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Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-
beta (A𝛽) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition
in the development of Alzheimer’s disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD,
establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive
A𝛽 levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA
glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory
neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive
functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular
mechanisms that underlie A𝛽-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA
receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie
synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of A𝛽.

1. Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia among the aging population. Earlymemory deficits
and progressive loss of higher cognitive functions are com-
mon clinical features of AD patients. Pathologically, AD
is characterized by insoluble aggregates of extracellular
amyloid-beta (A𝛽) peptides (senile plaques) and intracellular
filaments composed of hyperphosphorylated tau (neurofib-
rillary tangles) in the brain. Strong evidence from human
genetics and transgenic mouse models has implicated A𝛽 in
the etiology and pathogenesis of AD [1]. A𝛽 peptides are
derived from 𝛽-secretase- and 𝛾-secretase-mediated sequen-
tial proteolytic cleavage of the amyloid-precursor protein
(APP), with A𝛽

1–40 and A𝛽
1–42 being the most abundant

species [2]. Many human mutations associated with familial
AD, such as those that are found in genes encoding APP
and the catalytic subunit of 𝛾-secretase, presenilin (PS1 and
PS2), promote amyloidogenic processing of APP, leading to

enhanced A𝛽 production [3]. Recent studies have shown that
soluble oligomeric forms of A𝛽 (ranging from dimers and
trimers to dodecamers) exert potent and acute neurotoxic
effects on the structure and function of synapses, including
reduced excitatory synaptic transmission, loss of dendritic
spines, and aberrant neuronal network activity [4, 5]. These
deleterious effects could contribute to the cognitive deficit
and memory loss associated with AD, indicating that “synap-
tic failure” is likely to be one of the earliest events that occurs
in the pathogenesis of AD prior to neuronal loss [6–8].

The majority of fast excitatory synaptic transmission
in the mammalian central nervous system is mediated by
the release of glutamate from the presynaptic terminal
and its binding to glutamate receptors on the postsynaptic
membrane. The ionotropic glutamate receptors consist of
AMPA (𝛼-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid), NMDA (𝑁-methyl-𝐷-aspartate), and kainate recep-
tors. Among these, AMPA receptors (AMPARs) are the
principal receptors that mediate fast excitatory synaptic
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2 Neural Plasticity

transmission in the mammalian brain. They are tetrameric
assemblies of two dimers of four potential subunits (GluA1–
GluA4) encoded by distinct genes, GRIA1–GRIA4. The pre-
dominant AMPARs expressed in the hippocampal and cor-
tical pyramidal neurons are composed of GluA1/GluA2 and
GluA2/GluA3 subunits [9]. Brief periods of high neuronal
activity open NMDA receptors (NMDARs) and induce Ca2+
influx, leading to a long-lasting increase in synaptic efficacy,
known as long-term potentiation (LTP), which is character-
ized by an increase in the number of AMPARs on the post-
synaptic membrane and spine growth. In contrast, repetitive
low frequency stimulation leads to the removal of synaptic
AMPARs to produce long-term depression (LTD), that is, a
decrease in synaptic strength. It has long been postulated that
these forms of synaptic plasticity represent a cellular correlate
of learning and memory [10].

One of the key mechanisms underlying synaptic plas-
ticity is the tight control of AMPAR number at synapses.
This requires a balance between the biosynthesis (number
of receptors being produced), membrane trafficking (the
movement of receptors to and from the plasma membrane
via exocytosis and endocytosis), and degradation of receptors
(receptor turnover), all of which are dynamically regulated by
AMPAR interacting proteins aswell as by various posttransla-
tional modifications that occur on their cytoplasmic carboxyl
terminal domains [11, 12]. Aberrant trafficking of AMPARs
usually leads to impaired synaptic plasticity and deficits in
learning and memory [11]. Importantly, several studies have
demonstrated a role for A𝛽 in promoting AMPAR endocyto-
sis and hence synaptic depression [13–16].This review focuses
primarily on NMDAR andmetabotropic glutamate receptor-
(mGluR-) mediated signaling. In particular, we highlight
several mechanisms that underlie synaptic LTD as common
signaling pathways that are hijacked by the neurotoxic effects
of A𝛽. Several pharmacological agents that target these path-
ways and are efficacious in inhibiting or reversing the neuro-
toxic effects of A𝛽 on glutamatergic neurotransmission and
synaptic plasticity are also discussed.

