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Abstract: Urinary tract infection (UTI) is a common clinical diagnosis for which empirical antibiotics
are used in veterinary medicine. For veterinarians, the description of canine and feline antibiograms
can help with making prudent use decisions and guideline formulation. For public health officers
and epidemiologists, a urinary antibiogram overview helps track and trend antimicrobial resistance
(AMR). There is currently a knowledge gap in AMR prevalence associated with urinary tract infection
in feline and canine patients and the resistance percentage of these microbes against some of the
over-the-counter antibiotics available to local pet owners. This study has two aims. First, it aims to
investigate the frequency of the bacteria and bacterial-resistance pattern in urine samples obtained
from feline and canine patients. Second, it aims to determine the resistance of Escherichia coli (E. coli),
the most frequently isolated bacteria, to first-line antibiotics. Results: We identified the five most-
frequently isolated bacterial species and determined these isolates’ antibiotic sensitivity and resistance.
The most-frequently isolated bacteria in feline and canine patients was Escherichia coli (E. coli). E. coli
was identified, on average, in 37.2% of canine and 46.5% of feline urine samples. Among feline
urinary samples, Enterococcus (14.7%) and Staphylococcus (14.5%) spp. were isolated more frequently,
followed by Pseudomonas (4.8%) and Klebsiella (5.2%) spp. (). In canine samples, Proteus (17.9%) and
Staphylococcus (13.2%) spp. were isolated more frequently, followed by Enterococcus (10.0%) and
Klebsiella (8.59%) spp. Among these isolates, 40 to 70% of Staphylococcus spp. bacterial isolates from
feline and canine patients were resistant to amoxicillin and ampicillin. During the three-year study
period, among canine patients, 10 to 20% of Staphylococcus spp. bacterial isolates were resistance to
fluoroquinolones, other quinolones, and third-generation cephalosporins. Among feline patients, 10%
of Staphylococcus spp., 15 to 20% of E. coli, 50 to 60% of Klebsiella spp., and 90% of Pseudomonas spp.
were resistant to cefovecin, a commonly used antibiotic.

Keywords: canine and feline patients; antimicrobial resistance; multi-drug resistance

1. Introduction

The term antimicrobial refers to any pharmaceutical, chemical, biological, or physical
agent that stops or slows bacterial, viral, fungal, or microparasitic growth. Antimicrobials
that target bacteria are commonly termed antibiotics. The dilemma in the use of antimi-
crobials, or antibiotics to treat bacterial infection, is the simultaneous ability of bacteria to
evolve and develop resistance [1]. The cumulative or acute escalation of such resistance

Antibiotics 2022, 11, 1140. https://doi.org/10.3390/antibiotics11091140 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics11091140
https://doi.org/10.3390/antibiotics11091140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0003-1684-8105
https://orcid.org/0000-0001-7597-5062
https://doi.org/10.3390/antibiotics11091140
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics11091140?type=check_update&version=1


Antibiotics 2022, 11, 1140 2 of 11

reduces the effectiveness of antibiotics as a treatment option. Therefore, there are guidelines
and good practice recommendations around prudent antimicrobial use established by
international entities, such as the International Society for Companion Animal Infectious
Disease (ISCAID) and World Small Animal Veterinary Association (WSAVA) [2–5]. All
guidelines indicate that antibiotics treatment should ideally be based on in vitro suscepti-
bility testing, clinical history, and symptoms [6]. However, empirical antibiotics treatment
is common, particularly when urinary signs of dysuria, anuria, pollakiuria, or stranguria
are presented [7]. Therefore, information on the prevalence of antibiotic resistance can help
veterinarians make informed decisions on empirical use and also bring about awareness of
possible single- and multi-drug resistance. Such knowledge helps reduce misuse, improper
use, or overuse of antimicrobials [8,9].

Escherichia coli (E. coli) is a commonly occurring uropathogen in cats and/or dogs,
according to studies in China [10,11], the United States of America [12], Canada [13],
Germany [14], Sweden [15], and Australia [16]. Less frequently occurring bacteria in urine
samples include Enterococcus faecalis, Staphylococcus, and Proteus spp. [8,12,17–19]. The
patterns of isolates and their resistance prevalence appear to vary geographically and
temporally [20,21].

Rising antibiotic resistance trends in E. coli were observed in cats and dogs in Canada,
China, and Poland. In Poland, there was a statistically significant increase in multi-drug-
resistant E. coli between 2007 and 2013 [22]. In Canada, E. coli increased resistance to
amikacin, amoxicillin-clavulanate, and cephalexin between 1994 and 2003 [23]. In China,
E. coli demonstrated increased multi-drug resistance between 2012 and 2017 [24]. Con-
cerned with the clinical observation of an upward antibiotic resistance trend locally, this
study was conducted to investigate frequently isolated bacteria and the bacterial resistance
pattern in urine samples obtained from feline and canine patients and to identify E. coli
resistance to first-line antibiotics.

