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Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a
major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of
cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen.
Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods
including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection
through a process that exhibits many of the hallmarks of human disease: (i) death of the fly is dependent on the
presence of cholera toxin and is preceded by rapid weight loss; (ii) flies harboring mutant alleles of either adenylyl
cyclase, Gsa, or the Gardos Kþ channel homolog SK are resistant to V. cholerae infection; and (iii) ingestion of a Kþ

channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 lg
of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the
fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal
deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence
factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we
demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D.
melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

Citation: Blow NS, Salomon RN, Garrity K, Reveillaud I, Kopin A, et al. (2005) Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera. PLoS
Pathog 1(1): e8.

Introduction

Cholera continues to be a major cause of morbidity and
mortality in many parts of the world [1]. It is contracted
through ingestion of contaminated food or water and is
characterized by profuse diarrhea and vomiting. Cholera
toxin, the primary determinant of this clinical syndrome, is
an AB5-type exotoxin composed of an A subunit non-
covalently bound to five B subunits, arranged in a rosette to
form a lectin recognizing the GM1 ganglioside [2]. The
mechanism by which cholera toxin enters intestinal epithelial
cells and disrupts function has been studied extensively in
cultured cells [3–7]. Prior to entry into the cell, the A subunit
is proteolytically cleaved into a catalytic A1 subunit and an A2

subunit, whose role is to maintain the non-covalent associ-
ation to the B subunit GM1 lectin. This lectin forms an
association with GM1 gangliosides that are concentrated in
lipid rafts within the cell membrane. Once bound to GM1,
retrograde transport on lipid rafts delivers cholera toxin to
the endoplasmic reticulum. The A1 subunit then dissociates
from the toxin complex and exits the endoplasmic reticulum
to ADP-ribosylate the stimulatory G protein subunit, Gsa. The
modified Gsa constitutively activates adenylyl cyclase, and
levels of cAMP in intestinal epithelial cells rise. The
consequent secretory diarrhea depends on opening of
cAMP-responsive Cl� channels and flow of Cl� and water
through the apical surface of the epithelial cell into the
intestinal lumen. KCNN4, an intermediate conductance Ca2þ-
activated Kþ channel of mammals, maintains Kþ export

through the basolateral aspect of the intestinal epithelial
cell. Clotrimazole, which blocks the KCNN4 channel, has been
shown to decrease cholera toxin-induced Cl� secretion in
both cultured mammalian cells and mice [8,9]. These results
suggest that simultaneous basolateral export of Kþ is required
to maintain passage of Cl� through basolateral Kþ/Cl�

cotransporters and apical Cl� channels into the intestinal
lumen.
The utility of Drosophila melanogaster as a model host for

human pathogens is well-established [10–18]. In the natural
environment, Vibrio cholerae is closely associated with arthro-
pods [19–21], and many have suggested that insects serve as
vectors [22–26] or reservoirs [27–29] of V. cholerae. Thus, we
hypothesized that insects or related arthropods might serve as
excellent model hosts of V. cholerae. To test this, we subjected
the model insect D. melanogaster to oral V. cholerae infection.
Here we demonstrate that V. cholerae infection of D.
melanogaster exhibits the following parallels to human disease:
(i) ingestion of V. cholerae produces an intestinally-localized,
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lethal infection in the fly that is dependent on cholera toxin;
(ii) host susceptibility is dependent on Gsa, adenylyl cyclase,
and the Drosophila KCNN4 channel homolog; and (iii)
clotrimazole, an inhibitor of the human KCNN4 channel,
protects the fly against infection. However, we have also
found differences between V. cholerae infection of mammals
and flies. Ingestion of cholera toxin alone is sufficient to
cause severe secretory diarrhea in humans and model
mammals [30–33]. In contrast, in the fly, we have found that
ingestion of cholera toxin is lethal only when pathogenic
isolates of V. cholerae are ingested in tandem. Our findings not
only demonstrate the utility of the fly as a model host for V.
cholerae infection, but also suggest that the V. cholerae genome
contains virulence factors specifically required for infection
of non-mammalian hosts such as the fly.