2. A𝛽 Alters Synaptic Plasticity In Vitro and
In Vivo

The ability of neurons to modulate their synaptic strength
is widely believed to be a cellular correlate of learning and
memory. NMDAR-dependent LTP and LTD are two major
forms of synaptic plasticity that are best studied in the
hippocampus, a region of the brain that is both critical for
memory formation and highly vulnerable to A𝛽 toxicity. It is
well established that synthetic solubleA𝛽 oligomers [17, 18] or
those secreted from cell lines overexpressing APP [19] acutely
and potently block hippocampal LTP at high concentration.
More recent studies have further shown that soluble A𝛽
dimers, but not A𝛽 monomers, either prepared by chemical
cross-linking or extracted directly from postmortem AD
brains, are extremely potent in inhibiting hippocampal LTP
both in vitro and in vivo [4, 20]. Congruent with the LTP
hypothesis of long-term memory, injection of these soluble
A𝛽 oligomers into the rat hippocampus disrupts cognitive
function and learned behavior [4, 21]. Most transgenic AD
mouse models overexpressing different familial AD muta-
tions, such as Tg2576 (APPSwe; K670N/M671L), PDAPP

(APPInd; V717F), 3xTg (APPswe, Tau P301L, and PS1 M146V),
and 5xFAD (APPswe, APPFlorida; I716V, APPLondon; V717I, PS1
M146L, and PS1 L286V), generally display impairments in
LTP and cognition [22–26]. Notably, some AD transgenic
mice show abnormal LTP and learning deficits well in
advance of plaque formation [22, 27, 28]. Collectively, these
results lend support to the idea that soluble oligomeric
A𝛽 plays a key role in disrupting synaptic plasticity. More
importantly, studies performed in human subjects have also
revealed deficits in LTP-like cortical plasticity in mild-to-
moderate AD patients [29–31].

Consistent with the fact that A𝛽 induces an impairment
in LTP, soluble A𝛽 oligomers have been demonstrated to
facilitate the expression of LTD in the hippocampus [4,
17, 32]. Although the exact mechanisms underlying A𝛽-
induced LTD remain equivocal, they have been shown to
involve internalization ofNMDA- andAMPA-type glutamate
receptors, dendritic spine shrinkage, and eventual synaptic
loss [14, 16, 33, 34].

3. Mechanisms Underlying A𝛽-Induced
Deficits in AMPAR Function

Dynamic trafficking of AMPARs to and from synapses is
a critical mechanism underlying the induction of synaptic
plasticity. Defects in the endocytosis and lysosomal traffick-
ing pathways are known to contribute significantly to AD
pathogenesis [35]. Consistent with this notion, overexpres-
sion of APP and a high concentration of soluble oligomeric
A𝛽 are able to induce the removal of surface AMPARs at
synapses, leading to synaptic depression and inhibition of
LTP [14, 19, 36, 37]. Mechanistically, these neurotoxic effects
of A𝛽 are mediated by high levels of glutamate at synapses
as a result of a disrupted glutamate reuptake process [32]
that subsequently leads to aberrant activation of NMDARs,
mGluRs, and the cellular prion protein (PrPC), as well as
elevated levels of AMPAR ubiquitination. Activation of these
signaling pathways in turn promotes synaptic depression,
via common pathways shared with LTD as summarized in
Figure 1, which are discussed in detail in the following
sections.

3.1. NMDARs. NMDAR-dependent LTD induced by low
frequency stimulation or by direct application of NMDA
(chemically induced LTD) triggers Ca2+ entry into the post-
synaptic compartment and activates protein phosphatase 2B
(PP2B, also known as calcineurin), which in turn leads to
the activation of protein phosphatase 1 (PP1) [38, 39]. PP1
and PP2B are known to mediate NMDAR-induced AMPAR
internalization by dephosphorylating the GluA1 subunit of
AMPARs at Ser-845 [40, 41], a protein kinase A (PKA)
site that is crucial for maintaining the stability of AMPARs
at perisynaptic sites and LTP [42–44]. NMDAR-dependent
LTD also induces the p38 mitogen activated protein kinase
(p38 MAPK) signaling pathway via the activation of Rap
small GTPases, leading to the removal of AMPARs [45, 46].

