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Abstract

In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication
forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in
conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at
modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are
homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity
along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to
modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations
for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-
field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully
adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA
molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may
be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an
effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied
region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the
genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.
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Introduction

Cells must accurately duplicate their DNA content at every cell

cycle. Depending on the organism, the process of DNA replication

can initiate at one or multiple sites called origins of replication.

The DNA is copied by a pair of oppositely moving replication

forks that emerge from each origin. These forks actively replicate

the genome away from the origin until they encounter another

replication fork. DNA replication can thus be modeled as a series

of nucleations, growth (perhaps including fork stalls and rescues

[1,2]), and coalescences occurring in an asynchronous parallel way

until the whole genome is copied [3,4] (Fig. 1).

The complexity of the replication process traces back to the

observation that the initiation program can be inhomogeneous in

both space and time (see [5–11] for examples). Spatially

inhomogeneous replication firing can be caused by a variety of

factors such as an inhomogeneous distribution of pre-replication

complexes or their uneven activation during the S phase. This is

believed to be caused by factors such as the primary sequence of

DNA, the presence of transcription factor binding sites, the

chromatin organization of the DNA template and by gene

expression [5,12,13]. The variability of origin initiation times, on

the other hand, can result from the stochastic recruitment of

replication initiation factors and the level of checkpoint activity

[14–16]. As a consequence of such stochastic initiation, replication

origins can also be passively replicated by forks coming from

neighboring origins. In summary, modeling DNA replication is

challenging because the probability of initiation of an origin varies

along the genome, the moment at which an origin fires is

stochastic, and origins do not systematically fire at each cell cycle.

DNA replication modeling is also challenged by the lack of

direct observations. Experimental techniques using immunofluo-

rescent labels to observe the DNA synthesis provide only snapshots

of the replication kinetics [17]. The modeling approach presented

in this paper can be used to reveal the detailed replication program

responsible for producing these snapshots (initiation rates, fork

speeds, stalling events, etc).

Over the last decade, our group has developed an analytic

approach to modeling DNA replication kinetics [3,4,18–25]. The

approach is based on a formalism inspired by the Kolmogorov-

Johnson-Mehl-Avrami (KJMA) theory of phase-transition kinetics

in one spatial dimension [26–30]. In general, this approach has

assumed that there was no significant spatial variation along the

genome in the parameters characterizing replication. (Except for

Ref. [18] in which we looked at replication in budding yeast,

where origins have fixed locations. Reference [18] turns out to be

somewhat different from the present case, where origin initiation

occurs in extended zones that then show variation along the

genome.) In particular, we assumed that origin initiation rates and

the rate of DNA synthesis (fork progression velocities) were

spatially uniform. Temporal variations, however, were included,

and their effects can be important [18,20,22–24]. Because our
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approach gives analytical solutions for the evolution of experi-

mentally measurable quantities such replication progress, fork

densities, domain densities, and the like, it is particularly well

suited for fitting to experimental data [18,20]. This offers an

advantage compared to other approaches based on lengthy Monte

Carlo simulations [31–35] because it requires far less computa-

tional power to fit experimental data.

In this paper, we generalize our analytic approach to the case

where initiation rates and fork velocities may vary in both space

and time. We derive simple rate equations that can be solved

numerically to obtain the mean-field space-time replication

kinetics. We find the average fork densities in both directions,

everywhere along the genome and at any moment during the

synthesis (S) phase of the cell cycle. This technique can be used to

analyze experimental data from molecular combing [36,37] and

microarrays [38–40]. In addition, since our approach allows us to

determine quantities involving DNA replication initiation, pro-

gression and termination (e.g., coalescence probability profiles,

replication time distributions, etc.), it is particularly suitable for

fitting results obtained from experiments based on the single-

molecule analysis of replicated DNA (SMARD) where molecules

at all stages of DNA replication are considered and the steady-state

distribution of replication forks can be determined within a specific

portion of the genome [7]. On the other hand, the mean-field

assumption assumes that the cell-to-cell variations in parameters

relevant to replication are small. It also does not give the statistical

variation expected from an analysis of a finite number of cells,

even when all cells are identical. Both of these limitations can be

addressed by Monte Carlo simulations, which should be seen as

complementary to the present approach.

Methods

Simulating DNA replication
Although the goal of this paper is to be able to calculate the

average replication kinetics without recourse to numerical

simulations, we shall use simulations here to test our model

solutions and, more extensively, to test our fitting procedures. As

illustrated in Fig. 1, we model DNA replication using a series of

origins from which a pair of replication forks emerge to

bidirectionally duplicate the DNA. These forks move away from

the initiation site until they coalesce with another fork or reach the

end of the molecule. At this level of description, only the rate at

which forks are initiated, I(x,t), as well as their propagation speed,

v(x,t), is needed in order to simulate the process of DNA

replication. We previously used a Monte Carlo simulation to study

the case in which origin initiation rates and fork progression are

spatially homogenous along the genome, i.e., I(x,t)~I and

v(x,t)~v. Such processes are described in detail in Ref. [3].

However, experimental observations indicate that initiation rates

can vary in both space and time along the genome and that the

speed of replication forks is not necessarily uniform. Hence, the

Monte Carlo simulations must be modified to model these

inhomogeneous factors. In addition, since in mammalian cells

initiation events frequently appear scattered across large genomic

regions (rather than being limited to the precise DNA sequences),

we included in our simulations the presence of initiation zones. We

chose Gaussian profiles for the zones. Although the form of such

zones is not clear experimentally, our formalism can work with

zones that have an arbitrary initiation-rate profile along the

genome (x-axis).

As a test case for our new model, we simulated the replication of

a genomic region of 1000 kb containing two Gaussian initiation

zones of similar size (50 kb), as indicated in Fig. 2. Each zone is

assumed to contain origin that fire at different times during the S

phase and therefore referred to as ‘‘early’’ and ‘‘late.’’ In Fig. 2, the

early zone is centered at 200 kb and is active at all times. The late

zone, located at 800 kb, on the other hand, is active only for

t *> 5000 sec. The late zone is also assumed to be 10 times more

efficient than the early one (1:6|10{6 initiations/kb/sec at the

peak of the early zone). The initiation rate I(x,t) indicates the

average number of initiations that occur at (x,t) per length of

unreplicated DNA per unit of time. This definition is motivated by

the observation that each portion of the genome replicates only

once per S phase. For this specific example, we set the fork velocity

profile, v(x,t) to a constant value of 0.04 kb/sec. The simulation

parameters chosen here are typical of replication in somatic cells in

Figure 1. Space-time representation of the replication kinetics.
The left-hand side shows the original (solid lines) and new synthesized
(dashed lines) DNA while replications forks (triangles) are moving. In
this example, the forks originate from two origins (circles) that are
initiated at times t1 and t2 . The forks move at a constant speed until
they coalesce with another fork (diamond at t4) or reach the ends of the
molecule of length L (around t5 and t6). The right-hand side presents
the space-time replication fraction f (x,t), where x is the position along
the genome, of the same replication cycle. Orange and blue areas
represent unreplicated (f ~0) and replicated DNA (f ~1), respectively.
doi:10.1371/journal.pone.0032053.g001