Results/Discussion

Ingestion of V. cholerae Results in Lethal Infection of D.
melanogaster

To test the utility of D. melanogaster as a model host for V.
cholerae, flies were fed either Luria-Bertani (LB) broth alone or
inoculated with V. cholerae. Consumption of this growth
medium by the fly was documented on multiple occasions
by addition of blue dye. Using this experimental design, wild-
type flies fed LB broth alone survived for 5 d and could be
maintained for up to 2 wk if a larger volume of LB broth was
provided. In contrast, flies fed LB inoculated with V. cholerae
expired after 3 d regardless of the amount of volume
provided (Figure 1). Similar observations were made for the
Canton-S wild-type strain of D. melanogaster and for several D.
melanogaster strains carrying benign marker mutations (un-
published data).

V. cholerae Is Able to Multiply within the Fly
Once ingested by a model mammalian host, V. cholerae is

able to multiply within the intestinal compartment [34]. In
the experimental model presented above, flies were contin-

uously fed V. cholerae. While this type of infection is rapidly
lethal, it does not distinguish between bacterial accumulation
and bacterial colonization and multiplication. To test
whether V. cholerae was able to persist and multiply within
the fly, we measured V. cholerae colony-forming unit (CFU)/fly
over time in flies continuously fed LB inoculated with V.
cholerae and in flies first fed LB inoculated with V. cholerae for
24 h and then transferred to a vial containing sterile LB
broth. At 24 h, flies in both groups harbored equivalent
numbers of V. cholerae. As shown in Figure 2A, flies exposed
continuously to LB inoculated with V. cholerae expired after 3
d when the burden of V. cholerae reached 3.933 107 CFU/fly.
Over the course of 4 d, numbers of V. cholerae also increased in
flies removed from contaminated food, albeit at a slower rate
than flies continuously exposed to V. cholerae. The number of
V. cholerae required to bring about death was similar in both
groups. These results suggest that V. cholerae is able to colonize
and multiply within the fly in the absence of continued
ingestion.

V. cholerae Remains Localized to the Fly Gut following

Ingestion
During human infection, V. cholerae remains localized to the

intestine, causing systemic disease through the action of
cholera toxin. To determine whether V. cholerae also remained
localized to the Drosophila gut, whole flies fed either sterile LB
or the V. cholerae/LB mixture were processed into 5-lm thick
histologic sections, stained, and examined. Many slender,
comma-shaped, gram-negative rods were found within the
midgut of V. cholerae-infected flies (Figure 2B). Although
concentrated in the midgut, V. cholerae were also found in
other regions of the gut. Careful histologic analysis of all
tissues revealed no V. cholerae outside the fly alimentary tract.
Interestingly, the intestines of flies fed both sterile LB, and LB
inoculated with V. cholerae contained gram-positive rods

Figure 1. The Genes Encoding Cholera Toxin Are Required for Lethal V.

cholerae Infection of Drosophila

Fractional survival of wild-type Oregon R flies (wtDm) fed LB alone (LB),
wild-type V. cholerae (wtVc), or a V. cholerae DctxB mutant (ctxB). Ten
adult flies (five males and five females), 3–5 d following eclosion were
used. Log-rank test analysis demonstrated a statistically significance
difference in survival of wild-type V. cholerae infected flies and V. cholerae
DctxB mutant infected flies (p , 0.0001).
DOI: 10.1371/journal.ppat.0010008.g001
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V. cholerae Infects Flies

Synopsis

Cholera, the pandemic diarrheal disease caused by the gram-
negative bacterium Vibrio cholerae, continues to be a major public
health challenge in the developing world. Environmental studies
have demonstrated a close association between V. cholerae and
many species of arthropods, and insects have previously been
implicated as vectors of this disease. Here researchers report the
susceptibility of the fruit fly, Drosophila melanogaster, to oral V.
cholerae infection through a process that exhibits many of the
hallmarks of human disease. Furthermore, although ingestion of
cholera toxin results in massive diarrhea in mammals, these
researchers have found that ingestion of purified cholera toxin is
not lethal to the fly. However, when co-ingested with a pathogenic
strain of V. cholerae carrying a deletion of the cholera toxin genes,
cholera toxin is lethal. These findings not only demonstrate the
utility of D. melanogaster as an accurate, inexpensive model for
elucidation of the host-pathogen interaction and identification of
inhibitors of the action of cholera toxin; they also suggest that V.
cholerae carries additional virulence factors that enable intoxication
of an arthropod host. Based on these findings, the researchers
suggest that the fly or a related arthropod may be a true host of V.
cholerae in nature.



(Figure 2C). These most likely represent the commensal flora
of our laboratory flies.