Emerging evidence demonstrates that toxic levels of A𝛽
aberrantly enhance the activity of NMDARs in favor of LTD
induction, thereby preventing LTP [32, 37, 47]. In cultured
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Figure 1: Signalingmechanisms involved inA𝛽-inducedAMPAR internalization. SolubleA𝛽 oligomers activate ionotropicNMDA(iNMDA)
and metabotropic glutamate (mGlu) receptors, leading to an increase in intracellular Ca2+. Ca2+ subsequently activates a number of signal
transduction cascades involving protein phosphatases (calcineurin, PP1, and STEP

61
) and protein kinases (Cdk5, PKC, and GSK3𝛽) to

modulate the phosphorylation of AMPAR subunits, as well as intracellular signaling and scaffolding molecules. Activation of these pathways,
which are commonly shared with LTD, promotes AMPAR internalization and synaptic depression. The cross talk between NMDAR and
mGluR5 signaling can be modulated by factors such as Fyn, CaMKII, PKC, and STEP

61
. The involvement of metabotropic NMDARs in

mediating the neurotoxic effects of A𝛽, which do not involve the flux of Ca2+, has recently been proposed, albeit this remains controversial.
Dotted arrows indicate events that are inferred from the study of LTD and have not been shown to be directly involved in A𝛽-mediated
signaling. Thicker lines indicate common pathways, while colored boxes indicate potential therapeutics targets for AD.

neurons and acute brain slices, soluble oligomeric A𝛽 induces
excessive influx of Ca2+ through the GluN2B-containing
extrasynaptic NMDARs, which subsequently activates the
Rap-p38 MAPK signaling pathway, as well as the protein
phosphatases, PP1 and calcineurin [13, 14, 16, 32, 37, 48–
50]. One of the consequences of A𝛽-induced activation of
calcineurin is reduced phosphorylation of Ser-845, which
induces AMPAR endocytosis and impairs the synaptic incor-
poration of these receptors [16]. Consistent with this finding,
APPSwe,Ind transgenic mice display lower levels of Ser-845
phosphorylation, a phenomenon that correlates well with the
loss of AMPARs on the cell surface and deficits in initial
learning and memory [16].

Another key substrate of PP1 the activity of which is
required for the expression of NMDAR-dependent LTD is
glycogen synthase kinase-3𝛽 (GSK3𝛽) [51]. PP1 can activate
GSK3𝛽 by a direct dephosphorylation mechanism, as well as
via the modulation of the upstream caspase–Akt signaling
pathways, which are also crucial for AMPAR internalization
and LTD [51, 52]. Interestingly, both GSK3𝛽 and caspases are

enzymes that have been widely implicated in AD. Indeed,
it has been demonstrated that inhibition of LTP by A𝛽 is
mediated by the caspase 3, Akt1, and GSK3𝛽 signaling path-
way [32, 53]. Paradoxically, however, GSK3𝛽 activity has also
been reported to play a role in maintaining AMPAR synaptic
expression under basal conditions as its inhibition leads to
the loss of surface AMPAR expression by controlling the rate
of AMPAR internalization [54]. However, during NMDAR-
dependent LTD, GSK3𝛽 may preferentially phosphorylate
other substrates including the key scaffolding protein in
excitatory synapses, postsynaptic density-95 (PSD-95). PSD-
95 stabilizes AMPARs at synapses through its interaction
with transmembrane AMPAR regulatory proteins (TARPs),
auxiliary subunits of AMPARs [55]. Overexpression of PSD-
95 promotes synaptic maturation and enhances synaptic
strength, whereas PSD-95 knockdown results in the opposite
effects [56–60]. It appears that GSK3𝛽 phosphorylation of
PSD-95 at Thr-19, following its dephosphorylation at Ser-295
by PP1, destabilizes and mobilizes PSD-95 away from the
PSD, resulting in increased AMPAR internalization [61, 62].



4 Neural Plasticity

Whether or not the phosphorylation status of PSD-95 ismod-
ulated by oligomeric A𝛽 via the GSK3𝛽 and PP1 signaling
pathways remains to be determined.