Figure 2. Initiation profile I(x,t) used to produce the results
presented in Fig. 3. The left-hand side is a density plot of the
initiation rate, while the right-hand side shows I(x) at various time
points. (For clarity, each curve is offset by 15|10{6/kb/sec from the
previous one.) The initiation pattern is composed of two Gaussian
initiation zones at 200 and 800 kb. The first, or ‘‘early,’’zone is constant
throughout time, while the second, more efficient, ‘‘late’’ zone is turned
on at 5000 sec.
doi:10.1371/journal.pone.0032053.g002
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mammalian organisms [41]. Our method can easily include

variable velocities, including fork blocks due to DNA damage.

(Our approach allows both I and v to be space-time dependent but

the results of our test case are easier to interpret when there is only

one inhomogeneous contribution to the replication kinetics.)

However, experimental results indicate that the effects of the

inhomogeneity of I(x,t) are much more important than the effects

of the inhomogeneity of v(x,t) (see below and Demczuk et al.,

unpublished). For simplicity, we used periodic boundary condi-

tions (PBCs) for the fork propagation in our simulations (forks

reaching a boundary are re-inserted at the other boundary).

Therefore, it is formally equivalent to a circular chromosome (e.g.,

as in bacteria). Of course, whole-chromosome simulations of

eukaryotic chromosomes would not use periodic boundary

conditions and would take into account the specific (low) initiation

rates found in telomeres [38].

Simulation results for our model system for 1 and 1000 cell

cycles are presented in Figs. 3 a and 3 b, respectively. Each figure

is divided into five parts. Part I shows the replication fraction

f (x,t). For the one-cycle simulation, the value of f is either 0 or 1

for unreplicated and replicated DNA. For a finite number of

simulations, as in Fig. 3 b–I, the value of f (x,t) is the average

value observed throughout the ensemble of simulated cycles

(0ƒf (x,t)ƒ1). The fraction f (x,t) thus gives the probability that a

specific section of the genome located at x is replicated a time t.

Parts II and III present the left- and right-moving replication forks.

Only the trajectories of the forks are displayed for the case of one

simulated cycle, while the average observed fork densities are

reported for the case of many cycles. We refer to the fork densities

presented Fig. 3 b–II and 3 b–III as r+(x,t), where the + sign

represents the right- and left-moving forks, respectively. These

densities equal the number of forks moving in a specific direction

per kb at (x,t). Finally, parts IV and V show where and when

initiations and coalescences occur. In b–IV and b–V, these events

are represented using probability density functions, wi(x,t) and

wc(x,t), for initiations and coalescences, respectively. These

densities are expressed in units of 1/kb/sec and are normalized

so that
Ð?

0

Ð L

0
wi,c(x,t)dxdt~1.

Our simulations give detailed information about the replication

process and its statistics. Typical quantities of interest that we study

include the distribution of whole-genome replication times, the

average replication times of different regions, and the average

number of initiations and coalescences (as well as their space-time

distributions). However, while simulations based on a known

scenario can reproduce any experimentally obtainable statistic, the

calculation times are long. To fit unknown parameters to a set of

Figure 3. Comparison between one simulated replication cycle (a), 1000 simulation cycles (b), and our rate-equation solution (c). In
graph (I), the color scale goes from 0 (orange) to 1 (blue); in graphs (II) and (III), it goes from 0 (white) to 0.01/kb (black); in graphs (IV) and (V), it goes
from 0 (white) to 1.5|10{6/kb/sec (black). In all cases, we used the initiation function I(x,t) presented in Fig. 2 and the fork velocity v(x,t)~0:04 kb/
sec. The genome size is 1000 kb, with periodic boundary conditions. Column I compares the replication fraction f (x,t) in the three cases. The dashed
lines in b–I and c–I show the 10%, 50% and 90% contour curves. Columns II and III present the fork densities r+(x,t). Fork densities are expressed in
forks/kb in (b) and (c) while trajectories only are shown for the single cell cycle in (a). Columns IV and V present the space-time probability density
functions of observing an initiation, wi(x,t), or a coalescence, wc(x,t), respectively. Part (a) shows where and when initiations and coalescences from
one cycle occurred while parts (b) and (c) represent probability densities in 1/kb/sec.
doi:10.1371/journal.pone.0032053.g003
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experimental data would require large computational resources.

This difficulty motivates the analytic methods presented in the

next section. Although they use numerical methods to solve

differential equations, they are orders of magnitude faster than

simulation-based approaches.

Rate-equation approach
As mentioned above, we have developed a theoretical approach

that can be substituted for numerical simulations in order to speed

up the analysis of a given replication scenario when one is

interested in the average replication kinetics. As we will show,

integrating our rate-equations system also involves numerical

steps, but our approach is still considerably faster than simulation-

based models. Moreover, our method directly gives the mean-field

kinetics of replicating DNA. This solution is equivalent to the

simulation results in the limit where an infinite number of

simulations is performed. (Compare Fig. 3 b to Fig. 3 c). In this

sense, our technique provides the exact average replication

program but does not give information about the cell-to-cell

variability of the process, which can be obtained from simulations.

Simulations are thus complementary to the present mean-field

calculation method.

In this section, we introduce an analytical formalism to model

the creation, propagation and annihilation of replication forks

during DNA synthesis. To proceed, we derive a set of coupled

differential equations that describe the change in the replication

fork populations as a function of both the position along the

genome (x) and the time since the beginning of S phase (t). As

before, we define f (x,t) to be the probability that a given position

of the genome x is replicated at time t, while r+(x,t) represents

the right- and left-moving fork densities.

Modeling the replication kinetics using rate-equations.

We describe the space-time evolution of the average replication

fraction f (x,t) as well as both average fork densities r+(x,t),
assuming that the creation and propagation dynamics of the forks

are inhomogeneous, i.e., that the initiation function I(x,t) and the

fork speeds v+(x,t) can vary in space and time. (Again, the +
signs refer to the direction of propagation of the forks.)

The first equation of our set gives the rate of change of the

probability that a given location, x, is replicated at time t,

Lf

Lt
~(v{ r{)z(vz rz), ð1Þ

which is simply given by the product of local fork densities times

the rate at which a given fork synthesizes DNA.

