)

where xk
i denotes the expression state of gene i for the pa-

tient k, Ii represents the neighborhood gene set of gene
i,and f f represents the dynamic behavior control law of
PGIN for patient k, satisfying the continuous differentia-
bility, dissipativity, and decay conditions (22). Equation
(6) represents the dynamic behavior of the gene expression
level in PGIN. We assume that each edge in PGIN is bi-
directional, thus we can convert PGIN into a bipartite net-
work in which the the upside nodes and bottom side nodes
represent the nodes and the edges of the original network,
respectively. If the node vi in the up side is one of nodes for
edge vj in the bottom side, then vi and vj are linked in the
bipartite network. Based on the FVS controllability theory,
weight-NCUA selects the dominated nodes set M in the up
side that cover the nodes in the bottom side as the driver
nodes, which determine the state of PGIN.

It is known that different dominated nodes sets in the bi-
partite network may generate multiple sets of PDGs, result-
ing in a potential bottleneck for identifying the combina-
torial drugs of the individual patients. Therefore, we intro-
duced an index W(M) to indicate the quality of the selected
PDGs.

W(M) =
∑

wi ri − λ
∑

ri (7)

where wi denotes the network edge score related to gene
i; ri is an indicative variable,when gene i is selected as the
PDGs, ri = 1, otherwise, ri = 0;

∑
wi ri denotes the net-

work edge scores of candidate gene sets;
∑

ri denotes the
number of candidate PDGs; and λ is the balance parameter
to adjust the network edge scores and the number of candi-
date PDGs.

For weight-NCUA, we expect that the PDGs not only
contain the minimum number, but also have the maximum
network edge scores. It is required to further measure the
quality of candidate set of PDGs. Thus, we select the PDGs
by solving the following linear integer programming (LIP):

max W(M)=∑
wi ri −λ

∑
ri

s.t.
∑

i∈N(u)
ri ≥1 (∀u∈VL),ri ={0,1} (8)

where VL denotes the bottom side nodes in the bipartite
graph andN(u)N(u) denotes the neighborhood nodes in the
bipartite graph. This LIP objective function is to obtain
the PDGs with the minimum number and the maximum
network edge scores. The restriction condition is to ensure
that all the edges of PGIN in bipartite network can be cov-
ered. Under the dynamic behavior, the state of all genes in a
PGIN can be regulated by the detected PDGs. Above op-
timization problem can be solved by using the LP-based
classic branch and bound methods (35) or other objective
optimization algorithms (36–38).

Synergistic effect evaluation

Because of the limited number of individual patient-specific
cancer samples, it is possible to select the effective syner-
gistic drug combinations with target network-based meth-
ods (10–13). The key point of target network-based meth-
ods is to construct a reliable drug-target network by using
data from various sources, then develop a network-based
learning method to predict the drug synergy. For exam-
ple, DrugComboRanker was proposed to rank the paired
drug combinations by targeting their corresponding signal-
ing modules in cancer-specific networks. However, Drug-
ComboRanker considers the combinatorial drug prediction
of conventional patient-cohort, but ignores the discovery of
personalized combinatorial drugs.

Considering the above facts, CPGD evaluates the syn-
ergistic effect of paired drug combinations by combining
drug target related information with drug similarity from
the Connectivity Map (CMAP) database (39), as well as
the drug chemical structure similarity (40). The synergis-
tic effect of CPGD consists of two parts, i.e. Drug Target
(DT) score, Drug Function and Drug Chemical structure
(DFDC) score. The synergistic effect of paired drugs on in-
dividual patient k is evaluated by using the following for-
mulas:

Synergy score(drugA, drugB, Patientk) = DT score(drug A, drugB, k)

+DF DC score(drug A, drugB) (9)

On one hand, the DT score is defined as,

DT score(drugA, drugB, k)=Disease score(drugA, M, k)
∗Disease score(drugB, M, k) ∗ Jaccard score(drugA, drugB, k)
∗G O score(drugA, drugB, k)+DF DC score(drugA, drugB)

(10)

Disease score(drugA, M, k)= − log10(P−value(DMk
A, M)) (11)

Jaccard score(drugA, drugB, k)=Jaccard(drugA, drugB, k) (12)
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where P-value is calculated for evaluating the significance
level by hyper-geometric test.

P-value(DMk
A, M) =

o∑
oi =os

p(o, oi ) (13)

P(o, oi )=

(
s
oi

) (
N − s
o − oi

)
(

N
o

) (14)

whereosos denotes the number of intersected genes between
driver gene module DMk

A and disease related gene module
M; N denotes the total number of genes in PGIN; o and s
are the number of nodes in DMk

A and M, respectively.

Jaccard(drugA, drugB, k) =
∣∣DMk

A ∩ DMk
B

∣∣∣∣DMk
A ∪ DMk

B

∣∣ (15)

where DMk
A and DMk

B denotes the driver gene
module of drug A and drug B, respectively,
i.e. DMk

A= {tk
Ai },DMk

B= {tk
Bj },i ∈ [1,n], j ∈ [1,m].

G O score(drugA, drugB, k)=

∑
i, j

sim(tk
Ai , tk

Bj )

(m + n)(m + n − 1)
(16)

where sim(tk
Ai , tk

Bj ) is the semantic similarity of gene ontol-
ogy (GO) annotations of tk

Ai and tk
Bj based on the Gene

Ontology (GO) term profiles (41). tk
Ai t

k
Bj t

k
Bj denotes the i-

th target of drug A and j-th target of drug B for individ-
ual patient k respectively. The semantic similarity is cal-
culated with GOSemSim R package under the ‘measure’
parameter setting to ‘wang’ (42). The GO similarity was
provided in the folder ‘Drug Targets GO similarity Data’
of https://github.com/NWPU-903PR/CPGD. On the other
hand, the DFDC score are defined as following,

DF DC score(drugA, drugB) = C map(drugA, drugB)

+Chemical(drugA, drugB) (17)

where C map(drug A, drug B) denotes the drug function
similarity between drug A and drug B based on genomic
profiling data of drugs, which are available in the CMAP
(39). CMAP dataset consists of 6100 gene expression pro-
files of four cancer cell lines (i.e. MCF7, PC3, HL60
and SKMEL5) treated by 1309 drugs at different doses.
Chemical(drug A, drug B) denotes the chemical structure
similarity between drug A and drug B.