GSK3𝛽 is also a major kinase that phosphorylates the
microtubule-associated protein tau [63, 64]. A𝛽 causes tau
hyperphosphorylation and mislocalization from axons to
somatodendritic compartments, where it accumulates and
mediates A𝛽-induced downregulation of surface AMPARs
[65–68]. Recent studies have shown that NMDAR-induced
GSK3𝛽 phosphorylation of tau at Ser-396 is required for
hippocampal LTD by enhancing the interaction between the
GluA2 subunits of AMPARs with the protein interacting with
C-kinase 1 (PICK1) [69, 70], a process that is fundamental for
AMPAR internalization and/or intracellular retention during
LTD [71–76]. Furthermore, phosphorylation of PICK1 by
GSK3𝛽 at Ser-416 has also been reported to augment this
interaction [77].

GluA2 can be phosphorylated by protein kinase C (PKC)
at Ser-880 and by the protein tyrosine kinase of the sarcoma
(Src) family at Tyr-876, both of which are required for
AMPAR internalization and LTD [78–80]. GluA2 phospho-
rylation at these sites differentially regulates the interaction
of the subunit with PICK1 and glutamate receptor interacting
proteins (GRIP) 1 and 2 [80, 81]. GRIP1 plays an important
role in stabilizing AMPARs at synapses and is essential for
LTD [72, 79]. Given that phosphorylation of GluA2 weakens
the interaction of the subunit with GRIP1, but not PICK1,
it has been postulated that LTD involves destabilization and
detachment of GluA2 from synapses, allowing AMPARs to
be internalized. In accord with the role of A𝛽 in inducing
aberrant AMPAR endocytosis, one study has observed that
oligomeric A𝛽 increases PKC-mediated phosphorylation of
GluA2 at Ser-880 and subsequently reduces surface expres-
sion of AMPARs in cultured hippocampal neurons [15].
More importantly, several molecular and pharmacological
manipulations that inhibit GluA2 internalization potently
prevent A𝛽-induced synaptic depression and rescue memory
impairment in AD mice. These include the GluA2-R845A
mutant [14], GluA2-3Y peptides [82], and a small molecule
PICK1 inhibitor [83].

A new mechanism underlying the pathological action
of A𝛽 that involves the cyclin-dependent kinase 5- (Cdk5-)
activating peptide, p25, has recently been described by Seo
et al. [26]. Elevated levels of p25 have been implicated
in many neurodegenerative diseases, including AD [84].
In their study, Seo et al. found that A𝛽 induces calpain-
mediated cleavage of p35 into p25 in the hippocampus,
a process that requires the activity of GluN2B-containing
NMDARs and Ca2+/calmodulin-dependent protein kinase II
(CaMKII). The A𝛽-induced elevation in p25/Cdk5 activity
subsequently enhances the phosphorylation of dopamine-
and cyclic adenosine monophosphate-regulated neuronal
phosphoprotein (DARPP-32) at Thr-75, thereby inhibiting
the activity of PKA [85]. In a synergistic manner, A𝛽 also
triggers dephosphorylation of DARPP-32 atThr-34, presum-
ably by calcineurin, thereby releasing its inhibition on PP1
[86, 87].These convergingmechanisms eventually lead to the
loss of GluA1 phosphorylation at Ser-845 and induceAMPAR
internalization and synaptic depression. Remarkably, genetic

inhibition of p25 generation rescues LTP andmemory deficits
in 5xFAD transgenic mice [26].

In addition to promoting the internalization of AMPARs,
oligomeric A𝛽 can also act throughmechanisms that prevent
the forward trafficking of AMPARs towards the plasma
membrane. A𝛽 has been shown to cause aberrant redistribu-
tion of CaMKII from the synaptic to the cytosolic fraction
both in cultured neurons and in the brain of APPswe trans-
genic mice [88]. CaMKII can potentiate AMPAR-mediated
transmission via (a) phosphorylation of GluA1 at Ser-831 to
enhance AMPAR channel conductance, (b) phosphorylation
of the TARP, stargazin, to facilitate synaptic recruitment of
AMPARs, and (c) potentiation of the Ras-ERK (extracellular
signal-regulated kinase) pathway to promote AMPAR inser-
tion into the plasma membrane [45, 89–91]. Consistent with
the role of CaMKII in synaptic potentiation, exposure of
soluble A𝛽 oligomers reduces surface GluA1 clusters in cul-
tured neurons, concomitant with decreasedAMPAR synaptic
responses in cortical pyramidal neurons recorded from acute
brain slices of APPswe transgenic mice [88].