The rate of change of the fork densities can be expressed in the

form of a ‘‘transport’’ equation,

Lr+

Lt
+

L(v+r+)

Lx
~I(1{f ){

(v{zvz)r{rz

1{f
, ð2Þ

with a ‘‘source’’ and a ‘‘sink’’ term on the right-hand side. The

source term, I(1{f ), represents the initiation of new forks at a

rate I(x,t) rescaled by the probability that the genome is not

already replicated at that position, 1{f (x,t). The sink term

represents the annihilation rate of forks as they coalesce with

oppositely moving forks. The coalescence rate is proportional to

the two local populations of forks and the relative speed at

which these forks are merging. That rate must be normalized by

the probability of not being replicated, 1{f (x,t). The + sign

on the left-hand side of Eq. 2 arises because both left- and right-

moving forks are assigned positive velocities. An expression

similar to Eq. 2 has been used to model the growth of crystal

lamella [42].

Given a replication scenario for I(x,t) and v+(x,t), Eqs. 1 and 2

can be numerically integrated to obtain f (x,t) and r+(x,t). We

solved our set of equations for the same conditions as used for the

simulations presented in Fig. 3 b (i.e., I(x,t) given by Fig. 2 and

v+(x,t)~0:04 kb/sec). We explicitly integrated our equations

using dx~0:�33 kb and dt~8:�33 sec (we need dx=dt§v to ade-

quately solve this system). We also used PBCs to solve our

equations, which means we used f (0,t)~f (L,t) and r+(0,t)~
r+(L,t) for all t. Using f (x,0)~0 and r+(x,0)~0 for all x as

initial conditions, the solution presented in Fig. 3 c agrees with the

simulation results of Fig. 3 b within statistical limits. Parts I to III

are directly obtained from the solution of our three rate-equations.

The densities of parts IV and V are, on the other hand,

proportional to the source and sink terms of Eq. 2 , respectively.

Hence,

wi~
I(1{f )

Ni

, ð3Þ

where

Ni~

ð?
0

ðL

0

I(1{f )dxdt, ð4Þ

is the average number of initiations per replication cycle. Similarly,

wc~
(v{zvz)r{rz

Nc(1{f )
, ð5Þ

where the average number of coalescences per cycle is given by

Nc~

ð?
0

ðL

0

(v{zvz)r{rz

(1{f )
dxdt: ð6Þ

The results of our numerical integrations are Ni~3:251 and

Nc~3:244. For a finite-size system with periodic boundary

conditions such as the model presented in this paper, we must

have Nc~Ni. The 0.2% difference between our calculation results

is simply due to round-off errors. Our calculation also matches the

average number of 3:25+0:04 initiations observed during our

1000 simulations. Finally, note that our model can also be solved

using non-periodic boundary conditions in order to study

replication of linear DNA. In such a case, the numbers of

initiations Ni and coalescences Nc are still given by Eqs. 4 and 6,

but we expect Ni~Ncz1.

Start-time distributions. The stochasticity of the replication

process modeled here implies that the start and end of S phase

(defined by the first origin initiation and the last fork coalescence)

occur at different times each single cycle. As illustrated in Fig. 3 a–

I, the simulation starts at t~0, but the actual duplication of the

DNA does not start before t&3000 sec. In other words, there is a

distribution of replication start times (marked by the first initiation)

and also a distribution of end times (marked by the last

coalescence).

Our rate equations can be used to calculated the probability

that replication has started, Ps(t), as a function of time, which

corresponds to the probability that at least one initiation occurs

during the time interval ½0,t�. We calculate this probability in

terms of a related quantity, Nexpt(t), which is the number of

initiations that are expected to happen in ½0,t�, assuming that there

were no initiations prior to t~0. We write

Modeling Inhomogeneous DNA Replication Kinetics
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Nexpt(t)~

ðt

0

ðL

0

I(x,t
0
)dxdt

0
, ð7Þ

where L is the genome length. Consequently, the probability that

at least one initiation occurred prior to time t is given by

Ps(t)~1{e{Nexpt(t)

~1{exp {

ðt

0

ðL

0

I(x,t
0
)dxdt

0
� �

,
ð8Þ

and the replication starting time distribution is simply given by

ws(t)~dPs(t)=dt. Figure 4 compares the calculated starting time

distribution with simulation results.

Equation 8 is valid for any molecule of length L, whether

periodic or non-periodic boundary conditions are considered.

However, Eq. 8 must be modified if one is studying a finite-size

fragment that is part of a larger molecule. A fragment thus

corresponds to a finite-length linear molecule without PBCs but

with a flux of forks at its boundaries (these forks were previously

initiated elsewhere outside the fragment region). In order to

calculate the starting probability of such a fragment, we first define

the notion of directional replication fractions, f+(x,t), which are the

probabilities that the location x has been replicated by a right- or a

left-moving fork. These replication fractions are obtained from

Lf+

Lt
~v+r+ ð9Þ

and can be calculated as a by-product of the numerical integration

of Eq. 1 . Thus, for a fragment that begins at x{ and ends at xz,

the probability that replication has started is given by

Ps(t)~1{e{Nexpt(t) 1{fz(x{,t)½ � 1{f{(xz,t)½ �, ð10Þ

where

Nexpt(t)~{

ðt

0

ðxz

x{

I(x,t
0
)dxdt

0
: ð11Þ

Equation 10 says that the probability that replication has not

started along a given molecule is the product of the probability

that no initiation already occurred within the molecule times the

probability that no fork came across the molecule boundaries.

End-time distributions. Another useful quantity is the

probability that replication has ended at time t, Pe(t). This

quantity is of great interest because it tells us when the replication

is over. It could therefore be used to study the duplication time of

the genome as a function of the replication scenarios. In general,

we cannot derive an analytical solution of our nonlinear rate-

equations system and, consequently, we cannot derive a formula

for Pe(t) as we did for the starting-time distribution. Nonetheless,

we can use our knowledge of the replication fork density to

estimate Pe(t) as the probability that there is no fork along the

genome. For a periodic system, where the number of right-moving

forks is always equal to the left-moving forks, we have

Pe(t)&~PPe(t)~exp {

ðL

0

rz(x,t)

f (x,t)
dx

� �
, ð12Þ

where we have assumed the number of forks at time t to be given

by a Poisson distribution (an equivalent estimate for Pe(t) in a

system with PBCs is obtained by replacing r+ (x; t) by r2 (x, t) in

Eq. 12). The tilde notation used in Eq. 12 denotes the fact that ~PPe

is an approximation of Pe(t). The density is normalized by the

probability of being replicated. Figure 4 also compares the end-

time distribution function, we(t)~d ~PPe(t)=dt, with simulation

results. Note that we can replace f (x,t) by 1{f (x,t) in Eq. 12

to get an estimate of 1{Ps(t). We expect the approximation that

fork distributions are Poisson to be accurate at the beginning and

end of S phase, where the number of forks is small, but to be less so

in mid-S phase, where there are more forks. For the model

explored here, the maximum difference between the calculated

and the simulated values of the ending probability is &0:03. In

Supporting Information S1, we solve exactly the case of a uniform

initiation profile and show that the error of our approximation of

Pe(t), when compared to the exact solution, decreases as the

number of initiations increases (i.e., as L
ffiffiffiffiffiffiffi
I=v

p
increases).