In details, the drug similarity metric proposed by Iorio
et al. (43) is defined as the drug similarity in the CMAP
dataset as follows. First, for each individual drug at each
dose, genes were ranked based on their fold changes (i.e.,
drug treatment versus control). Then, gene rank lists at dif-
ferent doses were merged into one gene rank list by using
a hierarchical majority voting scheme. Consequently, gene
signatures for individual drugs were created by optimally se-
lecting the top- and bottom-ranked 250 genes and the gene
set enrichment analysis (44). The drug function similarity
file in the CMAP dataset was provided in Supplementary

file 3. The code for calculating above drug function similar-
ity was provided in supplementary note 5 of Supplementary
file 1. Finally, the dissimilarity SG(A, B) between drug A and
drug B into the similarity score was converted as follows,

C map(drugA, drugB)=1 − SG(A,B) (18)

To obtain the chemical structure similarity, we firstly
collected the drug SMILES information from DrugBank
(30), and then calculated the Extended Connectivity Finger-
prints (ECFP) (45) with a radius of six (ECFP 6) by RDKit
python package. Finally, the chemical structure similarity of
each drug pairs was calculated by Tanimoto coefficient (40).
The drug chemical structure similarity file was provided in
Supplementary file 3.

Side effect evaluation

To calculate the side effect score of a given drug pair, we
firstly collected the drug-target network with the informa-
tion of activation and inhibition interaction. Then we gave
the classification results of sharing targets of two drugs for
characterizing the effect of a given drug pair. The configu-
rations (+,+) and (−,−) of the sharing targets of two drugs
are referred as coherent, where the action of one drug on
the sharing targets is reinforced by the presence of a second
drug. The configuration (+,−) of the sharing targets of two
drugs is called incoherent, where the action of one drug on
the sharing targets is mitigated by the presence of a second
drug. Finally, the side effect score (32) can be calculated by
using the following formula.

bi j = sign(s+−
i j − s++

i j − s−−
i j ) (19)

where sign denotes the signum function; s++
i j , s+−

i j , s−−
i j de-

note the number of sharing targets with configurations (+,
+), (+, −) and (−, −) for drug pair (i, j), respectively. The
computational procedure is shown in Supplementary Fig-
ure S2 (Supplementary file 1).

Enrichment analysis of the PDGs in prior-known cancer
driver gene lists

To estimate the significance of overlap between the pre-
dicted PDGs and the gold-standard cancer driver gene lists
such as Cancer Census Genes (CCG) (46) and Network of
Cancer Genes (NCG) (47), we computed the P-value by the
hyper geometric test (48) as follows.

p = P (x ≥ k) =
∞∑

x=k

(
K
x

)(
N − K
n − x

)
(

N
n

) (20)

where N is the number of genes in PGIN, K is the num-
ber of a given cancer driver gene lists (e.g. lists of the per-
sonalized Differential Expression Genes (DEG), CCG and
NCG), k is the number of the predicted PDGs overlapping
with the given gene lists, and n is number of the predicted
PDGs. The personalized DEGs are selected by calculat-
ing the fold-change between the normal sample and tumor
sample (|log2(fold-change)|>1). If the enrichment P-value

https://github.com/NWPU-903PR/CPGD
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is <0.05, we regarded that the predicted PDGs are signifi-
cantly enriched in certain gold-standard cancer driver gene
lists.

RESULTS

Workflow overview and implementation of CPGD algorithm

From dynamical system viewpoint, gene expressions of an
individual patient are the biological system variables, vary-
ing at different time points. It is the PGIN (i.e. system struc-
ture or network edges) that results in the change of gene ex-
pression value (i.e. system variable or network nodes) (49).
Therefore, CPGD hold a key assumption that the PGIN de-
termines the state transition between normal state and dis-
ease state of an individual patient. The input of CPGD is the
gene expression data of paired samples (i.e., normal and tu-
mor samples) for individual patients. Meanwhile, the main
outputs of CPGD include: (i) prioritization of the person-
alized combinatorial drugs; (ii) risk assessment for individ-
ual patients based on personalized drug pairs; (iii) disease
subtyping by side effect quantification of personalized drug
pairs on personalized driver genes. As shown in Figure 1,
CPGD mainly comprises two steps as follows:

Step 1. Identifying PDGs from genetic data of individual
patients

i) Constructing the PGINs. CPGD firstly uses paired-SSN
method (24) to construct the PGIN where the interac-
tions determine the state transition of an individual pa-
tient during disease development. Then, instead of us-
ing paired-SSN method on gene expression data alone,
we here developed a weight measurement for scoring
the edges of PGIN by integrating somatic mutation
data and individual gene expression data for an individ-
ual patient. This network edge score combines the co-
mutation score, personalized co-expression score, and
the prior-known human genetic interaction network in-
formation. The co-mutation score is defined as jaccard
coefficient between two mutated genes/nodes among the
population (34). The personalized co-expression score
represents the personalized significant difference of two
genes’ expression association between normal sample
and tumor sample of an individual patient. In this work,
the PGINs are weighted graphs in which nodes represent
genes, and edges denote the significant difference of gene
interactions between the normal and tumor state at gene
expression and mutation levels simultaneously.

ii) Identifying PDGs with weight-NCUA method on PGINs.
In this work, one main focus is how to determine
the state transition between disease state and normal
state by targeting the PDGs at the gene expression
level. Our recent work showed that traditional MMS-
based controllability methods (20) ignore the fundamen-
tal nonlinear dynamics of system, which may lead to
many false positive results. Thus, based on FVS con-
trol theory, a structural network controllability method
(called NCUA), was developed in our previous work
(24) which focus on how to choose proper subset nodes
(i.e. driver nodes) for driving the network from initial
state to desired stable state by proper input signals.
However, NCUA overlooks the weight information of

nodes/edges, which may result in a potential bottle-
neck for identifying the optimal PDGs. In this work,
by considering the weight information of nodes/edges
in PGIN, we introduced a novel structural network con-
trollability method (namely weight-NCUA) to identify
PDGs. Briefly, weight-NCUA tries to design a fitness in-
dex for representing the impact quality of the PDGs set,
and to determine the PDGs by identifying optimal dom-
inated node set with maximum impact quality to cover
all the edges in PGIN. More details of weight-NCUA
were shown in Materials and Methods.