2. Results

A total of 15,449 urine samples from feline and canine patients were processed between
2018 and 2020. In 2018, 5787 samples were processed, of which 2196 samples grew bacteria,
and 3591 did not grow bacteria. In 2019, 4670 samples were processed, and 1752 samples
grew bacteria, and 2918 did not. In 2020, 4992 samples were processed, of which 1783 grew
bacteria, and 3209 did not. In total, 5731 samples were positive for bacterial isolation, while
9718 of these samples did not yield bacterial growth.

Of all isolates, 3719 isolates were from canine and 2012 isolates were from feline
patients. A total of 399 (11.0%) isolates were susceptible to all antibiotics tested, with
198 isolates from canine and 201 isolates from feline patients.

2.1. Antimicrobial Resistance in Commonly Identified Isolates in Feline and Canine Patients

Between 2018 and 2020, the most-frequently isolated bacteria in feline and canine
patients was Escherichia coli (E. coli). E. coli was identified, on average, in 37.2% of canine
and 46.5% of feline urine samples. The frequency of the remaining bacterial species
differed between cats and dogs. Among feline urinary samples, the following species
were identified, in descending frequency: Enterococcus (14.7%), Staphylococcus (14.5%),
Pseudomonas (4.8%), and Klebsiella (5.2%) spp. (Table 1). In canine samples, Proteus (17.9%)
and Staphylococcus (13.2%) spp. were isolated the most frequently, followed by Enterococcus
(10.0%) and Klebsiella (8.59%) spp. (Table 2).

Feline urine isolates demonstrated a distinct antibiotic resistance pattern in E. coli, En-
terococcus, Klebsiella, Pseudomonas, and Staphylococcus spp. (Table 3). Among the E. coli sam-
ples tested, 40% were resistant to amoxycillin and ampicillin, and 15 to 20% were resistant
to cephalexin, cefovecin, cefpodoxime, ceftriaxone, cephalothin, ciprofloxacin, enrofloxacin,
enrofloxacin, marbofloxacin, ofloxacin, and trimethoprim-sulfamethoxazole. Among the Ente-
rococcus isolates, about 90% were resistant to gentamicin and trimethoprim-sulfamethoxazole.
About 35% of these Enterococcus isolates were resistant to ciprofloxacin, enrofloxacin, mar-
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bofloxacin, ofloxacin, doxycycline, and meropenem. Among the Klebsiella isolates, about
90% were resistant to amoxycillin and ampicillin. About 50% to 60% of these Klebsiella iso-
lates were resistant to cephalexin, cefovecin, cefpodoxime, ceftriaxone, cephalothin, chloram-
phenicol, ciprofloxacin, enrofloxacin, marbofloxacin, ofloxacin, doxycycline, nitrofurantoin,
and trimethoprim-sulfamethoxazole. Among the Pseudomonas isolates, about 90% were resis-
tant to amoxycillin, amoxycillin-clavulanate, ampicillin, cephalexin, cefovecin, cefpodoxime,
ceftriaxone, cephalothin, doxycycline, nitrofurantoin, and trimethoprim-sulfamethoxazole.
About 25% of these Pseudomonas isolates were resistant to ciprofloxacin, enrofloxacin, mar-
bofloxacin, and ofloxacin. Among the Staphylococcus isolates, about 45% were resistant to
amoxycillin, ampicillin, and penicillin. About 10% of these Staphylococcus isolates were resis-
tant to clindamycin, cephalexin, cefovecin, cefpodoxime, ceftriaxone, cephalothin, chloram-
phenicol, ciprofloxacin, enrofloxacin, marbofloxacin, ofloxacin, doxycycline, meropenem, and
trimethoprim-sulfamethoxazole.

Table 1. Bacteria isolated from feline urine samples in Hong Kong between 2018 and 2020.