In the case of a non-periodic system, the lack of forks that move

in one direction over a certain range ½x{,xz� does not imply that

the whole range is replicated. Therefore, we must modify Eq. 12 so

as to obtain the end-time distribution of finite-size systems without

periodic boundary conditions (e.g., finite-length linear DNA or a

section of a larger molecule). The probability that a DNA

fragment located between x{ and xz is fully replicated is given by

~PPe(t)&f (x{,t) exp {

ðxz

x{

rz(x,t)

f (x,t)
dx

� �
: ð13Þ

Equation 13 asserts that the replication of a molecule without

PBCs has finished if no right-moving forks are observed and if the

left boundary is replicated (or vice versa for left-moving forks). As

mentioned above, an equivalent estimate for Pe(t) without PBCs is

obtained if we substitute the pre-factor f(x2, t) by f(x+, t) and use r2

(x, t) instead of r+(x, t).

Boundary fork injection. The previous sections presented

how our model can be used to study replication of molecules with

and without PBCs. Deriving Eqs. 10 and 13, we even

demonstrated how to calculate the probability that a sub-section

of the modeled systems has started or ended replicating. Here we

now show how we can adapt the boundary condition so they act as

sources of forks in order to account for initiations that occur

outside the modeled DNA segment. These forks mimic initiations

occurring outside ½0,L�. The simplest case would be to have a

source term that is equivalent to a semi-infinite region where the

Figure 4. Replication starting and ending times density
functions, ws(t) and we(t), for our model system. Symbols were
obtained from simulations, while solid lines were calculated from the
solution of our rate-equations.
doi:10.1371/journal.pone.0032053.g004
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initiation rate and the fork velocity are constant. In such a case, the

density of forks at the boundaries is simply

rz(x~0,t)~Iz t ½1{f (x~0,t)�, ð14Þ

r{(x~L,t)~I{ t ½1{f (x~L,t)�, ð15Þ

where I+ are the constant initiation rates outside the modeled

regions (Iz for right-moving forks coming from the xv0 region

and I{ for left-moving forks initiated at xwL). The derivation for

this boundary condition is presented in Supporting Information S1

and the Figure S1.
Stochastic fork progression. Our calculation method can

also be adapted to model the impact of DNA damage on

replication kinetics. Even in normal, healthy cells, there are a large

number of DNA ‘‘defects’’ where forks slow, or even stop. Such

damage usually affects only one of the two DNA strands. These

single-strand lesions are characterized by base oxidation caused by

reactive oxygen species or by base misincorporation due to a

copying error during DNA replication. In more serious but rarer

cases, defects involve both DNA strands. Examples of such double-

strand defects include DNA crosslinking induced by ionizing

radiation or double-strand breaks that result from a failed repair to

single-strand damage. Double-strand damage is more dangerous

because its repair can lead to rearrangements of the genome and

even contribute to the development of cancer [43]. Depending on

their density and on the repair mechanisms involved, DNA

damage can have a strong impact on the replication kinetics. The

slow down or stalling of forks at defects gives more time to fire to

origins that would otherwise have been passively replicated [44].

Also, fork stalls trigger local and global checkpoint signals that can

affect the progression of forks and the firing rate of new origins

elsewhere along the genome [11].

If replication speed changes predictably along the genome, one

can simply define an appropriate velocity profile v(x,t). However,

fork progression can also be affected in a more stochastic way in

the presence of DNA damage. When they encounter such defects,

replication forks are stalled for a given period of time until

repaired. The repair time depends on the nature of the defects and

can either be finite or infinite (i.e., not repaired during the current

S phase). In the infinite-repair-time case, the replication of the

DNA on the other side of the defect must come from the

oppositely moving fork. Such a stochastic blocking/unblocking

mechanism can be added to our mathematical framework by

modifying our expression for Lr+=Lt to

Lr+

Lt
+

L(v+r+)

Lx
~I(1{f ){

v+r+

d
z

r
0
+

t

{
(v{zvz)r{rz

1{f
{

v+r+r
0
+

1{f
,

ð16Þ

where the five terms on the right hand side are

1. the initiation rate of new forks, as we had in Eq. 2 ;

2. the stall rate of the moving forks, assuming that the average

spacing between defects is given by d;

3. the repair rate of the stalled forks, denoted r
0
+, with the

average repair time given by t;

4. the coalescence rate between moving forks, per Eq. 2 ;

5. the coalescence rate of moving forks that collide with stalled

forks.

The densities of stalled forks can be obtained by adding two

differential equations to our set. These new equations are used to

describe the rate of change of the densities of forks that are stalled

at DNA lesions as

Lr
0
+

Lt
~

v+r+

d
{

r
0
+

t
{

v+r+r
0
+

1{f
, ð17Þ

where the three terms represent stall, repair, and coalescence rates.

There is no L=Lx term on the left-hand side of Eq. 17 because

stalled forks are assumed to be fixed in space. A simplified version

of this fork-stall model, neglecting spatial inhomogeneity, was the

subject of a previous publication [19].

Results

Analyzing experimental data
An obvious application of our analysis would be to reproduce

results from experiments based on microarrays [38]. Microarrays

provide genome-wide average replication profile as a function of

time (derived from the overall molecule replication fraction),

which ideally corresponds to the replication fraction f (x,t)
obtained from our rate equations (see [39,40] for examples). Of

course, real microarray experiments are not ideal, and issues such

as the spatial resolution of the array or the cell-cycle asynchrony of

populations should be kept in mind when analyzing the data. In a

future contribution, we shall discuss how to reproduce such time-

course results. Here, we demonstrate the versatility of our

modeling technique by adapting it to the study of a more subtle

type of data that has recently been obtained via single molecule

analysis of replicated DNA (SMARD), a method developed by

Norio et al. [7]. The modeling and fitting procedures presented in

this paper were used to analyze a large SMARD data set obtained

from mice bone marrow cells (Demczuk et al., unpublished). One

feature of such experiments is that the data are obtained from an

asynchronous population of cells (i.e., the starting time of each cell

in the population is random, drawn from a uniform distribution).