A𝛽 has been shown to interact with NMDARs [92, 93]
and to reduce their surface expression through endocyto-
sis [33]. A𝛽-induced internalization of NMDARs involves
dephosphorylation of the GluN2B subunit at Tyr-1472 by
STEP
61

(striatal-enriched protein tyrosine phosphatase 61),
the expression of which is upregulated in several AD mouse
models, as well as in the postmortem prefrontal cortex of AD
patients [33, 94–96]. The fact that A𝛽 enhances the internal-
ization of NMDARs seems counterintuitive given the role of
NMDARs in mediating AMPAR endocytosis, spine loss, and
ultimately excitotoxicity in neurons. Recent studies on the
putative oligomericA𝛽 receptor, PrPC, have provided insights
into two potential mechanisms that regulate NMDAR func-
tion [97, 98]. Firstly, soluble oligomeric A𝛽 binding to PrPC
activates the tyrosine kinase Fyn, which initially phospho-
rylates GluN2B and transiently enhances NMDAR function,
before the STEP

61
level increases and dephosphorylates

GluN2B [99]. Secondly, A𝛽 disrupts the ability of PrPC to
limit excessive NMDAR activity in a copper-dependentman-
ner, potentially by chelating copper ions and preventing them
from binding to PrPC, thereby producing large nondesensi-
tizing steady-state NMDAR currents [100]. Albeit controver-
sial, loss of PrPC function has been reported to prevent A𝛽-
induced LTP and memory impairment in mice [98, 101–105].
Despite this, the role of PrPC in regulatingAMPAR trafficking
has not been directly examined.

Recent studies by Kessels and colleagues have challenged
the central role of NMDAR-mediated Ca2+ influx in A𝛽-
induced synaptic depression [106]. It is well established
that the neurotoxic effects of oligomeric A𝛽 on synapses
can be blocked by the NMDAR antagonist, D-APV (D-
2-amino-5-phosphonopentanoic acid), which prevents glu-
tamate binding and blocks the activation of NMDARs.
However, noncompetitive NMDAR antagonists that block
ion flow through the receptor, such as MK-801, ketamine,
and 7-chlorokynurenic acid, are not able to rescue A𝛽-
mediated synaptic depression [106, 107]. A similar finding
was recently reported for oligomeric A𝛽-induced dendritic
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spine loss [108]. Consistent with the idea that A𝛽 operates
through shared pathways with LTD, metabotropic, but not
ionotropic, NMDAR function has been shown to be required
for NMDAR-dependent LTD in the hippocampus by activat-
ing the p38 MAPK signaling pathway [109]. In fact, ligand
binding to the extracellular domain of NMDARs induces
conformational change and movement of their cytoplasmic
tails, allowing PP1 to dephosphorylate CaMKII together with
other signaling molecules that contribute to synaptic depres-
sion [110, 111]. Although the role of metabotropic NMDARs
remains controversial [46], it does offer an explanation for the
fact that the FDA-approvedNMDAR antagonist, memantine,
has poor efficacy in treating early-stage AD [112]. Fur-
ther research is warranted, as delineating the metabotropic
NMDAR signaling pathway may shed light on new strategies
for the development of future AD drugs.

3.2. mGluRs. mGluRs belong to the G-protein-coupled
receptor superfamily that modulates neuronal excitability,
synaptic transmission, and plasticity in the central nervous
system [113]. Group ImGluRs, which consist of twomembers,
mGluR1 and mGluR5, predominantly localize to the postsy-
naptic membrane and are canonically coupled to G𝛼q/11 to
activate phospholipase C𝛽 (PLC𝛽) that catalyzes the hydrol-
ysis of phosphoinositides into inositol 1,4,5-triphosphate
(IP
3
) and diacylglycerol (DAG). Subsequently, these second

messengers trigger the release of Ca2+ from intracellular
stores and activate PKC, respectively. Group I mGluRs, and
more specificallymGluR5, are the predominant receptors that
mediate mGluR-dependent LTD in the hippocampus and
have been widely implicated in AD [114].