Step 2 Screening the role of personalized combinatorial
drugs by targeting the PDGs. The PDGs are thought to be
the candidate drug targets, which can drive individual bio-
logical system from disease state to normal state (or approx-
imate normal state) through drug activation signals. Hold-
ing this key assumption, we screened the role of personal-
ized combinatorial drugs by using the following aspects:

i) Prioritization of personalized combinatorial drugs. We
prioritized the potential personalized anti-disease com-
binatorial drugs by measuring the number of targeting
PDGs for a given drug combination.

ii) Evaluating the synergistic effect of pairwise drug combi-
nation. Based on the ranking of candidate combinato-
rial drugs for each individual patient, we firstly selected
the pairwise drug combinations among top 10 candi-
dates for each patient, then evaluated the synergistic ef-
fect of pairwise drug combinations by integrating drug
targets similarity, drug function similarity in the CMAP
database and drug chemical structure information.

iii) Exploring risk assessment of pairwise drug combination.
For a given pairwise drug combination, we firstly se-
lected the union set of targeting PDGs of individual
patients as the features of indicating risk assessment.
Then, based on gene expression data with selected gene
features, the unsupervised clustering method (called
similarity network fusion, SNF) (50) was used for sub-
type identification. Finally, the survival outcomes for
patients in these clusters were evaluated by Kaplan–
Meier statistics.

iv) Enhancing the cancer subtyping with side effect quantifi-
cation on PDGs. We calculated the side effect score of
each drug pair by quantifying side effect on PDGs
within known cancer driver genes (i.e. CCG and NCG)
in the drug-target network with activation and inhibi-
tion interactions for each patient. Based on the side ef-
fect score of each drug pair, we obtained the number
of drug pairs with an aggravating effect (i.e. side effect
score >0), and the number of drug pairs with enhanc-
ing effect (i.e. side effect score < 0), which are two side
effect signatures of individual patients.

Determination of the reference gene interaction networks and
parameters in CPGD

To assess the effect of different sources of prior-known gene
interaction networks on the performance of CPGD, we have
adopted six gene interaction networks from different litera-
tures. The reference Network 1 was built by Hou et al. (19),
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Figure 1. CPGD overview. Step 1: Paired-SSN is used to construct the PGIN for capturing the phenotypic transitions between normal and disease states.
Instead of using Paired-SSN method on gene expression data alone, we introduce network edge score for measuring the edges of PGIN by integrating cancer
type-specific somatic mutation data into PGIN. The edges of PGIN integrate co-mutation scores, personalized gene co-expression scores, and prior-known
interactions. Then, an improved structural network controllability method (called weight-NCUA) is developed to identify the PDGs, where the driver
genes are considered as candidate drug targets towards the desired control objective by drug activation. Step 2: CPGD screens the role of personalized
combinatorial drugs from several biomedical aspects. (i) At first, CPGD will prioritizes the personalized combinatorial drugs by measuring the number of
targeting PDGs. (ii) Second, it can explore synergistic effect of drug pairs by a few sub-steps: to select drug pairs from top 10 candidate combinatorial drugs
for each patient as candidate drug pairs; to evaluate the synergistic effect of these candidate pairwise drug combinations, which measures the synergistic
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which consists of 11 648 genes and 211 794 edges by inte-
grating a variety of data sources, such as MEMo (51), Reac-
tome (52), NCI-Nature Curated PID (53) and KEGG (54).
The reference Network 2 was built by Quan et al. (27) from
the Synthetic Lethality genes interactions Database (Syn-
LethDB), which consists of 6513 genes and 19 955 synthetic
lethal gene pairs for humantumors. The reference Network
3 was constructed by Vinayagam et al. (55), which consists
of 6339 proteins and 34 813 edges, where the edge denotes
the hierarchy of signal flow between the interacting pro-
teins.The reference Network 4 was constructed in reference
(56). The Network 5 was collected from STRING dataset
(https://string-db.org/) whose edge scores are higher than
900. The Network 6 consists of gene interactions by remov-
ing co-expression edges, the literature-derived interactions,
and predicted interactions from Network 1 (24). Above
six networks were provided in the folder ‘All gene interac-
tion networks used CPGD’ of https://github.com/NWPU-
903PR/CPGD.

By using each reference gene interaction network, CPGD
outputs the PDGs for each individual patient and ranks the
candidate combinatorial drugs according to the number of
targeting PDGs. Based on the ranking of candidate combi-
natorial drugs for each individual patient, we assessed the
effect of different reference gene interaction networks on
CPGD in terms of discovery rate (DR) among prior-known

clinical efficacious combinatorial drugs, DR =
n∑

k=1
pk/n,

where pk denotes the fraction of the top k predicted com-
binatorial drugs within the Clinical Anti-disease Combina-
torial drugs for treating disease, and n is the number of top
ranked anti-disease drug (here, n = 10).

The performance of CPGD with different reference gene
interaction networks on BRCA and LUNG datasets were
shown in Figure 2A and B. We can find that: (i) com-
pared with other networks, Network 1 with more complete
gene interactions have more stable performance in BRCA
and LUNG datasets, which may be a general suggestion as
prior-known network; (ii) Network 1 has the highest discov-
ery rate for LUNG, while Network 2 has the highest discov-
ery rate in BRCA; (iii) the balance parameter (λ) has differ-
ent effects to CPGD on BRCA and LUSC cancer datasets,
and the reference networks. The discovery rate of CPGD
with λ= 0.01 in BRCA and with λ= 10 in LUNG is the
highest, which were selected for follow-up analysis.

The choice of proper prior-known network structure
is an important factor for CPGD. According to the re-
sults in Figure 2A and B, several suggestions for choosing
more proper prior-known networks were concluded as fol-
lows: (i) when the gold-standard of anticancer drug com-
binations is available, we can choose the prior-known net-

work with highest performance; (ii) when the gold-standard
of anticancer drug combinations is not available, Network 1
with more stable performance could be considered as prior-
known network.