Unlike microarrays, SMARD also allows one to determine the

steady state distribution of replication forks, as well as the location

of initiation events and fork collisions (in addition to the temporal

order of replication for a specific portion of the genome). This

additional information can be used to determine more precisely

the level of origin activity across the genomic region analyzed. We

shall need to adapt our model to make predictions for such a case.

Simulating a SMARD data set. The goal of the current

section is to adapt our calculation approach to the analysis of an

actual experimental setup, the SMARD experiment. The first step

towards such a goal is to be able to simulate the data collected

during this experiment.

The SMARD procedure is presented in detail in Ref. [7]. Here,

we give a brief summary. In a population of asynchronously

growing cells, one supplements the normal nucleotides used to

synthesize DNA by two different types of halogenated nucleotides

that are then conjugated to fluorescent antibodies. For conve-

nience, we shall refer to them as red and green labels. (The first

label is red; the second is green). Since cells are replicate

asynchronously, the labeling switch can occur at any time relative

to the cell cycle for a particular cell. (In particular, the switch will

often occur when the cell is not in S phase.) Figure 5 depicts the

labeling procedure when the transition happens during the

replication process. Part (a) compares the labeling timeline with

the replication space-time diagram, while part (b) shows the DNA

molecule one would observed after such labeling. As shown in

Fig. 5 b, the positions where labels are changing indicate the
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locations of the replication forks at the switching time (depicted by

arrows). Then, if we know the labeling sequence (red followed by

green in this case), we can distinguish left- from right-moving forks

(forks are moving from red to green zones).

In practice, the red- and green-labeling periods are preceded by

normal periods of non-fluorescent nucleotide synthesis. If each of

these labeling periods is significantly longer than the duplication

time of the analyzed molecules, then every molecule that is

examined will show one or two types of nucleotide (but never

three). All replicated molecules are collected, but only the ones

that are fully labeled with fluorescent markers are kept for analysis

(fully red, fully green, or red-green molecules).

The molecule-selection procedure described above–replication

simulation followed by random molecule selection–can be

repeated to collect a distribution of molecules. Figure 6 a shows

an example of 150 red-green labeled molecules collected during a

simulation of our model system (Fig. 2) using the protocol of the

SMARD experiment. We simulated more molecules but kept only

the ones with both labels. The red-green molecules in Fig. 6 a are

organized according to their red-label content. Note that a simple

visual inspection of Fig. 6 a is sufficient to obtain a general sense

about the position and relative efficiency of the replication origins

located in the region.

Data analysis. Figures 6 b and 6 c present three statistical

‘‘profiles’’ that are functions of the genome position but averaged

over all the simulated molecules shown in Fig. 6 a: the local red-

green ratio and the densities of replication forks in both directions.

Quantities are averaged over all samples because typical

experimental data sets are small (10 to 100 red-green molecules,

Demczuk et al., unpublished). As we shall see in the next sections,

we can adapt our approach to reproduce such average quantities

without having to do simulations.

Figure 6 b shows the red-green content, Y(x), as a function of

the genome position averaged over all the molecules collected in

Fig. 6 a. This quantity is always between one (all red) and zero (all

green) and is given by

Y(x)~
1

Ns

XNs

i~1

yi(x), ð18Þ

where Ns is the number of samples collected and yi(x) is the label

value (1 for red and 0 for green) of sample i at the position x.

Figure 6 b clearly shows that the positions, widths and amplitudes

of the red-green content function peaks correlates with the

initiation zones in Fig. 2 . To a first approximation, a maximum

of Y(x) corresponds to an initiation zone, while its numerical

value reflects the zone efficiency. We verified that an increase of

the initiation zone width also correlates with an increase of the

corresponding red-green peak width (not shown).

Another measurement that can be extracted from SMARD

experiments is the position of forks along the genome. Figure 6 c

shows the fork densities V+(x) as a function of the genome

position (again, the + sign refers to right- and left-moving forks,

respectively). Since the fork density is defined as number of forks

per kb, it is, in the context of the SMARD experiment, given by

V+(x)~
1

Ns

XNs

i~1

vi+(x), ð19Þ

where the local fork density vi+(x) is the number of forks

observed in sample i in a bin of size Dx, divided by Dx. Again, the

fork densities shown in Fig. 6 c were obtained from all the

molecules presented in Fig. 6 a. These figures also show that the

two fork densities can be used to characterize the initiation zones.

For example, the position of an initiation zone approximately

corresponds to the intersection of a decreasing left-moving fork

density with an increasing right-moving fork density. Of course,

since there are fewer forks per molecule, the fluctuations in

densities are higher than the fluctuations in red-green content.

Intuitively, this observation results from the fact that initiation

zones are regions from which both types of forks emerge, leading

to the observed positive and negative gradients of right- and left-

moving fork densities across the zones. In other words, a right-

moving fork is more likely to survive (not coalesce) as its moves

across the zone (and vice versa for left forks). The converse

situation, decreasing right-moving fork density and increasing left-

density, characterizes termination zones, which are regions where

coalescences are more likely to happen.

Estimating SMARD-like data from rate-equations

results. Solving the rate equations (Eqs. 1 and 2) does not

directly lead to quantities that we can compare to data obtained

from SMARD experiments. The quantities Y(x) and V+(x) are

not simple time averages of f (x,t) and r+(x,t). In the SMARD

experiment, one collects only molecules with red and green labels,

which means that all of them come from DNA that was replicated

during the two labeling periods. For example, that means that

fragments can only be collected between *3000 sec and *12000
sec in the case illustrated in Fig. 5. However, the f (x,t) profile

obtained from our rate equations corresponds to the average of an

infinite number of space-time replication events similar to the one

shown in Fig. 5 but it includes information collected at all times

Figure 5. SMARD labeling procedure. (a) Example of a replication
space-time profile and the corresponding SMARD labeling procedure.
As before, blue sections indicate replicated DNA while orange sections
represent unreplicated DNA. Circles denote fired origins, while
diamonds indicate coalescences of replication forks. Periodic boundary
conditions were used (circular genome). The dashed line at time
t~6500 sec indicates the end of the first labeling period (red) and the
beginning of the second (green) one. Arrows indicates the fork
propagation directions at the labeling transition time. The labeling
timeline on the right side and the solid line on the space-time profile
illustrate the labeling process to produce the molecule example
presented in (b). (b) Example of a molecule extracted from the
simulation presented in (a). Red sections were replicated during the red
pulse (before t~6500 sec), while green sections were replicated later.
To obtain a two-color molecule, the label transition time must occur
after the first initiation and before the last coalescence.
doi:10.1371/journal.pone.0032053.g005
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from t~0 to ?. Consequently, the information prior to the first

initiations and after the last coalescences that is incorporated in

our rate-equation solution must be taken out to model the

SMARD results. Fortunately, we can use our knowledge of the

probabilities Ps(t) and Pe(t) to estimate Y(x) and V+(x).
In order to convert our calculated mean-field profile f (x,t) to