Canine Patients Number and Percentage (%) of Isolates by Year
Isolates 2018 2019 2020 Total Isolates (By Bacteria)

Escherichia coli * 559 (37.34) 414 (34.85) 440 (39.32) 1413
Proteus spp. * 249 (16.63) 234 (19.7) 193 (17.25) 676

Staphylococcus spp. 222 (14.83) 142 (11.95) 144 (12.87) 508
Enterococcus spp. 142 (9.49) 136 (11.45) 103 (9.2) 381
Klebsiella spp. * 122 (8.15) 102 (8.59) 101 (9.03) 325

Streptococcus spp. 76 (5.08) 68 (5.72) 60 (5.36) 204
Pseudomonas spp. * 50 (3.34) 33 (2.78) 40 (3.57) 123
Enterobacter spp. * 17 (1.14) 17 (1.43) 9 (0.8) 43
Citrobacter Koseri * 10 (0.67) Not isolated 8 (0.71) 18

Corynebacterium spp. 7 (0.47) 10 (0.84) Not isolated 17

Total isolates (By year) 1454 1156 1098 3708

* Gram negative microbe.

Table 2. Bacteria isolated from canine urine samples in Hong Kong between 2018 and 2020.

Feline Patients Number and Percentage (%) of Isolates by Year
Isolates 2018 2019 2020 Total Isolates (By Bacteria)

Escherichia coli * 356 (48.17) 276 (45.17) 329 (46.67) 961
Enterococcus spp. 93 (12.58) 103 (16.86) 103 (14.61) 299

Staphylococcus spp. 104 (14.07) 87 (14.24) 106 (15.04) 297
Pseudomonas spp. * 31 (4.19) 30 (4.91) 38 (5.39) 99

Proteus spp. * 29 (3.92) 28 (4.58) 36 (5.11) 93
Klebsiella spp. * 43 (5.82) 26 (4.26) 38 (5.39) 107

Streptococcus spp. 27 (3.65) 20 (3.27) 10 (1.42) 57
Enterobacter spp. * 12 (1.62) 13 (2.13) 21 (2.98) 46

Pasturella spp. * 9 (1.22) 9 (1.47) 4 (0.57) 22
Stenotrophomonas spp. * 2 (0.27) 3 (0.49) 2 (0.28) 7

Corynebacterium spp. 3 (0.41) 2 (0.33) Not isolated 5
Bacillaceae spp. 2 (0.27) 1 (0.16) 1 (0.14) 4

Morgenella spp. * 1 (0.14) 1 (0.16) 2 (0.28) 4
Serratia spp. * 2 (0.27) 1 (0.16) 1 (0.14) 4

Acinetobacter junii * 1 (0.14) 1 (0.16) 1 (0.14) 3
Actinomyces spp. Not isolated 1 (0.16) 1 (0.14) 2

Aerococcus viridans Not isolated 1 (0.16) Not isolated 1

Total isolates (By year) 715 603 693 2011

* Gram negative microbe.
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Table 3. Antimicrobial-resistance profile of major bacteria from urine of feline and canine patients.

Bacterial Resistance to Antibiotics (%) in Feline Patients Bacterial Resistance to Antibiotics (%) in Canine Patients

Antibiotic categories Antibiotics E. coli Enterococcus
spp.

Klebsiella
spp.

Pseudomonas
spp.

Staphylococcus
spp. E. coli Enterococcus

spp.
Klebsiella

spp. Proteus spp. Staphylococcus
spp.

Aminoglycosides Gentamicin 12 98 42 22 16 16 100 24 8 38
Amikacin

Carbapenems Imipenem 2 9 16
Meropenem 38 2 8 16 30 20

Cephalosporins

Cephalexin 18 98 62 99 17 22 97 36 11 19
Cefovecin 16 97 59 96 17 20 98 32 9 19

Cefopodoxime 17 98 61 98 18 21 99 32 9 19
Ceftriaxone 14 96 50 90 17 18 96 28 7 19
Cephalothin 19 96 62 96 17 24 97 37 10 19

Fluoroquinolones

Ciprofloxacin 14 42 59 29 15 21 30 34 10 24
Enrofloxacin 14 42 60 34 18 22 32 34 15 22

Marbofloxacin 14 44 58 32 17 21 32 34 6 23
Ofloxacin 14 44 58 34 19 21 34 34 7 22

Penicillins/Beta-lactamase
inhibitors

Ticarcillin-clavulanic acid 6 40 36 19 18 8 36 22 1 19
Piperacillin-tazobactam 12 2 4 1

Penicillin

Amoxicillin 47 28 98 99 60 50 24 96 22 78
Amoxicillin-clavulanate 7 28 38 99 16 10 24 26 8 28

Ampicillin 48 28 98 99 60 52 24 96 21 78
Penicillin 22 4 58 19 70

Methicillin
Oxacillin 17 19

Floxacillin 12 4 2
Piperacillin 4 38 8 4 20 4

Chloramphenicol 10 24 50 99 14 12 26 30 30 26
Doxycycline 23 38 50 88 17 24 42 37 98 60