It is well established thatmGluR-dependent LTD requires
the internalization of GluA2-containing AMPARs, leading to
a long-term reduction in the number of surface AMPARs
[115, 116]. One of the mechanisms that regulates mGluR-
induced AMPAR endocytosis involves the phosphorylation
of GluA2 at Ser-880 by PKC, a process that is facilitated
by PICK1 [117–119]. However, in the CA1 region of the
hippocampus, internalization of AMPARs does not require
PKC but instead relies on the dephosphorylation of GluA2 at
Tyr-876 by STEP

61
[120–122]. Dephosphorylation of GluA2

stimulates the binding of BRAG2 (brefeldin resistant Arf GEF
2), which in turn activates the small GTPase Arf6 through
augmentation of its GEF (guanine-nucleotide exchange fac-
tor) activity and promotes AMPAR endocytosis [122]. In
accordance with this model, it has been reported that A𝛽-
induced internalization of AMPARs requires STEP

61
activity

[95]. Genetic deletion of STEP
61

restores the number of
AMPARs on the postsynaptic membrane, enhances LTP, and
improves cognitive function in AD mice [95, 123]. A new
small molecule inhibitor of STEP

61
, TC-2153, has recently

been shown to reverse cognitive deficits in 3xTg AD mice
[124]. Like NMDAR-dependent LTD, mGluR-mediated LTD
also involves the Rap1-p38 MAPK signal transduction path-
way to facilitate AMPAR internalization via the formation of
the GDI-Rab5 complex [125–127]. In addition, a role for ERK
in mGluR-dependent LTD has also been reported [128].

One unique feature of mGluR-dependent LTD is its
requirement for rapid translation of preexisting mRNAs

(local protein translation) in dendrites [129]. mGluR-
dependent de novo protein synthesis can be regulated
through multiple pathways, including the PI3K-Akt-mTOR
(mammalian target of rapamycin) and ERK signaling path-
ways that converge on the initiation and elongation factors of
protein translation [130]. Several mRNA encoding proteins
that regulate AMPAR trafficking are locally translated
during mGluR-dependent LTD, including the activity-
regulated cytoskeleton-associated protein (Arc), micro-
tubule-associated protein 1B (MAP1B), and STEP [121, 131–
133]. All of these proteins are known to facilitate the
internalization of AMPARs. MAP1B is a known GRIP1
binding protein [134]. Given that GRIP1 stabilizes AMPARs
at synapses, the newly synthesized MAP1B may sequester
GRIP, hence loosening its interaction with GluA2. On
the other hand, Arc interacts with the endocytic proteins,
endophilin and dynamin, and is able to enhance dynamin
polymerization and GTPase activity, thereby promoting
AMPAR endocytosis [135, 136]. Interestingly, soluble
oligomeric A𝛽 rapidly induces Arc expression in neurons,
which may contribute to the loss of AMPARs from the
plasma membrane [137]. Moreover, Arc also regulates the
endosomal trafficking of APP and BACE1, as well as PS1,
a mechanism that is essential for the activity-dependent
production of A𝛽 in the brain, and genetic deletion of Arc
reduces the A𝛽 load in APPswe;PS1ΔE9 transgenic AD mice
[138]. This may serve as a positive feedback mechanism
underlying the overproduction of A𝛽 in the pathophysiology
of AD.

Studies from several laboratories have implicated the
mGluR-dependent signaling pathway in the neurotoxic
effects of A𝛽 on synaptic function [4, 14, 139–143]. Notably,
genetic and pharmacological inhibition of mGluR5 prevents
oligomeric A𝛽-induced impairment in LTP, spine loss, and
cognitive deficits in AD mouse models [139, 142–145]. More
recently, a seminal study by Strittmatter and colleagues
identified an interaction between mGluR5 and PrPC, which
together act as a coreceptor for oligomeric A𝛽 [144]. They
also revealed an essential role for mGluR5 and PrPC coupling
in the pathology of AD [146]. Mechanistically, mGluR5
links PrPC to key intracellular signaling molecules, such
as Homer1b/c, Pyk2, Fyn, and CaMKII, all of which play
major roles in synaptic plasticity [144, 146, 147]. When
neurons are exposed to oligomeric A𝛽, the PrPC-mGluR5
complex mediates the aberrant activation of Pyk2, Fyn, and
CaMKII, causing altered neuronal states that lead to impaired
LTP [99, 144, 146]. It is interesting to note that A𝛽 also
induces a biphasic alteration in CaMKII activity, resembling
that of Fyn, in a PrPC-mGluR5-dependent manner, and
that this is accompanied by the increased association of
mGlu5 with CaMKII [146]. Given that mGluR5 activation
enhances NMDAR forward trafficking through CaMKII-
mediated phosphorylation of GluN2B at Ser-1303 [148], it is
hypothesized that A𝛽-induced enhancement of the associ-
ation between mGluR5 and CaMKII may prevent synaptic
potentiation. Furthermore, pharmacological activation of
mGluR5 in the presence of PrPC causes a redistribution of
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CaMKII into the cytoplasm [147], which may have an impact
on AMPAR trafficking.