SMARD-like red-green content function Y(x), we first recall that

f (x,t) is the average of an infinite number of single replication

events similar to the one depicted in Fig. 3 a–I (f is 0 or 1 in Fig. 3 a–

I, while it is a continuous number between 0 and 1 in Fig. 3 b–I and

in 3 c–I). The replication fraction profile in Fig. 3 b–I is given by

f (x,t)~
1

N

XN

i~1

fi(x,t), ð20Þ

where fi(x,t)~f0,1g is a single-event replication profile (as in Fig. 3

a–I), and N is the number of events (or simulations). The solution to

the rate equations corresponds to N??. Equation 20 can be re-

expressed as

f (x,t)~
1

N

X
i, 0vfi (t)v1

fi(x,t)z
X

i, fi (t)~1

fi(x,t)

2
4

3
5

~
1

N

X
i, 0vfi (t)v1

fi(x,t)zPe(t),

ð21Þ

where fi(t)~
Ð L

0
fi(x,t)dx is the replication fraction averaged over

the whole molecule. The terms with fi(t)~0 represent molecules

collected at time t that have not begun to replicate. They are not

included in the sum in Eq. 21 , since they each contribute 0. The

terms with fi(t)~1 represent molecules collected at time t that have

completely replicated. Their average just gives the probability that

replication has ended by that time, Pe(t).

Assuming the population of cells to be perfectly asynchronous,

we can collect molecules at any time t, as long as replication has

Figure 6. Simulation of SMARD experiment with comparison to rate-equation estimates. (a) Labeled molecules collected from
simulations of the SMARD procedure, using the model system of Fig. 2 . Each line corresponds to a molecule as the example presented in Fig. 5 b.
Molecules were organized according to their red-label content. Only molecules that were fully substituted with fluorescent nucleotides were
considered for the analysis. (b) Red-green content Y(x) of the molecules from (a) as a function of the position x along the genome (circles). A value of
one (zero) means that all the molecules are red (green) labeled at a given position. The solid line was calculated using our rate equations for f (x,t)
(see Eq. 23). Red-green content was determined by averaging over 5 kb bins; for clarity, only one value in ten is shown. (c) Left- and right-moving fork
densities V+(x) observed in the molecules presented in (a) as a function of the position x along the genome (triangles). The fork density is defined as
the number of forks per unit length at a given position (using 50 kb bins, 10 times larger than the simulation bin size). The solid line is derived from
the rate equations for r+(x,t) (see Eq. 24). Gray arrows in background show the locations of initiation zones (i.e., from left to right, the intersections of
increasing right-moving fork densities with decreasing left-moving fork densities). (d) Autocorrelation function of average red-green content,
computed from the pool of molecules presented in (a). Since we used periodic boundary conditions, the maximum displacement is L=2.
doi:10.1371/journal.pone.0032053.g006
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started, but not ended, at time t. Consequently, our estimate of the

red-green content function Y(x) from the rate-equation solution is

given by

Y(x)~

PNs

i~1

yi(x)

Ns
~

Ð?
0

P
i, 0vfi (t)v1

fi(x,t)dt

N
Ð?

0
Ps(t) 1{Pe(t)½ �dt

, ð22Þ

where the number of samples Ns is given by the number of

replication events N times the integral of the probability that DNA

is actually being replicated at time t (i.e., the probability that

replication has started multiplied by the probability that it has not

finished). Using Eq. 21 , we can rewrite the red-green content

function in a form that can be evaluated in terms of the rate-

equation solution:

Y(x)~

Ð?
0

f (x,t){Pe(t)½ �dtÐ?
0

Ps(t) 1{Pe(t)½ �dt
: ð23Þ

Note that the term Pe(t) corrects for fully replicated molecules that

are included in the calculation of f (x,t) but not in Y(x). (No

correction is needed for completely unreplicated molecules since

their f -value is zero.) We use Eq. 23 and the solution to the rate

equations to plot the solid line in Fig. 6 b.

Similarly, the average fork density in the SMARD experiment

V+(x) is given by

V+(x)~

Ð?
0

r+(x,t)dtÐ?
0

Ps(t) 1{Pe(t)½ �dt
: ð24Þ

After substituting the rate-equation solution into Eq. 24 , we plot

the solid lines in Fig. 6 c. In contrast with Eq. 23 , no correction for

fully replicated molecules is needed in Eq. 24 since fully replicated

molecules have no forks (r~0).

Figure 6 b and c compare our calculated estimates of Y(x) and

V+(x) to simulation results. These figures demonstrate that Eqs.

23 and 24 can be used to accurately reproduce the simulated

profiles obtained from experimentally typical size data set.

Consequently, our model can be used to fit SMARD data in

order to infer the initiation and fork velocity profiles.

One last issue that needs to be addressed is that the data points

obtained from a single SMARD experiment are correlated. We

can see this in Fig. 6 d, which plots SY(x)Y(xzDx)T, the

autocorrelation function, as a function of Dx. This means that the

probability of being replicated at x is not independent of the

probability of being replicated at x+Dx. As a consequence, the

weights given each point in a fit must take into account that errors

in nearby points are likely to be similar in neighboring bins.

Fitting to correlated data. Standard least-squares fitting

programs assume that the statistical errors in each data point in the

fit are independent. However, we have just argued that our errors

show significant correlations. In order to make valid inferences

about issues such as the goodness of fit, we need to take these

correlations into account. To do this using standard curve-fitting

routines, we linearly transform the data set to diagonalize the

covariance matrix (see [45] for example). Such decorrelated data

are then independent, which means that standard statistical tests

(e.g., the chi-square statistic) can be used to measure the quality of

a fit. Moreover, as we shall see, the diagonalization can be done in

a way that evenly weights all decorrelated data (i.e., the weights

can be set equal to one). Equal weights are optimal numerically for

curve fitting.

Let the experimental data be expressed as a one-dimensional

vector d that comprises the red-green profile and the fork density

densities (or any other information we can extract from both the

data and our rate-equation solution). The covariance matrix C of

the data set d is then given by

C(d)~S(d{SdT)(d{SdT)TT, ð25Þ

where S . . . T represents an ensemble average over many

repetitions of the experiment. The decorrelation procedure

requires a matrix C that changes coordinates in the data space

so that C~CLCT , where the matrix L is diagonal. We say that C
is a decorrelation matrix because the covariance matrix of the

decorrelated data, denoted d�~C{1d, is given by the diagonal

matrix L. Given a correlation matrix C, many different valid

decorrelation matrices can be found, as long as L is diagonal.