Furthermore, the performances of CPGD in different
subtypes on BRCA (Network 2) and LUNG (Network 1)
cancer datasets were shown in Figure 3A and B, from which
we can see that the discovery rates of CPGD with λ= 0.01
and λ= 10 are the highest for BRCA and LUNG respec-
tively, which are consistent in different cancer subtypes. The
common driver genes predicted by CPGD in different sub-
types from BRCA and LUNG cancer datasets were listed in
Supplementary file 4. The comparisons of common driver
genes for various different subtypes in breast and lung can-
cer datasets were shown in Supplementary Figure S3, from
which we found that the subtype-specific driver genes are
different in different cancer datasets.

In addition, we also found that CPGD can obtain
novel predictions in the top-ranked drug combinations, be-
sides those already in clinical trials (Supplementary Fig-
ures S11 and S12). CPGD can identify at least one novel
drug combinations among top 10 predicted drug combi-
nations for Lum A, Lum B, HER2, and Basal subtypes
on BRCA cancer dataset, while CPGD can identify at
least nine novel drug combinations among top 10 pre-
dicted drug combinations for LUSC and LUAD subtype-
specific patients from LUNG cancer dataset. Based on the
mean ranking of subtype-specific cancer patients, we also
gave the full ranking list of drug combinations in differ-
ent subtypes of BRCA and LUNG cancer datasets (Sup-
plementary file 5). We found that there are some novel
predictions in BRCA and LUNG cancer datasets. For ex-
ample, DC000222 (i.e. TRASTUZUMAB, DOCETAXEL,
CARBOPLATIN, LETROZOLE and LAPATINIB) and
DC002977 (i.e. TRASTUZUMAB,DOCETAXEL, CARB
OPLATIN,DOXORUBICIN and CYCLOPHOSPHAMI
DE) are novel predicted drug combinations for breast and
lung cancer patients, respectively.

Evaluation of detection robustness of PDGs on gene expres-
sion data

We used the gene expression data of subtype-specific pa-
tients to obtain the PDGs, and calculated the jaccard coeffi-
cient between the PDGs of subtype-specific gene expression
data and those of all gene expression data (Supplementary
Figure S4). We found that the jaccard coefficient is larger
than 0.6 when the balance parameter λ varies from 0.6
to 1, demonstrating that the prediction results of subtype-
specific gene expression data are similar or consistent with
those of all gene expression data. When λ increases, the jac-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
effect of their corresponding PDGMs by considering disease related gene module information and multi-sources drug function information. (iii) Third,
CPGD could explore risk assessment of drug pairs. For a given pairwise drug combinations among above candidate drug pairs, CPGD selects the union
set of targeting PDGs of individual patients as the gene features to explore the risk assessment. Based on gene expression data with selected gene features,
SNF is used for subtype identification and the survival outcomes for patients in these clusters are evaluated by Kaplan–Meier statistics. iv) Finally, CPGD
can enhance subtyping by side effect quantification on PDGs. When two drugs act simultaneously on the same target genes, there will be two kinds of
actions of two combinations, e.g. coherent action as (+, +) and (−, −), and incoherent action as (+, −). By attaching signs to the mechanisms of different
actions,the side effect score can be calculated in the drug-target network with activation and inhibition interactions for each patient. Based on the side
effect score of each drug pair, we can obtain the number of drug pairs with aggravating effect (i.e. side effect score>0), and the number of drug pairs with
enhancing effect (i.e. side effect score < 0), which are two side effect signatures of individual patients.

https://string-db.org/
https://github.com/NWPU-903PR/CPGD
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Figure 2. Effect of the reference gene interaction networks and parameters in CPGD. (A) Results on six prior-known networks with different balance
parameters for BRCA cancer dataset. (B) Results on six prior-known networks with different balance parameters for LUNG cancer dataset.

card coefficient becomes larger. These results suggested that
CPGD can robustly identify PDGs from high-throughput
expression data.

Comparisons and evaluation of CPGD with existing driver
gene-focus methods

One key contribution of CPGD is to identify driver genes
for inferring combinatorial drugs. To evaluate the ef-

fectiveness of CPGD, we compared CPGD with other
state-of-the-artd river gene identification methods, such as
DriverML (14), MutSigCV (16), OncoDriveFM (17), SCS
(18), DawnRank (19), PNC (24), pDriver (https://www.
biorxiv.org/content/10.1101/2020.04.23.058727v1) and Ac-
tiveDriver (57) (Figure 4). We also compared CPGD with
GeneRank (58,59), HotNet2 (60) and Hub genes-based
methods (Figure 4 and Supplementary Figure S5 in Sup-
plementary file 1). The number of PDGs for these methods

https://www.biorxiv.org/content/10.1101/2020.04.23.058727v1
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Figure 3. Drug combination prediction results in a subtype-specific manner. (A) Results on BRCA cancer dataset. (B) Results on LUNG cancer datasets.

Figure 4. The comparison and evaluation of CPGD with other existing methods for predicting clinical efficacious combinatorial drugs on different cancer
datasets. The y-axis denotes the mean discovery rate of the top 10 predicted combinatorial drugs. The error bar denotes the standard derivation of discovery
rate among the top 10 predicted combinatorial drugs. The bar colors represent different algorithms.

is same as those of CPGD (Supplementary note 3 in Supple-
mentary file 1). Based on the information of sub-networks
between the drugs and PDGs, personalized combinatorial
drugs including the drug–PDG interactions and PDG inter-
actions were prioritized to evaluate the ability of predicting
clinical efficacious combinatorial drugs. As shown in Fig-
ure 4, the discovery rate of CPGD has consistent higher per-
formance than those of other 11 driver gene identification
methods on two benchmark cancer datasets, indicating that
the ability of CPGD is superior for predicting clinical effi-
cacious combinatorial drugs.

Comparisons of CPGD with existing combinatorial drug pre-
diction methods for predicting synergistic drug pairs

To demonstrate the effectiveness of CPGD on combina-
torial drug prediction,by considering disease related gene
module information and multi-sources drug function in-
formation, we evaluated the synergistic effect of drug pairs
among top 10 candidate combinatorial drugs for each indi-
vidual cancer patient on BRCA dataset. The main function
of CPGD for measuring the synergistic effect of pairwise
drug combinations includes the drug-gene interactions and
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disease related gene module collection, driver gene module
construction and synergistic effect evaluation.