Cholera Toxin Is a Virulence Factor in V. cholerae Infection
of the Fly
We hypothesized that, as is the case in human disease,

cholera toxin secreted from V. cholerae within the fly gut was
responsible for death. To test this hypothesis, a V. cholerae
mutant harboring a deletion in the ctxB gene was constructed
and fed to wild-type flies [35]. The DctxB mutant was
significantly less virulent in the fly model of cholera,
demonstrating that cholera toxin is the primary virulence
factor in V. cholerae infection of both flies and humans (Figure
1). Although flies fed a DctxB mutant survived several days
longer than flies fed wild-type V. cholerae, they still died
prematurely. Thus, we hypothesize that, in the absence of
cholera toxin, other virulence factors contribute to death of
the fly.

V. cholerae-Infected Flies Lose Weight Prior to Death
Cholera victims may lose 10% or more of their body weight

due to dehydration as a result of secretory diarrhea [36]. If
cholera toxin acts via a similar mechanism in the fly, weight
loss should also occur during infection of the fly. To test this,
flies fed either LB alone or LB inoculated with V. cholerae were
weighed on a daily basis. Over the course of 3 d, flies fed V.
cholerae lost approximately 25 % of their initial body weight,
while flies fed LB alone showed a small weight gain (Figure 3).
These results support the hypothesis that flies, like humans,
become dehydrated during V. cholerae infection. However, we
cannot exclude other causes of weight loss such as a decreased
food intake or altered metabolic activity.

Figure 2. V. cholerae Multiplies within the Gut of the Fly following

Infection

(A) Colony counts were assayed at 24-h time points from flies infected
with V. cholerae. Grey bars indicate CFU per fly obtained from flies fed V.
cholerae continuously, while black bars depict CFU per fly for flies fed V.
cholerae for 24 h and then removed to a sterile, fresh LB solution.
(B) Section of the midgut of a fly harvested 48 h after introduction to
medium containing V. cholerae. Arrows labeled with Vc point to clusters
of slender, curved gram negative V. cholerae (pink) present in the lumen
of the midgut of the infected fly. Occasional gram positive bacteria
(violet), which represent the endogenous flora of the gut, are also
present.

Figure 3. Ingestion of V. cholerae Induces Drosophila Weight Loss

Fraction of initial weight gained by wild-type flies (wt Dm) fed either LB
alone (LB) or V. cholerae (wt Vc). Error bars represent the standard
deviation based on three measurements.
DOI: 10.1371/journal.ppat.0010008.g003

(C) Section of the midgut of a fly harvested 48 h after introduction to LB
alone. Only endogenous gram positive bacteria (violet) could be
observed in the intestines of flies fed sterile LB broth.
DOI: 10.1371/journal.ppat.0010008.g002
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G-sa60A, Adenylyl Cyclase, and SK Channel Mutants Are
Resistant to Lethal V. cholerae Infection

Cell culture-based studies have shown that Gsa, adenylyl
cyclase, and the KCNN4 channel play an important role in V.
cholerae-induced Cl� secretion by intestinal epithelial cells
[9,37,38]. We asked whether these same factors might be
required for susceptibility of Drosophila to V. cholerae infection
by examining the susceptibility of Drosophila strains bearing
mutations in the genes encoding G-sa60A, the adenylyl
cyclase rutabaga, or the SK channel, a Ca2þ-sensitive Kþ

channel that is the closest Drosophila homolog of the human
KCNN4 channel. As shown in Figures 4 and 5A, mutation of
G-sa60A and rutabaga provided nearly complete protection
against V. cholerae infection. Mutation of Sk provided only
partial protection. This may be the result of persistent, albeit
reduced expression of the SK channel in this mutant or of
additional mechanisms that facilitate Cl� secretion in the fly
(Figure 6). Importantly, we confirmed that the additional
independently generated mutant alleles for G-sa60A, rut, or
SK listed in Table 1 had similar effects on V. cholerae
susceptibility, indicating that mutations in these genes, rather
than other differences in genetic background, caused the
observed phenotypes.