Nitrofurantoin 1 18 58 99 3 10 44 99 1
Trimethoprim-

sulfamethoxazine 14 97 52 90 17 22 95 38 28 36

Rifampicin 17
Vancomycin 2
Mupirocin 2

Clindamycin 71 65 73 73 18 70 64 68 64 30
Fusidic 2 5
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Canine urine isolates demonstrated a different antibiotic resistant pattern in E. coli,
Enterococcus, Klebsiella, and Staphylococcus spp. (Table 3). For the E. coli isolates, 70% of
the isolates tested against clindamycin were resistant, and 40% tested against amoxy-
cillin and ampicillin were resistant. About 15% of the E. coli isolates were resistant to a
number of cephalosporins, including cephalexin, cefovecin, cefpodoxime, ceftriaxone,
and cephalothin, and the same percentage was resistant to fluoroquinolone (such as
ciprofloxacin, enrofloxacin, marbofloxacin, and ofloxacin), doxycycline, and nitrofuran-
toin. For the Enterococcus isolates, about 90% canine samples demonstrated resistance to
gentamicin and nitrofurantoin. About 40% of these Enterococcus isolates were resistant
to doxycycline, and 30% were resistant to fluoroquinolones, ciprofloxacin, enrofloxacin,
marbofloxacin, and ofloxacin. About 20% of these Enterococcus isolates were resistant to
amoxycillin, amoxycillin-clavulanate, ampicillin, and meropenem. Among the Klebsiella
isolates, 90% were resistant to amoxycillin and ampicillin; about 60% were resistant to
clindamycin; and about 30% were resistant to cephalexin, cefovecin, cefpodoxime, ceftriax-
one, cephalothin, chloramphenicol, ciprofloxacin, enrofloxacin, marbofloxacin, ofloxacin,
doxycycline, nitrofurantoin, and trimethoprim-sulfamethoxazole. About 20% of these
Klebsiella isolates were resistant to ticarcillin-clavulanate and piperacillin. For the Pro-
teus isolates, about 90% of the isolates were resistant to doxycycline and nitrofurantoin,
and 20% were resistant to chloramphenicol, amoxycillin, and ampicillin. Among the
Staphylococcus isolates, about 70% were resistant to amoxycillin, ampicillin, and penicillin.
About 60% were resistant to doxycycline; 30% to trimethoprim-sulfamethoxazole; and
20% to meropenem, ofloxacin, marbofloxacin, enrofloxacin, ciprofloxacin, chloramphenicol,
cephalexin, cefovecin, cefpodoxime, ceftriaxone, and cephalothin.

Of the total of 5731 samples positive for bacterial isolation, 3216 isolates (56%) exhibited
resistance to more than three antibiotics classes (multi-drug resistance). Of these multi-drug
resistant isolates, 2187 (68.0%) isolates were from canine and 1029 (32.0%) isolates were
from feline patients (Table 4).

Table 4. Multi-drug resistance in feline and canine urine samples.

Resistant Isolates by Number (%) and Species
No of Antimicrobial

Class
Total

No. of Isolates (%)
Feline

No. of Isolates (%)
Canine

No. of Isolates (%)
0 477 (8.14%) 243 (11.78%) 234 (6.15%)
1 1324 (22.59%) 524 (25.5%) 800 (21.03%)
2 843 (14.39%) 260 (12.65%) 583 (15.33%)
3 912 (15.56%) 237 (11.53%) 675 (17.74%)
4 598 (10.2%) 183 (8.91%) 415 (10.91%)
5 498 (8.5%) 145 (7.06%) 353 (9.28%)
6 387 (6.6%) 141 (6.86%) 246 (6.47%)
7 367 (6.26%) 134 (6.52%) 233 (6.13%)
8 307 (5.24%) 118 (5.74%) 189 (4.97%)
9 131 (2.24%) 65 (3.16%) 66 (1.74%)
10 16 (0.27%) 6 (0.29%) 10 (0.26%)

2.2. Resistance of E. coli from Urine of Feline and Canine Patients to First-Line Antibiotics

The sensitivity and resistance profile of E. coli isolates to first-line and non-first-line
antibiotics are listed in Table 5.