Interestingly, the cross talk between mGluR5 and
NMDAR signaling is bidirectional. Not only can mGluR5
potentiate NMDAR currents through CaMKII and PKC
signaling pathways [148, 149], but also activation ofNMDARs
can potentiate mGluR5 responses under physiological
conditions [150, 151]. This involves the NMDAR-dependent
activation of calcineurin that dephosphorylates mGluR5
and reduces receptor desensitization. However, a high con-
centration of NMDA can induce PKC-dependent mGluR5
phosphorylation and inhibit mGluR5 responses [152].
Although the interaction of mGluR5 and NMDARs has been
implicated in synaptic plasticity and various animal behaviors
[153–156], their alteration in the presence of A𝛽 binding to
PrPC and how this impacts on AMPAR trafficking remain
unclear.

3.3. Protein Ubiquitination. Posttranslational ubiquitination,
a regulatory signal that controls protein trafficking and
turnover, has recently emerged as an important mechanism
that regulates AMPAR function [157, 158]. All AMPAR sub-
units undergo activity-dependent ubiquitination in cultured
neurons, a process that is Ca2+-dependent and requires the
activity of L-type voltage-gated Ca2+ channels [159–161]. The
primary E3 ligases that catalyze the ubiquitination of GluA1
and GluA2 subunits are Nedd4-1 and RNF167, respectively
[160, 162]. While the role of protein ubiquitination on
the GluA1 and GluA2 subunits in ligand-induced AMPAR
endocytosis remains controversial, it is well accepted that
ubiquitination of AMPARs regulates the intracellular sorting
of receptors into late endosomes for degradation [159–161,
163]. Under normal conditions, the degradation of AMPARs
is required for protein homeostasis to ensure turning over of
old or used receptors in order to maintain healthy levels of
AMPARs in neurons. However, when the ubiquitin pathway
is hijacked (e.g., by elevated levels of A𝛽), there is an exces-
sive downregulation of AMPARs and synaptic depression.
Indeed, a new finding has demonstrated a role for naturally
secreted and synthetic A𝛽 in promoting the ubiquitination
of AMPARs by Nedd4-1 [164]. Interestingly, knocking down
Nedd4-1 rescued A𝛽-induced synaptic deficits, including
reduced glutamatergic synaptic transmission, decreased lev-
els of surface AMPARs, and the loss of dendritic spines.These
findings have important implications in targeting ubiquitin
E3 ligases as potential drug targets for the treatment of AD.

4. Concluding Remarks

Research over the past decade has provided strong evidence
that the cognitive deficit associated with AD is caused by
the neurotoxic effects of soluble A𝛽 oligomers on synaptic
function. Increasing evidence indicates that the trafficking of
AMPARs, which is essential tomultiple forms of synaptic and
structural plasticity in the brain, is aberrantly dysregulated by
oligomeric A𝛽 and manifests as impairments in LTP, learn-
ing, and memory. It is particularly encouraging to learn that
pharmacological and genetic manipulations that block endo-
cytosis or enhance the forward trafficking of AMPARs can