In preparation for genetic rescue of the rut mutant
phenotype using the GAL4/UAS binary expression system, a
rut2080 strain homozygous for a UAS-rutþ transgene insertion
on the second chromosome was obtained and assayed for
susceptibility to V. cholerae infection [39]. Unexpectedly, these
flies were susceptible (Figure 5A). To ascertain the basis of
this susceptibility, we assayed levels of rut transcript in wild-
type, rut2080, and rut2080;UAS-rutþflies by RT-PCR. As shown in
Figure 5B, rut transcription was greatly reduced in the rut2080

mutant, but the rut2080;UAS-rutþ flies had transcript levels
comparable to those of wild-type flies. PCR analysis con-

Figure 4. A G-sa60AR60 Mutant Strain Is Resistant to Lethal V. cholerae

Infection

Fractional survival over time of wild-type flies (Oregon R; wt Dm) and G-
sa60AR60 mutant flies [44] that were fed either LB alone or LB inoculated
with wild-type V. cholerae (wt Vc). In these experiments and those
illustrated in Figures 5 and 6, ten 3- to 5-d-old adult flies (five males and
five females) were infected, and all experiments were performed in
triplicate. Log-rank test analysis demonstrated a statistically significant
difference in survival of wild-type flies fed wild-type V. cholerae and G-
sa60AR60 mutant flies fed wild-type V. cholerae (p , 0.0001).
DOI: 10.1371/journal.ppat.0010008.g004

Figure 5. A rut 2080 Mutant Strain Is Resistant to Lethal V. cholerae

Infection

(A) Fractional survival over time of wild type flies, rut 2080 mutant flies
[47], and rut 2080 ;UAS-rutþ fed LB inoculated with V. cholerae (wt Vc).
Wild-type flies fed LB broth alone were included as a control. Log-rank
test analysis demonstrated a statistically significant difference in the
survival of wild-type flies fed wild-type V. cholerae and rut 2080 mutant
flies fed wild-type V. cholerae (p , 0.0001).
(B) RT-PCR amplification of rutabaga transcripts in wild-type (WT), rut 2080,
and rut 2080 UAS-rutþ flies. The ribosomal protein rp15a was used as a
constitutively transcribed control.
DOI: 10.1371/journal.ppat.0010008.g005

Figure 6. SK Mutant Drosophila and Clotrimazole-Treated Wild-Type Flies

Display Partial Resistance to Lethal V. cholerae Infection

Fractional survival over time of wild-type (wt Dm) or SK mutant
(fWHgSKf07979) flies fed either wild-type V. cholerae alone or combined
with 10 lg/ml clotrimazole (10 lg Clot). Log-rank test analysis
demonstrated a statistically significant difference in survival of wild-type
flies fed wild-type V. cholerae and SK mutant (fWHgSKf07979) flies fed
wild-type V. cholerae (p , 0.0001). There was also a statistically
significant difference in survival of wild-type flies fed wild-type V.
cholerae and wild-type flies fed wild-type V. cholerae combined with 10
lg/ml clotrimazole (p , 0.0001).
DOI: 10.1371/journal.ppat.0010008.g006
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firmed the presence of the rut2080 insertion in both strains.
Thus, we conclude that the UAS-rut transgene is transcribed
in the absence of Gal4, presumably by regulation from an
adjacent genomic element. Furthermore, we conclude that
susceptibility of rut mutant flies to V. cholerae infection is
rescued by restoration of wild-type levels of the rutabaga
transcript.

Clotrimazole Protects V. cholerae-Infected Flies against
Death

Because clotrimazole abrogates the V. cholerae-induced
secretory diarrhea in mammals by inhibiting Kþ transport
through KCNN4 channels, we postulated that co-administra-
tion of clotrimazole with V. cholerae might also block Kþ

transport through the Drosophila SK channel and, therefore,
protect wild-type flies against death. Figure 6 shows that this
was indeed the case. However, co-administration of clotri-
mazole had no effect on survival of SK mutant flies,
suggesting that clotrimazole is, in fact, exerting its effect by
interaction with the SK channel (Figure 6).

A Factor Carried by Pathogenic V. cholerae Is Required for
Intoxication of the Fly by Cholera Toxin

Ingestion of cholera toxin is sufficient to cause massive
intestinal fluid accumulation and diarrhea in mammals [30–
33]. Thus, we predicted that ingestion of purified, active
cholera toxin alone would result in death of the fly.
Remarkably, ingestion of LB containing as much as 100 lg/
ml of cholera toxin did not alter survival of the fly
(unpublished data). We questioned whether the presence of
V. cholerae itself might be required for intoxication of the fly
by cholera toxin. To test this, we fed LB containing both
cholera toxin and a V. cholerae DctxB mutant to flies. As shown
in Figure 7, ingestion of cholera toxin in the presence of the
DctxB mutant V. cholerae resulted in death of the flies at rates
similar to those of flies infected with wild-type V. cholerae
alone. This suggested to us that an unknown bacterial factor
might be required for intoxication of the fly by cholera toxin.
To determine whether this factor might be specific to
pathogenic isolates of V. cholerae, we fed LB containing
cholera toxin and one of several non-toxigenic environ-
mental isolates of V. cholerae to flies. In each case, there was no
significant difference in survival between flies fed V. cholerae
alone and those fed V. cholerae combined with cholera toxin.
To test whether this cholera toxin-potentiating factor was
carried on the CTXU, we combined cholera toxin with
Bengal2, a pathogenic strain of V. cholerae carrying a deletion