(i) For drug–gene interactions and disease related gene
module collection, we collected the interactions be-
tween drugs and genes, as well as the disease related
gene module to identify anti-disease drug pairs for risk
assessment. On BRCA cancer dataset, the interactions
between drugs and targeted genes were extracted from
the combinatorial drugs and gene interaction network
(Supplementary file 2). A list of 2341 breast cancer re-
lated genes collected by Quan et al. (27) from the Uni-
fied Medical Language System (UMLS) (61) was avail-
able in folder ‘List of Breast cancer genes’ of https:
//github.com/NWPU-903PR/CPGD.

(ii) For driver gene module construction, PDGMs were
identified by DIseAse MOdule Detection (DIA-
MOnD) method (62). More computational details of
DIAMOnD were shown in supplementary note 3 of
Supplementary file 1. The targeting driver gene num-
ber, driver gene module number and driver gene mod-
ule scores of candidate drugs in BRCA dataset were
identified from top 10 combinatorial drugs for individ-
ual patients, which were shown in Supplementary Fig-
ures S6–S8, respectively. Different drugs have different
distributions in terms of the size of PDGMs in individ-
ual patients. These results demonstrated that individ-
ual heterogeneity for combination therapy should be
considered in the disease treatment. The results in Sup-
plementary Figure S8 showed that the module scores
of identified PDGMs could be convergent within 10 in-
teraction times.

(iii) For synergistic effect evaluation, due to the rapid de-
velopment of network biology, it raised the possibil-
ity of exploring individual samples based methods
with synergistic effects for disease treatment (33,63–
66). From the perspective of network-based methods,
CPGD measures, the synergistic effect of their corre-
sponding PDGMs by considering disease related gene
module information and multi-sources drug informa-
tion, such as the drug target similarity, as well as
drug similarity from the CMAP database (39) and
drug chemical structure similarity (40) into their corre-
sponding PDGMs for evaluating the synergistic effect
of pairwise drug combinations.

To validate if the predicted or top-ranked drug combina-
tions generate the synergistic effects, some synthetic lethal
gene pairs and their corresponding targeted drug pairs were
firstly extracted. Among these drug pairs, pairwise drug
combinations with clinically validated anticancer activity
were considered as the benchmark for verifying whether the
drug combination is a synergistic drug combination (Sup-
plementary file 2) (27). Then, we ranked the drug pairs by
calculating the mean synergistic scores among all BRCA
cancer patients, obtaining the clinical Discovery rate by cal-
culating the mean fraction of the top k (k = 1, 2, . . . , 10)
pairwise drug pairs within the Clinical Anti-cancer Com-
binatorial drugs for treating breast cancer patients. Finally,
we evaluated synergistic effect of drug pairs among top 10
candidate combinatorial drugs for each individual patient.

As comparison base, we used CombRanker on PDGMs of
pairwise drug combinations to obtain the synergistic scores
for each individual patient (Figure 5). Main conclusions
could be derived from Figure 5 as follows:

(i) Figure 5A showed the Discovery rate results of CPGD
and three synergistic combinatorial strategies in Com-
bRanker (10). We can see that CPGD performs bet-
ter than any of the existing synergistic combinatorial
strategies.

(ii) In fact, synergistic combinatorial strategy of CPGD
consists of two parts, i.e. DT score, Drug Function and
DFDC score. To demonstrate the effeciency of these
two parts, we calculated the discovery rate of CPGD,
DT score alone and DFDC score alone, respectively.
Figure 5B showed that DFDC score has more contri-
butions on the overall synergistic effect than DT score.

(iii) To show the robustness of synergistic combinatorial
strategy of CPGD, we obtained all possible drug pairs
and the corresponding targets (i.e. 452 drug pairs) from
Supplementary file 2 and obtained synergistic scores of
these drug pairs by using CPGD. Based on synergis-
tic scores of these 452 drug pairs, Figure 5C, D shows
the Discovery rate results of CPGD and three synergis-
tic combinatorial strategies in CombRanker (10), and
CPGD performed better than any of the existing syn-
ergistic combinatorial strategies. Furthermore, DFDC
score has more contributions on the overall synergis-
tic effect. These conclusions are consistent with those
from Figure 5A and B.

Influence of construction methods on single sample network
during CPGD analysis

In order to investigate the effect of different network con-
struction methods on CPGD, we adopted different single
sample network construction methods, such as paired-SSN
(24), SSN (33) CSN (63), SPCC (64,65) and LIONESS
(66). For SPCC and LIONESS methods, after obtaining the
SPCC and LIONESS co-expression distribution (S) of all
gene pairs, we chose a threshold w to filter the edges with
low co-expression value, w = μ(S) + 2δ(S), where μ(S) and
δ(S) are the mean value and standard variance for co-
expression distribution (S) of all gene pairs. For all network
construction methods, we chose Network 2 and Network
1 as the reference gene interaction network for BRCA and
LUNG, respectively.

The results of CPGD on different subtypes of cancer
patients with single sample network construction methods
were shown in Figure 6, from which we can see that the
discovery rate of paired-SSN and CSN is higher than that
of SPCC and LIONESS methods, and the discovery rate
of paired-SSN and CSN is almost equal. Thus, consider-
ing the number of samples, here we selected the paired-SSN
method to construct the PGIN.

In addition, to demonstrate the effect of mutation data
on the results of CPGD, we calculated the Discovery rate of
CPGD with the integrated (i.e. both mutation and expres-
sion) data and the expression (i.e. expression only) data on
BRCA and LUNG datasets respectively. As shown in Fig-
ure 7, among the top 10 predicted combinatorial drugs on

https://github.com/NWPU-903PR/CPGD
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Figure 5. Comparison of CPGD and other synergistic combinatorial strategies for evaluating the synergistic effect of drug pairs. The error bar denotes
the standard derivation of discovery rate among the predicted drug pairs. (A) The discovery rate of CPGD and three existing synergistic combinatorial
strategies among top 10 candidate combinatorial drugs for each individual patient. (B) The discovery rate of CPGD, CPGD with DT score alone and
CPGD with DFDC score alone among top 10 candidate combinatorial drugs for each individual patient. (C) The discovery rate of CPGD and three
existing synergistic combinatorial strategies among all drug pairs. (D) The discovery rate of CPGD, CPGD with DT score alone and CPGD with DFDC
score alone among all drug pairs.