ISCAID, AVMA, AVA, and BVA provide antibiotic guidelines for veterinarians in
Hong Kong, China. The ISCAID guideline recommends amoxicillin and trimethoprim-
sulmethoxazole as first-line antibiotics for initial or empirical treatment [2]. About 40% of
urinary E. coli isolates were resistant to amoxicillin and 15% to trimethoprim-sulmethoxazole
in feline and canine patients. Furthermore, 40% of urinary E. coli isolates were resistant to
the non-first-line antibiotic doxycycline and 15% to ofloxacin, marbofloxacin, enrofloxacin,
ciprofloxacin, chloramphenicol, cephalothin, ceftriazone, cefopodoxime, and cefovecin.
Approximately 20% of canine and 15% of feline E. coli isolates were resistant to a number
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of non-first-line antibiotics, including doxycycline, ofloxacin, marbofloxacin, enrofloxacin,
ciprofloxacin, cephalothin, ceftriazone, cefopodoxime, and cefovecin (Table 5).

Table 5. First-line and non-first-line antibiotics resistance among Escherichia coli in feline and canine
urine samples.

Feline Canine
Recommended

Antibiotics by Classes Resistance Percentage Recommended
Antibiotics by Classes Resistance Percentage

Amoxicillin for lower UTI 40% Amoxicillin for lower UTI 40%
Trimethoprim-sulfate for

lower UTI 15% Trimethoprim-sulfate for
lower UTI 20%

First-line antibiotics
Fluoroquinolone for

pyelonephritis * 15% Fluoroquinolone for
pyelonephritis * 20%

Ceftriazone ** 15% Ceftriazone ** 20%
Cefopodoxime ** 15% Cefopodoxime ** 20%

Cefovecin ** 15% Cefovecin ** 20%
Ofloxacin * 15% Ofloxacin * 20%

Marbofloxacin * 15% Marbofloxacin * 20%
Enrofloxacin * 15% Enrofloxacin * 20%
Ciprofloxacin * 15% Ciprofloxacin * 20%

Chloramphenicol 15% Chloramphenicol 10%

Non first-line antibiotics

Doxycycline 40% Doxycycline 20%

* Quinolones are a highest priority critically important antibiotics for human medicine by 2018 6th Edition for
risk management due to non-human use (World Health Organization). ** Third-generation cephalosporin are a
highest priority critically important antibiotics for human medicine by 2018 6th Edition for risk management due
to non-human use (World Health Organization).

2.3. E. coli Antibiotic Resistance Trend in Feline and Canine Species

The first- and non-first-line antibiotic antimicrobial resistance pattern has a significant
implication regarding clinical empirical use [19]. Between 2018 and 2020, feline E. coli
resistance against the first-line antibiotic amoxicillin increased from 44.4 to 49.0%, while
trimethoprim-sulfamethoxazole resistance remained the same. In the same period, feline E.
coli resistance against the non-first-line antibiotic quinolones ciprofloxacin, enrofloxacin,
marbofloxacin, and doxycycline increased by 3%, 5%, and 2%, respectively (Figure 1). In
2018, the canine baseline E. coli resistance against first-line antibiotics was higher than in
feline patients. During this period, canine E. coli resistance against first-line amoxicillin
increased by 3%, while trimethoprim-sulfamethoxazole reduced by 5%. In the same
period, canine E. coli resistance against the non-first-line antibiotic quinolones ciprofloxacin,
enrofloxacin, marbofloxacin, and doxycycline reduced by 5%, 2%, 4%, and 7%, respectively
(Figure 2).
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3. Conclusions

The pattern of the most-frequently isolated bacteria and antibiotic resistance in feline
and canine patients were similar except in two bacteria. The difference was observed in
Klebsiella spp., which was isolated more frequently in feline patients, and Pseudomonas
spp., which was identified more frequently in canine patients. For both groups of patients,
E. coli, the most frequently isolated bacteria, carried a similar resistance pattern to first-
line antibiotics such as amoxycillin and trimethoprim-sulfamethoxazole. Additionally,
the results showed that E. coli is two-times-more resistant to amoxycillin compared to
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trimethoprim-sulfamethoxazole. The results also showed that E. coli is resistant to some
commonly used but non-first-line antibiotics, such as fluoroquinolone and doxycycline.

4. Discussion

This study highlighted AMR as a threat to small animal patients in the Hong Kong
Special Administrative Region of China, helps inform public health stakeholders of AMR’s
zoonotic and anthropozoonotic potential, and establishes the need for responsible pet
antimicrobial consumption among pet carers and owners. This study provided two clinical
implications. First, the monitoring of antibiotic resistance updates clinicians on potential
antibiotic resistance in their patients. This information helps facilitate clinicians’ prudent
antimicrobial prescription, especially in considering the weight of empirical antibiotic
use. Second, resistance monitoring, especially among first-line antimicrobials, helps the
profession establish and evaluate their clinical antimicrobial guidelines. Additionally, it is
important that antibiotic treatment continues to be conducted according to antibiograms
in small animal veterinary practice. In parts of Asia, and particularly in small animal
medicine, such AMR information deserves iteration and update.