of the CTXU. This mutant was also able to provide the fly-
specific virulence factor (unpublished data). Thus, this factor
is not carried on the CTXU. These experiments suggest that
pathogenic V. cholerae possess a virulence factor or factors
that are essential for intoxication of arthropods but not
mammals by cholera toxin.

Implications of this Model for the Study, Treatment, and

Ecology of Cholera
We have demonstrated surprising parallels in the mecha-

nism of V. cholerae-mediated death of man and the model
arthropod D. melanogaster. Cholera toxin is the primary
virulence factor in both infections. While the mechanism of
cholera toxin has previously been elucidated in cultured
intestinal epithelial cells, we present the first evidence that
this mechanism is also operative in whole organisms.
Furthermore, this model system will have wide-ranging
applications to the study of this devastating disease. Due to
the expense and labor involved in mammalian genetic
screens, little is known about the host factors that govern
susceptibility to cholera. Because lethal oral infection of the
fly requires no manipulation by the experimentalist and has
an easily measured outcome, the fly provides a powerful tool

Table 1. Drosophila Alleles Used in Mutant Studies

Mutant Allele Genotype Reference/Flybase ID

G-sa 60A PfneoFRTg42D bw1 G-sa60AR60/SM6b, Pfeve-lacZ8.0gSB1 [44]/FBgn0001123

PfneoFRTg42D bw1G-sa60AB19/SM6b, Pfeve-lacZ8.0gSB1 [44]/FBgn0001123

Rutabaga w1118rut2080 [39]/FBgn0003301

w1118rut2080;UASGAL4-rutþ [39]/FBgn0003301

w1118 PfGT1grutBG00139 [48]/FBgn0003301

SK w1118 PBacfWHgSKf07979 [49]/FBgn0029761

y1PfSUPor-PgKG00471 [48]/FBgn0029761

w1118PfGT1gSKBG01378 [48]/FBgn0029761

DOI: 10.1371/journal.ppat.0010008.t001

Figure 7. A Bacterial Factor Is Required for Intoxication of the Fly by

Cholera Toxin

Fractional survival over time of wild-type flies fed LB alone, wild-type V.
cholerae, or a V. choleraeDctxB mutant (ctxB) either with or without 10
lg/ml purified cholera toxin. Log-rank test analysis demonstrated a
statistically significant difference in the survival of wild-type flies fed a V.
cholerae DctxB mutant (ctxB) alone and those fed a V. cholerae DctxB
mutant (ctxB) combined with purified cholera toxin (p , 0.0001).
DOI: 10.1371/journal.ppat.0010008.g007
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to be used in large-scale genetic screens for host susceptibility
factors and bacterial virulence factors. The current mainstay
of cholera therapy consists of administration of oral or
intravenous water and ions until the infection is overcome by
antibiotics and /or the innate immune system. An inhibitor of
the secretory diarrhea caused by cholera toxin would be a
potentially life-saving adjuvant to this therapy. We have
shown here that oral agents can block the action of cholera
toxin in the fly. Thus, this model will also facilitate screens of
combinatorial chemical libraries for inhibitors of cholera
toxin and secretory diarrhea. Finally, these studies highlight a
host-pathogen interaction that could easily occur in nature.
Close contact between V. cholerae and arthropods has been
documented and is likely more frequent than that between V.
cholerae and humans [19,40–42]. In fact, environmental studies
have demonstrated that common house flies carry V. cholerae
in endemic areas [22–25]. In this work, we have presented
evidence that pathogenic V. cholerae carry virulence factors
that are essential for intoxication of the fly but not mammals.
Thus, we present the provocative hypothesis that the
pathogenic program of V. cholerae may have evolved for an
arthropod rather than for us.