rescue LTP and reverse cognitive deficits in AD mice. Given
that A𝛽-induced AMPAR internalization requires the same
adaptor proteins as the conventional trafficking pathway, it
will be challenging tominimize unwanted side effects. Hence,
further research is needed to identify specific targets for
improving the memory deficits associated with AD. Rapid
progress has been made in delineating the molecular mecha-
nisms and signaling pathways underlying the loss ofAMPARs
from the plasma membrane induced by oligomeric A𝛽
(Figure 1). The discovery of PrPC as a receptor for soluble A𝛽
oligomers that signals through NMDA andmGluR5 receptor
has underscored the importance of glutamatergic signaling in
the etiology of AD. It is likely that these receptors act cooper-
atively tomediate the synaptotoxic effects of A𝛽, highlighting
the need for further investigation of the associated signal-
ing mechanisms with a view to developing more effective
therapeutic strategies for the treatment of AD.
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[142] G. Rammes, A. Hasenjäger, K. Sroka-Saidi, J. M. Deuss-
ing, and C. G. Parsons, “Therapeutic significance of NR2B-
containing NMDA receptors and mGluR5 metabotropic glu-
tamate receptors in mediating the synaptotoxic effects of 𝛽-
amyloid oligomers on long-term potentiation (LTP) in murine
hippocampal slices,” Neuropharmacology, vol. 60, no. 6, pp.
982–990, 2011.

[143] N.W.Hu, A. J. Nicoll, D. Zhang et al., “mGlu5 receptors and cel-
lular prion proteinmediate amyloid-𝛽-facilitated synaptic long-
term depression in vivo,”Nature Communications, vol. 5, article
3374, 2014.

[144] J. W. Um, A. C. Kaufman, M. Kostylev et al., “Metabotropic
glutamate receptor 5 is a coreceptor for Alzheimer a𝛽 oligomer
bound to cellular prion protein,”Neuron, vol. 79, no. 5, pp. 887–
902, 2013.

[145] A. Hamilton, J. L. Esseltine, R. A. Devries, S. P. Cregan, and S.
S. G. Ferguson, “Metabotropic glutamate receptor 5 knockout
reduces cognitive impairment and pathogenesis in a mouse
model of Alzheimer’s disease,”Molecular Brain, vol. 7, article 40,
2014.

[146] L. T. Haas, S. V. Salazar, M. A. Kostylev, J. W. Um, A. C. Kauf-
man, and S. M. Strittmatter, “Metabotropic glutamate receptor
5 couples cellular prion protein to intracellular signalling in
Alzheimer’s disease,” Brain, vol. 139, Part 2, pp. 526–546, 2016.

[147] F. Raka, A. R. Di Sebastiano, S. C. Kulhawy et al., “Ca2+/
calmodulin-dependent protein kinase II interacts with group
I metabotropic glutamate and facilitates receptor endocytosis
and ERK1/2 signaling: role of 𝛽-amyloid,”Molecular Brain, vol.
8, article 21, 2015.

[148] D. Jin, B. Xue, L. Mao, and J. Q.Wang, “Metabotropic glutamate
receptor 5 upregulates surface NMDA receptor expression in
striatal neurons via CaMKII,” Brain Research, vol. 1624, pp. 414–
423, 2015.

[149] H.-H. Chen, P.-F. Liao, and M.-H. Chan, “MGluR5 positive
modulators both potentiate activation and restore inhibition
in NMDA receptors by PKC dependent pathway,” Journal of
Biomedical Science, vol. 18, no. 1, article 19, 2011.

[150] S. Alagarsamy, J. Saugstad, L. Warren, I. M. Mansuy, R. W.
Gereau IV, and P. J. Conn, “NMDA-induced potentiation of
mGluR5 is mediated by activation of protein phosphatase 2B/
calcineurin,” Neuropharmacology, vol. 49, supplement 1, pp.
135–145, 2005.

[151] S. Alagarsamy, M. J. Marino, S. T. Rouse, R. W. Gereau IV, S.
F. Heinemann, and P. J. Conn, “Activation of NMDA receptors
reverses desensitization of mGluR5 in native and recombinant
systems,” Nature Neuroscience, vol. 2, no. 3, pp. 234–240, 1999.

[152] S. Alagarsamy, S. T. Rouse, C. Junge et al., “NMDA-induced
phosphorylation and regulation of mGluR5,” Pharmacology
Biochemistry and Behavior, vol. 73, no. 2, pp. 299–306, 2002.

[153] Z. A. Bortolotto, V. J. Collett, F. Conquet, Z. Jia, H. Van Der
Putten, and G. L. Collingridge, “The regulation of hippocampal
LTP by the molecular switch, a form of metaplasticity, requires
mGlu5 receptors,” Neuropharmacology, vol. 49, supplement 1,
pp. 13–25, 2005.

[154] M. Pietraszek, A. Gravius, D. Schäfer, T. Weil, D. Trifanova,
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