Studies in different localities can provide a basis for comparison, encourage AMR
stewardship collaboration, and strengthen international veterinary AMR dialogue. This is
particularly true, as antibiotic sensitivity and resistance can be similar or varied depending
on the patient’s species, location of lesion, and physical settings [25]. For instance, a study
in Spain demonstrated similar findings to this study, in that canine patients had a higher
rate of positive urinary cultures than felines [26]. The same study also indicated similar
findings of E. coli, Proteus, Staphylococcus, and Enterococcus spp. frequently isolated in canine
patients, while E. coli, Enterococcus, and Staphylococcus spp. were frequently identified in
feline patients [27]. There are numerous contemporary publications and projects that
emphasize the importance of collaboration and sustainable efforts to mitigate AMR [28,29].
Continued inter-sectoral and international cooperation and sustainable partnership are
needed to implement prudent antimicrobial use and AMR stewardship in small animal
veterinary medicine [30,31].

In the public health and One Health frameworks, AMR monitoring in small animals
helps identify potential zoonotic and anthropozoonotic agents [32–37] For example, the
consistent investigation of clinically relevant Gram-positive and Gram-negative bacteria,
including the “ESKAPE” bacteria, helps clinicians and public health officers establish
appropriate antibiotic use guidelines [38–43]. Thus, continuous monitoring of antibiotic
resistance among locally common bacteria has important clinical relevance and public
health implications.

5. Materials and Methods
5.1. Informed Consent

Data were collected and stored as advised by the research ethics committee and
according to the privacy guidelines set out by the University of Hong Kong. This study did
not involve the use of animals.

5.2. Data Collection

Data were collected from a commercial laboratory between 2018 and 2020. The
specimens had been collected from specialist clinics and general practice clinics in Hong
Kong. The laboratory was accredited and followed the Clinical and Laboratory Standards
Institute (CLSI) protocol. Data inclusion criteria were (1) canine or feline urinary sample
antibiograms; (2) samples had to be from the locality of Hong Kong; and (3) urine samples
had to be analyzed in the laboratory between January 2018 and December 2020.

Multi-drug resistance was defined as bacteria that showed resistance to at least three
different antibiotic classes [44]. The multi-drug resistance antimicrobial class categorization
made reference to the World Association for Animal Health (OIE) list of antimicrobial
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agents of veterinary importance, WSAVA’s Essential Medicine List, and World Health
Organization (WHO) ACCESS pharmaceutical framework.

A total of 10% of the data were entered a second time to check for accuracy and validity.
Data description was conducted by R software.

5.3. Data Management

The information obtained from the laboratory’s in-house database was manually
transferred to an Excel spreadsheet. Variables were entered by month and year of isolation,
host species, bacterial species, and profiles of antimicrobial susceptibility. Case identifiers
were delinked from the data.

5.4. Collection of Urine Samples

Urine specimens were inoculated within three hours upon receipt.

5.5. Isolation and Identification of Bacteria

Urine samples were streaked using an inoculation loop onto CHROMID® CPS® Elite
(CPSE) (BioMerieux) plates. Each plate was streaked with 1 uL of the sample horizontally
and vertically, covering all of the plate medium.

The sample was first incubated for 16 to 24 h. The first review was conducted at
18 to 24 h. E. coli was identified by positive chromogenic results, as indicated by the
growth and color representation (http://www.biomerieux-culturemedia.com/product/9-
chromid-cps-elite, access on 20 August 2022). If isolates other than E. coli were identified, a
matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry
analysis was conducted for bacteria identification.

A subculture was conducted when mixed chromogenic results and first plating failed
to provide a pure isolated colony for the identification and antimicrobial test. In this
case, the clearest colony was identified from the mixed growth on the CPSE plate and
sub-cultured to a new CPSE plate to be re-incubated for identification.

Colony forming unit (CFU) counting was conducted in all urine specimens. The colony
counts were established at the 16th to 24th h. Ranges were categorized as 1 to 9 colonies
(103 to 104 CFU/mL), 10 to 99 colonies (104 to 105 CFU/mL), and more than or equal to
100 colonies (>105 CFU/mL). After the first review, all samples were subjected to second
incubation for another 18 to 24 h.

5.6. Culture and Antimicrobial Sensitivity Test

After identification, an antimicrobial susceptibility test was conducted by the Kirby–
Bauer disk diffusion method and by interpreting zones of growth inhibition according
to CLSI.