BRCA and LUNG datasets, the Discovery rate of CPGD
with the integrated data are higher than that with the
expression data, demonstrating that the integrated multi-
omics data can help improve the accuracy of driver gene
identification.

We also compared with the mean discovery rate of ran-
dom selected genes for individual patients. From the driver
genes determined by CPGD, we randomly generated a gene
set in which the number is same as the number of driver
genes of CPGD. This random simulation was repeated 100
times to generate the distribution of mean discovery rate
among all patients. From Supplementary Figure S9, we can
see that the discovery rate of PDGs predicted with CPGD is
significantly higher than mean discovery rate of those genes
chose with random selection, which is consistent on two
benchmark cancer datasets. These results further supported
that CPGD can effectively discover anticancer combinato-
rial drugs.

Influence of different network controllability methods to
CPGD

To evaluate the influence of different network controllabil-
ity methods for CPGD, we compared weight-NCUA with

other structural network controllability methods, such as
MMS (20), MDS (21), DFVS (22) and NCUA (24) on above
constructed PGIN (Figure 8). We also compared weight-
NCUA method with another MMS-based critical nodes se-
lection method (called MMS critical), which identified the
critical nodes such that removing such a node will require
more nodes to control the network and is also a candidate
method for predicting PDGs in PGIN (67,68). As shown in
Figure 8, among the top 10 predicted combinatorial drugs
on BRCA and LUNG, weight-NCUA has higher perfor-
mance and robustness than most of other structural net-
work controllability methods on different subtypes of can-
cer patients. The main reason is that weight-NCUA consid-
ers the network edge scores for the optimization of driver
nodes, which are usually disregarded by other structural
network controllability methods.

We note that Hu et al. recently introduced a network
controllability-based method, called OptiCon, to discover
synergistic driver genes as candidate targets for combina-
tion therapy (56). Although OptiCon is related to combina-
tion therapy research from network controllability perspec-
tive, OptiCon is to discover synergistic paired driver genes
on a population of patients and does not focus on evaluating
the synergistic effect of paired drugs on individual patients.
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Figure 6. Influence of different single sample network construction methods on CPGD. To evaluate the usage efficiency of single sample network construc-
tion methods (i.e., Paired-SSN, CSN, SPCC and LIONESS) for personalized drug discovery, the combinatorial drugs annotated in the Clinical Anti-disease
Combinatorial drugs are applied to obtain the discovery rate of the top-ranked/predicted anti-disease combinatorial drugs for different subtypes of BRCA
(A) and LUNG (B).

Structural and functional property of personalized driver
genes

After determining the suitable reference network, single
sample network construction method and network control-
lability method, CPGD can be effectively applied to identify
PDGs. For analyzing the functional and structural proper-
ties of detected PDGs, the enrichment P-values of PDGs in
DEG, CCG and NCG lists were evaluated for CPGD (More
computational details were shown in Materials and Meth-
ods). As shown in Figure 9, we obtained some new insight
on tumor heterogeneity. For the DEG list, not all of pa-
tients have significant enrichment results. By contrast, the
P-values of most patients are <0.05 (ESg = –log10(P-value)
< 1.3) for CCG and NCG lists. These results showed that

PDGs can be more completely characterized by CCG and
NCG lists than those by DEG lists, indicating the impor-
tance and relevance of PDGs on biological and disease
functions.

To further demonstrate the functional properties of per-
sonalized driver genes, we performed the enrichment path-
way analysis for the personalized driver genes to deter-
mine if the personalized driver genes are enriched in Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways.
To identify the significantly enriched pathways of PDGs,
we computed the P-value of PDG enriched pathways us-
ing the hyper geometric test (48) as described in formula
(20), where N is the number of genes in the gene interac-
tion network, n is the number of PDGs, k is the number of
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Figure 7. Results of CPGD method with the integrated multi-omics (both mutation and expression) data and the expression (expression only) data for
top-ranked/predicted anti-cancer combinatorial drugs on BRCA and LUNG, respectively. The error bar denotes the standard derivation of discovery rate
among all patients.

Figure 8. Comparison of weight-NCUA, MDS, MMS, DFVS and NCUA as well as the MMS critical methods for predicted anti-disease combinatorial
drugs. (A) Results on BRCA. (B) Results on LUNG.
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Figure 9. Functional and structural property of personalized driver genes. (A) Enrichment results of PDGs identified by CPGD in DEG, CCG and NCG
lists on different subtypes of BRCA cancer patients. (B) Enrichment results of PDGs identified by CPGD in DEG, CCG and NCG lists on different
subtypes of LUNG cancer patients. The enrichment score of driver gene is defined as ESg = –log10(P-value). The red line denotes ESg = –log10(0.05).

PDGs within a given pathway, and K is the gene number
in a given pathway. The enrichment results (including path-
way name, patient-occurred frequency and related combi-
natorial drugs) were shown in Supplementary file 6, from
which we can find that 63.64% of these identified biological
pathways are related with breast cancer, 51.61% related with
lung cancer. These results indicated that CPGD can effec-
tively identify the cancer-related pathways which are poten-
tially targeted by drugs. We also found that 81.25% of the
reported breast cancer-related pathways in previous stud-
ies are enriched in many patients’ data with high frequency
(>0.6), while 50% of the reported lung cancer-related path-
ways in previous studies are enriched in many patients’ data
with high frequency (>0.6), indicating patient heterogeneity
varies in different cancer datasets.

Risk assessment of drug pairs with co-targeting of personal-
ized driver genes on breast cancer

To explore risk assessment of pairwise drug combinations,
the main outcome of CPGD includes the gene signature se-
lection, subtype identification, and survival evaluation. For
gene signature selection, we selected top 10 candidate com-
binatorial drugs for all patients (#112 samples) on TCGA-
BRCA cancer dataset, and further selected the union set of
targeted PDGs of individual patients as the signatures to ex-
plore the risk assessment of a given pairwise drug combina-
tion on patients. For subtype identification, we re-collected
the gene expression data of all the tumors on TCGA-BRCA
cancer dataset (#1006 samples). Based on targeted PDGs
of drug pairs, the SNF (50) was applied on the gene expres-
sion data to select the gene signatures for identifying cancer
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subtypes/clusters. For survival evaluation, the survival out-
comes of patients in the identified clusters were evaluated by
Kaplan–Meier statistics. We chose the efficacious drug pairs
with significant survival analysis results (P-value < 0.05) for
risk assessment.