We can restrict the choices of decorrelation matrices by adding

the constraint that all the decorrelated data points should have

equal weight. This means that the diagonal matrix L can be scaled

equal to the identity matrix, which implies that the decorrelation

matrix C satisfies C~CCT . One way to obtain such a factorization

of the correlation matrix is to perform a Cholesky decomposition

of C such that [46]

C~LLT , ð26Þ

where L is a lower triangular matrix. The Cholesky decomposition

can be performed on the correlation matrix because C is, by

definition, symmetric and positive definite. Consequently, the

Cholesky matrix L converts correlated data into evenly weighted

decorrelated data (with all weights set to unity). Then, the

following recursive procedure can be used to find the best fit of the

data set:

1. Choose an initial replication scenario (initiation rate and

velocity profile) that approximately reproduces the observed

data d. In order to perform a fit, the scenario must be expressed

using a finite number of parameters.

2. Solve the rate equations using the current replication scenario.

Estimate the data set bdd, consisting of the red-green and fork-

density profiles.

3. Perform N simulations based on the current replication

scenario. Each simulation should collect the same number of

fully labeled molecules as were collected during the real

experiment. Analyze each simulation in the way real molecules

were treated, and record the series of simulated data vectors

dsim
i , where the index 1vivN.

4. Calculate the covariance matrix of the simulated data, C(dsim
i ).

In practice, if the number of simulation runs is not large

enough, the estimated covariance matrix may not be positive

definite, as required to perform a Cholesky decomposition.

Alternately, one can parametrize (e.g., by exponential decays)

the correlations and fit any unknown parameters to simulation

data. The form of the parametrized covariance matrix, denoted

ĈC, can chosen to ensure that ĈC is positive definite.

5. Calculate the Cholesky decomposition matrix, L, of the

parametrized covariance matrix such that ĈC~LLT [46].

6. Decorrelate the observed data d using the Cholesky matrix.

The decorrelated data, denoted d�, are given by d�~L{1d.

7. Fit the decorrelated data d� with the decorrelated solution of

our rate-equations, bdd�~L{1bdd. The fit searches for the

replication scenario that minimizes the difference between
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the decorrelated data vectors d� and bdd� (where the weights of

all data sets components are equal and set to unity). The

correlated fit solution is given by bdd~Lbdd�.
8. Repeat, starting from Step 2, using the latest fit result as the

current replication scenario, until the solution converges.

Fit example. We now apply the correlated data fitting

procedure described above to a real SMARD data set. The data

we use here and all the experimental details related to their

collection can be found in Demczuk et al., unpublished. In this

paper, the SMARD technique was used to study DNA replication

in mouse bone marrow pro-B cells at different developmental

stages. The study was performed on four adjacent restriction

fragments that cover about *1:4 Mb of the genome. Because the

fragments come from a much longer genome, we did not use

periodic boundary conditions but instead modeled explicitly the

injection of outside forks into the studied region.

In Fig. 7 , we present global fits to six different fragments (from

Demczuk et al., unpublished). The term ‘‘global’’ here means that

all the fragments are simultaneously fit by a common, or global, set

of parameters. Fragments 1 to 4 cover the studied region in

unrearranged normal pro-B cells (left side of Fig. 7). The last two

fragments (3’ and 4’) come from a clonal population of cells

containing a genomic rearrangements within fragment 3 (right side

of Fig. 7). The rearrangement of fragment 3 into 3’ consist in a

genomic deletion of approximatively 65 kb (located at 68 kb from

the right end of fragment 3, see dashed lines in Fig. 7).

In fitting the experimental data, we made the following

assumptions about the replication scenario:

1. Based on the normal cell red-green content profile (left side of

Fig. 7 a), we assumed that two initiations zones are present

(around 250 kb and 1150 kb). Each zone has three parameters

that describe the position, width, and initiation rate of the zone.

Another parameter defines a constant background of initiation

(this parameter was added because low levels of initiations were

observed outside the initiation regions). Finally, two other

parameters describe fork injection rates at the boundaries of

the modeled region (see filled symbols in Fig. 7 d).

2. For practical reasons, we assumed that the shape for the

initiation zones was a rounded box, such as the ones shown in

Fig. 7 d. As we see in Fig. 7 , the red-green content profile is not

too sensitive to the precise shape of the initiation zones (e.g., the

red-green content maxima have smoother edges than their

corresponding boxy initiation zones).

3. We also assume that the initiation profile does not change with

time during the S phase. Time-dependent profiles were

considered but did not affect significantly the fit (unpublished

observation).

4. Data sets from unrearranged and rearranged alleles were

assumed to have the same initiation rates except within

fragments 3/3’. The linear red-green content profiles and the

corresponding fork densities of fragments 3’ and 4’ indicate that

these fragments are almost always replicated by left-moving

forks coming from the right side of fragment 4’. We thus

assumed that the initiation profile of the deleted allele is the

same as the one of undeleted allele except for the absence of the

second initiation zone located within the deleted region

(compare fragments 3 and 3’ in Fig. 7 d).

5. We assumed a constant velocity throughout the four fragments.

However, the experimental results presented in Demczuk et al.,

unpublished, indicate that forks propagated at different speeds

in these two experiments (probably caused by differences in the

growing rate of the cultured cells in the two experiments).

Therefore, we used two fork speed parameters, one for

fragments 1 to 4 and another one for fragments 3’ and 4’.

The hypothetical replication described above comprises 11 free

parameters that can be adjusted throughout a fitting routine (6 for

the two initiation zones, 1 for the background initiation rate, 2 for

forks coming from outside the modeled region, and 2 for velocities

in both cell types). Using that hypothesis, we followed the fitting

procedure described in Section to perform a global fit of the

SMARD data collected from the six fragments. The fitted Y(x)
and V(x) profiles are shown as solid lines in Fig. 7 a–c. The best-fit

results are illustrated in Fig. 7 d as an initiation-rate curve. Note

that our rate-equation system has to be solved two times for a

given set of parameters (with and without the second initiation

zone for normal and clone cells, respectively).