A standard panel of antimicrobials was tested against all positive cultures. The stan-
dard panel included amikacin, amoxycillin-clavulanate, ampicillin, cefovecin, cefpodoxime,
ceftriaxone, cephalexin, cephalothin, chloramphenicol, ciprofloxacin, clindamycin, doxy-
cycline, enrofloxacin, gentamicin, marbofloxacin, nitrofurantoin, ofloxacin, piperacillin-
tazobactam, and trimethoprim-sulfamethoxazole. Extended panel antimicrobials included
imipenem and carbepenem. An extended antimicrobial panel was also performed for
all staphylococcus spp. for methicillin susceptibility. Second panels were conducted for
methicillin-resistant staphylococcus spp., including fusidic acid, mupirocin, rifampicin,
and vancomycin.
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edited by all authors. Supervision and project administration were conducted by M.Y., E.L., W.W.T.L.
and O.S. All authors have read and agreed to the published version of the manuscript.

http://www.biomerieux-culturemedia.com/product/9-chromid-cps-elite
http://www.biomerieux-culturemedia.com/product/9-chromid-cps-elite


Antibiotics 2022, 11, 1140 10 of 11

Funding: This research was funded by the Agriculture, Fisheries, and Conservation Department, The
Government of the Hong Kong Special Administrative Region.

Institutional Review Board Statement: The study protocol was approved by the Institutional Review
Board (or Ethics Committee) of the University of Hong Kong.

Acknowledgments: We wish to thank Heather Fok, James Leung, and Jessica Wong for their input,
support, and advice.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Llor, C. and L. Bjerrum Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem.

Adv. Drug Saf. 2014, 5, 229–241. [CrossRef] [PubMed]
2. Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.B.; Guardabassi, L.; Hillier, A.; Lloyd, D.H.; Papich, M.G.; Rankin, S.C.;

Turnidge, J.D. Antimicrobial Use Guidelines for Treatment of Urinary Tract Disease in Dogs and Cats: Antimicrobial Guidelines
Working Group of the International Society for Companion Animal Infectious Diseases. Vet. Med. Int. 2011, 263768–263769.
[CrossRef] [PubMed]

3. Chew, D.J. Diagnosis and Treatment of Simple and Recurrent Urinary Tract Infections WSAVA/FECAVA/BSAVA World
Congress 2012. Available online: https://www.vin.com/apputil/content/defaultadv1.aspx?id=5328239&pid=11349 (accessed on
20 August 2022).

4. Lloyd, D. Development of Guidelines for Antimicrobial Use and Their Implementation. THE FECAVA SYMPOSIUM 2013 The Proper
Use of Antimicrobials in Companion Animal Practice. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:
//www.fecava.org/wp-content/uploads/2019/09/Winter-2013.pdf (accessed on 20 August 2022).

5. Turnidge, J.; Baggoley, C.; Schipp, M.; Martin, R. Resistance sans frontieres: Containing antimicrobial resistance nationally and
globally. Med. J. Aust. 2016, 204, 207–208. [CrossRef] [PubMed]

6. Teale, C.; Moulin, G. Prudent use guidelines: A review of existing veterinary guidelines. Rev. Sci. Et Tech.-Oie 2012, 31, 343.
[CrossRef] [PubMed]

7. Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial susceptibility survey
on bacterial agents of canine and feline urinary tract infections: Weight of the empirical treatment. J. Glob. Antimicrob. Resist. 2018,
13, 192–196. [CrossRef]

8. Scarborough, R.; Bailey, K.; Galgut, B.; Williamson, A.; Hardefeldt, L.; Gilkerson, J.; Browning, G. Use of local antibiogram data
and antimicrobial importance ratings to select optimal empirical therapies for urinary tract infections in dogs and cats. Antibiotics
2020, 9, 924. [CrossRef]

9. Page, S. Developing a global veterinary antimicrobial stewardship support programme. J. Companion Animal Pract. 2016, 21,
90–97.

10. Lei, T.; Tian, W.; He, L.; Huang, X.H.; Sun, Y.X.; Deng, Y.T.; Sun, Y.; Lv, D.H.; Wu, C.M. Antimicrobial resistance in Escherichia coli
isolates from food animals, animal food products and companion animals in China. Vet. Microbiol. 2010, 146, 85–89. [CrossRef]

11. Yu, Z.; Wang, Y.; Chen, Y.; Huang, M.; Wang, Y.; Shen, Z.; Xia, Z.; Li, G. Antimicrobial resistance of bacterial pathogens isolated
from canine urinary tract infections. Vet. Microbiol. 2020, 241, 108540. [CrossRef]

12. KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and amoxicillin-clavulanate resistance in urinary Escherichia coli antibiograms
of cats and dogs from the Midwestern United States. J. Vet. Intern. Med. 2020, 34, 227–231. [CrossRef]

13. Adator, E.H.; Narvaez-Bravo, C.; Zaheer, R.; Cook, S.R.; Tymensen, L.; Hannon, S.J.; Booker, C.W.; Church, D.; Read, R.R.;
McAllister, T.A. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum
Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020, 8, 885.
[CrossRef] [PubMed]

14. Kaspar, U.; von Lützau, A.; Schlattmann, A.; Roesler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among
small companion animals in Germany. PLoS ONE 2018, 13, e0208364. [CrossRef]

15. Naseer, U.; Olsson-Liljequist, B.E.; Woodford, N.; Dhanji, H.; Cantón, R.; Sundsfjord, A.; Lindstedt, B.-A. Multi-locus variable
number of tandem repeat analysis for rapid and accurate typing of virulent multidrug resistant Escherichia coli clones. PLoS ONE
2012, 7, e41232. [CrossRef]

16. Roberts, M.; White, J.; Lam, A. Prevalence of bacteria and changes in trends in antimicrobial resistance of Escherichia coli isolated
from positive canine urinary samples from an Australian referral hospital over a 5-year period (2013–2017). Vet. Record Open 2019,
6, e000345. [CrossRef] [PubMed]

17. Dorsch, R.; von Vopelius-Feldt, C.; Wolf, G.; Straubinger, R.K.; Hartmann, K. Feline urinary tract pathogens: Prevalence of
bacterial species and antimicrobial resistance over a 10-year period. Vet. Rec. 2015, 176, 201. [CrossRef] [PubMed]

18. Courtice, R.; Sniatynski, M.; Rubin, J.E. Characterization of antimicrobial-resistant Escherichia coli causing urinary tract infections
in dogs: Passive surveillance in Saskatchewan, Canada 2014 to 2018. J. Vet. Intern. Med. 2021, 35, 1389–1396. [CrossRef] [PubMed]

19. Windahl, U.; Holst, B.S.; Nyman, A.; Grönlund, U.; Bengtsson, B. Characterisation of bacterial growth and antimicrobial
susceptibility patterns in canine urinary tract infections. Bmc Vet. Res. 2014, 10, 1–10. [CrossRef] [PubMed]

http://doi.org/10.1177/2042098614554919
http://www.ncbi.nlm.nih.gov/pubmed/25436105
http://doi.org/10.4061/2011/263768
http://www.ncbi.nlm.nih.gov/pubmed/21776346
https://www.vin.com/apputil/content/defaultadv1.aspx?id=5328239&pid=11349
Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fecava.org/wp-content/uploads/2019/09/Winter-2013.pdf
Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.fecava.org/wp-content/uploads/2019/09/Winter-2013.pdf
http://doi.org/10.5694/mja15.01304
http://www.ncbi.nlm.nih.gov/pubmed/27031386
http://doi.org/10.20506/rst.31.1.2119
http://www.ncbi.nlm.nih.gov/pubmed/22849288
http://doi.org/10.1016/j.jgar.2018.01.011
http://doi.org/10.3390/antibiotics9120924
http://doi.org/10.1016/j.vetmic.2010.04.025
http://doi.org/10.1016/j.vetmic.2019.108540
http://doi.org/10.1111/jvim.15674
http://doi.org/10.3390/microorganisms8060885
http://www.ncbi.nlm.nih.gov/pubmed/32545206
http://doi.org/10.1371/journal.pone.0208364
http://doi.org/10.1371/journal.pone.0041232
http://doi.org/10.1136/vetreco-2019-000345
http://www.ncbi.nlm.nih.gov/pubmed/31565230
http://doi.org/10.1136/vr.102630
http://www.ncbi.nlm.nih.gov/pubmed/25351232
http://doi.org/10.1111/jvim.16103
http://www.ncbi.nlm.nih.gov/pubmed/33751667
http://doi.org/10.1186/s12917-014-0217-4
http://www.ncbi.nlm.nih.gov/pubmed/25249356


Antibiotics 2022, 11, 1140 11 of 11

20. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. Mmbr. 2010, 74, 417–433. [CrossRef]
[PubMed]

21. Guzmán Ramos, P.J.; Shiel, R.E.; Pérez, C.F.; Boeta, A.M.R.; Chamizo, M.R.P.; Aguado, J.I.B.; Duro, N.R.; Ortiz-Díez, G.
Antimicrobial resistance increased over an 8-year period in Enterobacteriaceae cultured from canine urine samples. J. Small Anim.
Pr. 2021, 62, 279–285. [CrossRef]
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