The results of risk assessment of pairwise drug combina-
tions on TCGA-BRCA cancer dataset were shown in Figure
10 and Supplementary file 7. We found that the P-value of
6 pairwise drug combinations is less than that of each sin-
gle drug, indicating that the combined therapeutic effect of
these drug pairs are better than monotherapy effect of single
drug.

To further evaluate 6 anti-disease drug pairs for risk as-
sessment of BRCA cancer on independent data, we car-
ried out the risk assessment of these drug pairs using the
SurvExpress tool (69) on TCGA BRCA data (Supplemen-
tary file 7), and the PROGgeneV2 tool (70) on GSE5327-
BRCA cancer dataset (Figure 11 and Supplementary Fig-
ure S10). We found that (i) six drug pairs can actually di-
vide all patients into discriminative two clusters (P-value <
0.05) on TCGA BRCA data; (ii) among these six drug pairs,
three drug pairs (i.e. CETUXIMAB and CARBOPLATIN,
CARBOPLATIN and CYCLOPHOSPHAMIDE, CYCL
OPHOSPHAMIDE and GEMCITABINE) can actually
divide all patients into discriminative two groups (P-value
< 0.05) on GSE5327-BRCA cancer dataset; (iii) a few tar-
geting driver genes (also the drug targets) of six paired drugs
combination (#<30 targeting driver genes) are able to well
(P-value <0.05) partition the cancer patients into subtypes
with different survival time; (iv) the CETUXIMAB and
CARBOPLATIN was predicted as a novel pairwise drug
combination, which can significantly partition the breast
cancer patients into two clusters with different survival risk
on TCGA-BRCA cancer dataset (Supplementary file 7, P-
value = 0.01548) and GSE5327-BRCA cancer dataset (Fig-
ure 11, P-value = 0.01624).

Disease subtyping by quantifying side effect signatures for
breast cancer

To quantify the side effect of drug pairs on corresponding
disease subtypes, we first collected the PDGs within two re-
liable prior-known cancer driver genes sets (i.e. the CCG
and NCG lists), then calculated the side effect score of a
given drug pair by quantifying their side effect on PDGs
within CCG and NCG for each patient, as shown in Supple-
mentary Figure S2 (Supplementary file 1). Finally, we got
the number of drug pairs with an aggravating effect (side
effect score > 0), and the number of drug pairs with en-
hancing effect (side effect score < 0), which are used as two
side effect signatures of individual patients. By considering
these side effect signatures of individual patients, we found
that the patients in the breast cancer dataset can be signif-
icantly classified into two distinct subtypes (Figure 12A).
Furthermore, by exploring the survival analysis of these two
subtypes, we found that the greater the value of aggravating
effect, the less the survival time on a specific patient sub-
type (Figure 12B). We also gave the list of common drug
pairs with an aggravating effect and enhancing effect among
these two subtypes (Supplementary file 8).

To further demonstrate the efficiency of CPGD on pa-
tient subtype recognition, SNF (50) was applied on the gene
expression data for separating cancer patients into two sub-
types as comparisons. We explored the differences between
patient subtype results of using our CPGD and those of
using all the gene expression data with SNF directly (Fig-
ure 12A–D). For subtypes identified by CPGD, the survival
time of patients in high risk subtype are significantly shorter
than that of patients in low risk subtype (P-value = 0.0108,
Figure 12A and B). For subtypes identified by SNF directly
on all gene expression data, there are no significant differ-
ences in survival curves among patients in high and low risk
subtypes (P-value = 0.2476, Figure 12C). Therefore, com-
pared with SNF of using all gene expression data directly,
CPGD can more significantly partition cancer patients into
subtypes with different survival time. These results indi-
cated that CPGD can simultaneously distinguish high and
low risk subtypes with different survival time well.We also
calculated the jaccard coefficient between patient subtypes
of CPGD and those of SNF using all the gene expression
data directly (Figure 12D) to explore the difference between
these two subtyping results, finding that the patients in high
risk subtype are similar with those of using SNF (jaccard
coefficient = 0.7238). These results indicated that CPGD
can obtain some similar subtyping results compared with
SNF using all the gene expression data.

In addition, we divided the patients of four prior-known
clinical subtypes (Basal, Her2, Lum A and Lum B) into high
and low risk groups according to our predicted subtypes
(Figure 12E). The results showed that there are significant
differences of survival curves among two patient groups in
some clinical subtypes (e.g. Her2 subtype, P-value = 0.0432,
Figure 12E), indicating that our predicted subtypes can help
further classify the prior-known clinical subtypes for more
detailed patient risk assessments. In addition, the patients
in high risk subtype of CPGD are similar with that of con-
ventional Lum A (Figure 12F, jaccard coefficient = 0.5143).

Identification of the potential drug-repurpusing candidates
for COVID-19

To identify the potential drug-repurpusing candidates
for recently spreading COVID-19 caused by the SARS-
COV2 virus, we also used CPGD to identify the drug com-
bination candidates on SARS-COV2 dataset. The compu-
tational details of CPGD to identify the potential drug-
repurpusing candidates for COVID-19 were shown as fol-
low,

(i) Collection of SARS-COV2 related datasets. The gene
expression profiling of patients with SARS was col-
lected (25) which consists of 60 SARS disease sam-
ples and 10 normal samples. Furthermore we collected
332 SARS-COV2 related proteins (26). We should note
that we here chose Network 1 which have a more com-
plete gene interactions as the prior-known gene gene
interaction network.

(ii) Modified version of CPGD. Since we lacked the gene
mutation data of SARS-COV2, we did not consider
the construction of gene co-mutation network. Fur-
thermore, due to the lack of the gene expression data
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Figure 10. The P-value of combined drugs therapy and single drug therapy on BRCA cancer dataset. ESg = –log10(P-value).