Since determining the replication program was the aim of the

experiment, the quality of the fit cannot be directly compared to

the ‘‘actual’’ replication program. However, SMARD provides

information that was not used for the fit. Hence, it is possible to

verify that the result of the fit are consistent with this additional

information. First, the fitted fork velocities we obtained are

0:045 kb/sec and 0:023 kb/sec (both +0:003 kb/sec) for the

normal and clonal data set. The corresponding experimental

values are 0:041 kb/sec and 0:024 kb/sec (Demczuk et al.,

unpublished). Considering the small sample sizes used to obtain

these fork velocities (from 11 to 57 fully labeled molecules only,

depending on the fragment, Demczuk et al., unpublished), we

evaluated from simulations the statistical errors for the measured

fork velocities (&+10%). (Experimentally, the fork velocity within

a fragment is calculated as v~‘
�

nf trep

� �
, where ‘ is the fragment

length, nf the average number of forks observed per fragments, and

trep the replication time of the fragment. The replication time is

given by trep~tpulsen r,gf g=n r,gf gznrg, where n r,gf g is the number

of fully red (or green) labeled fragments while nrg is the number of

fully labeled fragments that have incorporated both labels

(Demczuk et al., unpublished).) Thus, our fitted values nicely

agree with the experiments. Second, the position of the second

initiation zone, [1.11 Mb, 1.17 Mb] (+0:01 Mb), is almost

completely located within the genomic deletion region of fragment

3, which is found between [1.12 Mb, 1.18 Mb]. (Remember that

we did not use the deletion location to restrict the second initiation

zone position while fitting.)

Our fit result has a reduced chi-square statistic of x2~1:13+
0:05 with 694 degrees of freedom. This high x2 value is due to the

simplistic initiation function we used. For example, a more

complicated initiation function could be used to obtain a better fit

of the red-green content profiles (e.g., we could use a higher

initiation rate at the right side of fragment 2 or a different shape

for the zone in fragment 3). Nevertheless, we believe that the

simple replication scenario used here captures the most important

features of the data set. Moreover, when we use the fit result to

perform simulations of the SMARD experiment, we obtain

statistics about the initiation/coalescence events and the replica-

tion time of each fragments that agree with the experimental

values (Demczuk et al., unpublished).

Discussion

Over the years, various experimental approaches have been

used to measure the absolute and relative efficiencies of origin

firing in eukaryotic cells. However, the efficiency of origin firing

does not encapsulate all the information required to understand

how DNA origins of replication are regulated. Since eukaryotic

genomes contain large numbers of origins, understanding their

regulation requires a quantitative analysis of the dynamics of
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origin firing along the genome and across S phase. Achieving this

goal requires comprehensive data sets about DNA replication

across large genomic regions, as well as mathematical procedures

for the analysis of complex data sets.

In this manuscript, we present a new set of rate equations that

can be used to calculate the firing rate of DNA origin of replication

using multiple sets of data (temporal order of replication, fork

density, replication time). Our mathematical procedure is versatile

and allows the analysis of complex data sets obtained using various

experimental approaches (SMARD, microarrays, etc.). This is

possible because our model follows the spatial and temporal

evolution of several replication factors. In contrast, previous

procedures have mostly relied on the analysis of individual

parameters of DNA replication that can be modeled with limited

detail (e.g., timing of replication). The main advantage of this

technique is that the rate-equation solution corresponds to the

exact mean-field replication program. Our approach thus provides

more precise information about average replication kinetics than

Monte Carlo simulations. It is faster, too. As discussed previously,

simulation remains the appropriate technique for estimating

statistical fluctuations of replication-related quantities. Since

average replication kinetics is often the only information

obtainable from experiments, our model is, in many practical

cases, sufficient to reproduce experimental data. For these reasons,

Figure 7. SMARD analysis of DNA replication in mouse bone marrow pro-B cells. The left side presents the data collected from four
fragments covering a *1:4 Mb region in normal cells. The right side shows data obtained from clone cells where the genome sequence was
rearranged (65 kb was deleted from the genome). ÊThe deletion is located between the two dashed lines on the left side graphs. Only the equivalent
of fragments 3 and 4 from normal cells was studied in the clonal population. Symbols represent experimental data while solid lines refer to the
solution of our rate-equation system. (a) Red-green content Y(x) obtained from Eqs. 18 (symbols) and 23 (solid lines). (b, c) Left- and right-moving
fork densities V+(x) given by Eqs. 19 (symbols) and 24 (solid lines). (d) Best fit result for the initiation rate I(x) (solid lines) and boundary fork
injection rates (symbols) used to solve our rate-equations. The best-fit fork velocities we obtained were 0:045 kb/sec and 0:023 kb/sec for normal and
clonal cell populations, respectively. Errors bars in (a, b, c) were obtained from simulations of the best-fit replication scenario.
doi:10.1371/journal.pone.0032053.g007

Modeling Inhomogeneous DNA Replication Kinetics

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e32053



our mathematical procedure makes it possible to perform a faster,

and more thorough, analysis of the process of DNA replication

initiation and of its regulation in complex eukaryotes.

Although our procedure can be used to analyze data sets

obtained with different experimental approaches, we validated it

using results of recent SMARD experiments performed across a

1.4 Mb region which spans the mouse immunoglobulin heavy

chain locus (Demczuk et al., unpublished). We chose these

experiments because, besides providing the data sets used in all

the calculations, SMARD provided us with additional information

that could be directly compared with the predictions of the

procedure (e.g., the location of initiation events and fork collisions,

the number of molecules containing such events, and the average

number of events per molecules). The close match between

calculated and experimental data sets indicates that our procedure

can be used to make valuable inferences about various aspects of

DNA replication in eukaryotes, with the calculations taking only

modest computer resources. The usefulness of our model was

illustrated by the series of fits of SMARD data we performed in

Demczuk et al., unpublished.

In Demczuk et al., unpublished, the methods presented here

implied that origin firing within the mouse Igh locus is compatible

with the stochastic firing of origins throughout S phase, with a rate

that varies along the locus. The Igh locus is divided into domains

of similar firing rates, and the rate of firing within these domains is

developmentally regulated. These observations contrast notably

with results obtained in budding yeast, where the rate of firing

varies from origin to origin and coordination in origin activity has

not been observed [18]. Moreover, this approach allowed us to

study various aspects of the developmental regulation of origin

activity during B cell development.

In summary, the mathematical procedure described in this

study has already provided new insights on the regulation of DNA

replication initiation in mammalian cells and makes possible the

study of additional phenomena such as replication time in the

presence of fork velocities that depend on genome location or the

impact of a correlation between initiation rates and fork density.

Our method is thus a natural starting point for investigating

checkpoint mechanisms where, for example, the cell regulates the

local or global replication activity in response to various intra- or

extracellular feedback signals.

Supporting Information

Figure S1 Space-time diagram of replication with
inhomogeneous fork speeds. The space-time point (X ,T) is

replicated by an initiation that occurred within the shaded area

(e.g., initiation A). By contrast, initiation B will replicate the

location X but only at a time twT . The inset defines symbols that

refer to different portions of the shaded area. Note that

D~D{zDz.

(TIF)

Supporting Information S1 Ending probability (homogeneous

case). Modeling fork injection at boundaries.

(PDF)
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