Materials and Methods

Bacterial strains, fly strains, and growth media. MO10, a V. cholerae
O139 clinical isolate, and mutants derived from this strain were used
in all experiments [43]. All fly strains were reared at room temper-
ature on standard Drosophila media. The wild-type OregonR fly strain
was used for most studies. Gsa, rut, and Sk experiments utilized
mutant fly lines harboring G-sa 60AR60, a loss-of-function allele that
reduces the cAMP concentration 4- to 5-fold in larvae [44], rut2080, an
enhancer trap element in the 59 flanking region of the rut gene [45],
and PBacfWHgSKf07979 , respectively (Table 1). The rut2080 and
rut2080;UAS-rutþ fly lines were generously provided by Ron Davis. The
presence of the rut2080 mutant allele was confirmed by PCR
amplification of a portion of the insertion element for both lines.
Additionally, fly lines carrying G-sa60AB19, PfEPgrutEP399 or
PfGT1grutBG00139, and PfSUPor-PgKG00471 or PfGT1gSKBG01378

were used to confirm the results of experiments with the G-sa60AR60 ,
rut2080, and PBacfWHgSKf07979 mutant fly strains, respectively (Table
1). Fly lines other than those noted were obtained from the
Bloomington Drosophila Stock Center (Bloomington, Indiana).

V. cholerae mutant construction. The V. cholerae DctxB mutant,
harboring a 321 bp deletion in the ctxB gene (VC1456) was
constructed by double homologous recombination according to
previously described protocols [35]. The deletion removed all but 11
amino acids remaining at the amino-terminus of the protein and the
terminal stop codon.

Survival of Drosophila following V. cholerae infection. Ten wild-type
Oregon-R adult flies were placed in each of three vials containing a
cotton plug saturated with Luria-Bertani (LB) broth either alone or
inoculated with 108 CFU/ml of V. cholerae O139 strain MO10 or
another strain as noted in the text [46]. Viable flies were counted at

24-h intervals. Reproducibility of all survival curves was confirmed in
at least three independent experiments, and log-rank tests were used
to determine statistical significance.

Histological studies. Flies were fed either LB inoculated with V.
cholerae or LB alone for 48 h, and then anesthetized and fixed in
formalin for 48 h prior to processing. Flies were processed on a tissue
processor (Leica ASP 300, Wetzlar, Germany) and embedded in
paraffin. The embedded flies were sectioned into 5-lm ribbons, which
were placed on positively charged glass slides, baked at 65 8C
overnight, and gram stained.

Weight loss measurements. Sets of ten female flies were weighed
and then transferred to fly vials containing either LB alone or LB
inoculated with V. cholerae. Flies, housed in thin-walled Eppendorf
tubes, were weighed 24 and 48 h after transfer, using a precision
balance (Mettler Toledo AG204, Columbus, Ohio). All experiments
were performed in triplicate, and the average ratios of final to initial
weight were calculated.

Quantification of V. cholerae within flies. To determine whether V.
cholerae was able to colonize and multiply within the fly, flies fed either
LB alone or LB inoculated with V. cholerae were anesthetized, removed
from vials, and homogenized in LB broth at 24-h intervals.
Particulates were pelleted, and dilutions of the resulting supernatants
were plated on LB-agar supplemented with streptomycin (100 mg/ml).
In all cases, no colonies were obtained from LB-fed flies.

RT-PCR. Total RNA was extracted from five flies using the Trizol
reagent (Gibco BRL, San Diego, California, United States). Prior to
RT-PCR amplification, total RNA was DNAase I-treated (Ambion,
Austin, Texas, United States) for 30 min at 37 8C. DNAse I was
inactivated using the DNAse inactivation reagent (Ambion). RT-PCR
was performed in two steps using Superscript II RT (Gibco BRL) to
obtain cDNA and Taq to perform PCR. The following primer pairs
were used: rut (59-GATCCAGGATGAGAACGA-39, 59-CGGAGACA-
CAATAGTAACAGTC-39) and Drosophila ribosomal protein 15a (59-
CGTTTGCGTGACGGTCGTGT-39, 59-GCCGAGAATTTTGCCTCC-
CAA-39).

Fly intoxication with purified cholera toxin. Adult Oregon-R flies
3–5 d old were fed cholera toxin diluted to the specified concen-
trations in LB broth. Overnight cultures containing V. cholerae strains
were also added to the mixture in a 1:10 dilution where specified.
Flies were monitored at 24-h time intervals until death. Survival of
flies was plotted against time using Kaplan-Meier plots, and a log-
rank test was performed to determine statistical significance.
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