Figure 11. The risk assessment of three predicted anti-disease drug pairs on independent GSE5327-BRCA cancer dataset. (A–C) The interaction network
between drug pairs and targeting driver genes for three predicted anti-disease drug pairs. The nodes with red color denote the breast-related genes and
hexagon nodes denote the drugs. (D–F) Results of survival analysis of three predicted anti-disease drug pairs on independent dataset.
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Figure 12. Cancer subtypes generated by quantifying side effect of drug pairs on the personalized driver genes. (A) The subtype classification of patients in
the breast cancer dataset based on the number of drug pairs with an aggravating effect and an enhancing effect. (B) The survival analysis of two subtypes
identified by CPGD. (C) The survival analysis of two subtypes identified by SNF using all the gene expression data. (D) The jaccard coefficient between
subtypes identified by CPGD and SNF. (E) The P-value of survival curves among two groups of patients in four prior-known subtypes (Basal, Her2, Lum
A and Lum B). (F) The jaccard coefficient between molecular subtypes of CPGD and four clinical subtypes (Basal, Her2, Lum A and Lum B).
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of paired samples, paired-SSN was reduced to the orig-
inal SSN. The scores of edges in PGIN was reduced as,

ePatient k
i j =

∣∣∣∣∣log2

∣∣∣∣∣
�PCCDisease

i j,k

�PCCNormal
i j,k

∣∣∣∣∣
∣∣∣∣∣ .

(iii) Identification of drug pairs on SARS-COV2 dataset.
We used CPGD for obtaining the synergistic scores
of pairwise drug combinations for each individual pa-
tient. We ranked drug pairs according to the mean syn-
ergistic scores of pairwise drug combinations among
all patients.Since there exist multiple rankings for each
drug combination by using different balance param-
eters of CPGD, we used condorce algorithm (71) to
combine these multiple rankings into a single rank
for drug combination candidates, which in turn deter-
mined drug combinations’ prioity.

Supplementary file 9 listed 90 identified ranking drug
combination candidates on SARS-COV2 dataset. We found
that there are 15 drug pairs among 90 predicted drug
combination candidates (16.67%) for which either of two
drugs is reported as drug repurposing candidate in a
recent report (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7280907/). Furthermore, among these 90 predicted
drug combination candidates, both of two drugs for a
pairwise drug combination, i.e. DEXAMETHASONE and
THALIDOMIDE are reported as drug repurposing can-
didates and further currently being tested in clinical trials
for COVID-19 (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7280907/).

DISCUSSION

The genomic profiles of individual patients in complex dis-
ease (e.g. cancer patients) are diverse and heterogeneous,
which is believed to be responsible for heterogeneous drug
response. In the past years, many computational tools for
the personalized driver gene identification have presented
promising clues in determining personalized drug targets
for drugs discovery of individual patients. However, it has
not been studied how to fill gap between personalized driver
gene identification and combinatorial drug discovery of in-
dividual patients. To this end, in this work a novel structural
network controllability-based algorithm (CPGD) was de-
veloped to investigate the driver genes of individual cancer
patients and discover drug combinations to target on multi-
ple driver genes as potential combinatory therapies for per-
sonalized medicine. By exploring more precise mathemat-
ical models on high-throughput personalized multi-omics
data, CPGD contains three advances in methodology. The
first is that CPGD introduces a measure for scoring the
edges of PGIN by integrating co-mutation scores on the so-
matic mutation data across cancer type-specific data with
personalized co-expression scores on gene expression data
of individual patients. The score of co-mutation edge in-
dices the co-mutation probability of two mutated genes in
individual tumors to promote tumorigenesis and anticancer
drug responses. The score of the personalized co-expression
edge represents the significant personalized co-expression
difference in the human genetic interaction network be-
tween the normal sample and tumor sample of an individ-

ual patient. Therefore, the measure could more accurately
represent the personalized state transition of an individual
patient in caner development by combining the gene so-
matic mutations, personalized gene expression and network
topology information in the prior-known human genetic in-
teraction network. The second is that CPGD develops a
novel network controllability-based algorithm of weight-
NCUA for the driver node optimization by considering
the edge weight information (i.e., network edge scores) of
PGIN. Compared with the existing network controllability-
based algorithms, weight-NCUA considers the edge weight
information of the personalized gene regulatory network
for the driver node optimization to avoid the existence of
multiple minimum driver nodes configurations. The third
is that CPGD designs the proper evaluation metrics from
diverse biomedical aspects, such as (i) the prioritization of
personalized combinatorial drugs for evaluating the ability
of predicting clinical efficacious combinatorial drugs; (ii)
the evaluation of synergistic effect of pairwise drug com-
binations by measuring the synergistic effect of their corre-
sponding PDGMs; (iii) the exploration of risk assessment
of paired combinatorial drugs and (iv) the enhancement of
disease subtyping by side effect quantification on PDGs.

Using breast and lung cancer data as two gold-standard
datasets, CPGD is better than other existing methods in
terms of discovery rate. The drug pairs identified by CPGD
can partition the patients into discriminative groups for ef-
fective risk assessment. Especially, CPGD can effectively
recgonize the cancer subtypes of breast cancer by quanti-
fying the side effect of combinatorial drugs onco-targeting
PDGs for individual patients. We also implemented our
CPGD on the SARS-COV2 dataset, finding that both of
two drugs for a predicted pairwise drug combination can-
didates, i.e. DEXAMETHASONE and THALIDOMIDE
are currently being tested in clinical trials for COVID-19
as reported in a recent research (https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7280907/).

All the results suggest that the discovery of personal-
ized combinatorial drugs in complex diseases could bene-
fit from CPGD.However, our CPGD doesn’t consider the
dynamic change of drug concentration, which may lead to
some false positive for the identification of efficacious com-
binatorial drugs. Some biological experimental validation
and prospective clinical trials would be further conducted
to verify the discovery of CPGD. And a more complete, sys-
tematic gene interaction network and drug-target network
may further improve the performance of CPGD, supporting
advanced combinatorial drug screen of individual patients.

DATA AVAILABILITY

CPGD was created using the MATLAB software. The
implementation of our CPGD in MATLAB can be freely
downloaded from https://github.com/NWPU-903PR/
CPGD, where the gene expression data, combinatorial
drug-gene interaction data and drug-gene interaction data
with activation and inhibition interactions can also be
freely downloaded.

The semantic similarity for generating GO
similarity matrix was available in the folder
‘Drug Targets GO similarity Data’ of https://github.
com/NWPU-903PR/CPGD. The drug function similarity
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in CMAP and drug chemical structure similarity was
available in Supplementary file 3.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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