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Abstract
Objectives To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models
for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS).
Methods The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat
targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control
group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospec-
tively by four uro-radiologists with 5–16 years’ experience. T2WI- and ADC-derived delta-radiomics features were computed
using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least
absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures
of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong’s test.
Results The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months.
PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity
(92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-
significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43,
and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value
range 0.34–0.77).
Conclusions PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in
AS patients.
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Key Points
• The observed high specificity and PPV of PRECISE are complemented by the high sensitivity and NPV of delta-radiomics,
suggesting a possible synergy between the two image assessment approaches.

• The comparable performance of delta-radiomics to PRECISE scores applied by expert readers highlights the prospective use of
the former as an objective and standardisable quantitative tool for MRI-guided AS follow-up.

• The marginally superior performance of parenclitic networks compared to conventional machine learning algorithms warrants
its further use in radiomics research.
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Abbreviations
ADC Apparent diffusion coefficient
AS Active surveillance
AUC Area under the receiver operator curve
LASSO Least absolute shrinkage and selection operator
LOOCV Leave-one-out cross-validation
MRI Magnetic resonance imaging
NPV Negative predictive value
PCa Prostate cancer
PN Parenclitic networks
PPV Positive predictive value
PRECISE Prostate Cancer Radiological Estimation of

Change in Sequential Evaluation
PSA Prostate-specific antigen
RF Random forests
ROC Receiver operator curve
T2WI T2-weighted imaging

Introduction

Prostate cancer (PCa) is the second commonest and the
fifth deadliest male cancer worldwide [1]. In the USA and
the UK, nearly half of men present with low- and
intermediate-risk localised disease [2, 3], for which active
surveillance (AS) is the recommended management op-
tion [4–6]. Simultaneously, a cumulative 5-year AS drop-
out rate due to disease progression is 27% [7], which is
partially driven by the lack of consensus on AS protocols
and the definition of disease progression across guidelines
and individual centres [8–11]. Whilst tumour progression
is the expected natural outcome of AS, there is a lack of
objective non-invasive diagnostic tools enabling continu-
ous re-evaluation of the risk of PCa progression. If proven
accurate and standardisable, such tools could help clini-
cians make more informed decisions on the need for
switching to radical treatment without repeat biopsies,
thereby reducing the risk of associated complications
and costs to healthcare systems.

At this stage, this unmet clinical need is partially addressed
by the increasing reliance on magnetic resonance imaging
(MRI) as an integral part of AS follow-up [12–15]. The

PRECISE scoring system was developed in 2017 [16] in
order to standardise reporting of serial MRI scans in patients
on AS to detect clinically significant radiological changes
sufficient to either trigger additional investigations or switch
to immediate radical treatment. Since then, several groups
[17–21] have demonstrated a high negative predictive value
of PRECISE, suggesting that it can be used to avoid routine
repeat biopsy if the disease is regarded as radiologically sta-
ble. However, the comparatively moderate positive predictive
value of PRECISE for predicting histopathological disease
progression emphasises the relatively subjective nature of
the system, particularly when determining PRECISE catego-
ry 4 lesions as demonstrating “clinically significant” radio-
logical progression [12]. Furthermore, PRECISE has been
validated exclusively by expert readers in academic centres,
which may limit its generalisability and lead to a reduced
performance when used by non-expert radiologists.

Quantitative imaging techniques may prove clinically use-
ful by providing more objective and expertise-independent
measures of the underlying biological changes occurring over
the course of PCa natural history on AS. One such technique
is delta-radiomics, which analyses changes in MRI-derived
texture features obtained at two time points [22]. In the AS
setting, delta-radiomic featuresmay be compared between any
two consecutive MRI scans obtained from the same patient to
provide a quantitative readout of the underlying histological
changes within a lesion of interest. Therefore, in this proof-of-
concept study, we compared the diagnostic performance of
PRECISE applied by expert readers against several MRI-
derived delta-radiomics models for the purpose of predicting
histopathological PCa progression in patients enrolled on AS.

Methods

Patient population

The local institutional review board (NRES Committee East
of England, UK) waived the need for informed consent for
retrospective data analysis obtained as part of a service eval-
uation of the prostate diagnostic pathway. The study included
consecutive patients with biopsy-proven PCa enrolled on the
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local AS programme with a minimum follow-up of 2 years,
with their first and last 3T MRI scans performed on the same
magnet, and at least one repeat targeted biopsy performed
within a year of the last MRI. The exclusion criteria were
the absence of MR-visible lesions, prior or interim treatment
for PCa or benign disease, and the presence of total hip re-
placement or other pelvic metalwork. A total of 281 patients
enrolled on AS in our centre between November 2012 and
November 2018 were screened, of whom 217 were excluded.

The remaining 64 patients were divided into two groups
depending on their disease progression status. AS progression
(n = 27) was defined as a switch to radical treatment prompted
by confirmed histopathological progression on repeat targeted
biopsy (grade group progression from diagnostic biopsy). The
control group (n = 37) included patients whose disease
remained both radiologically (PRECISE score 3 [16]) and
histopathologically stable over the course of AS.

MRI acquisition parameters

Patients underwent prostate MRI on a 3-T MR750 scanner
(GE Healthcare) using a 32-channel receiver coil. Unless clin-
ically contraindicated, intravenous injection of hyoscine
butylbromide (Buscopan, 20mg/mL; Boehringer) was admin-
istered prior to imaging to reduce peristaltic movement [23];
no additional patient preparation measures were taken.
Multiparametric MRI protocol included axial T1, multiplanar
high-resolution T2-weighted 2D fast recovery FSE, spin-echo
echo-planar imaging pulse DWI, and dynamic contrast en-
hancement imaging, with acquisition parameters summarised
in Supplementary Table S1.

Biopsy technique

Depending on clinical recommendation, either transrectal
(DynaCAD, InVivo Corp) or transperineal (Biopsee,
Oncology Systems Limited) biopsies were performed by
three urologists with 8–20 years’ experience using MRI/
ultrasound fusion. Twelve systematic cores were taken as
part of the transrectal approach, and 24 systematic cores
were obtained during transperineal procedures, following
the Ginsburg protocol [24]. In addition, 2–4 separate tar-
get cores corresponding to lesions outlined on MRI were
sampled, as previously described [25]. Repeat targeted
biopsies were performed at time points specified by the
local protocol (12 and 36 months) if not triggered earlier
by clinical suspicion of progression, encompassing either
three consecutive elevated PSA levels above the pre-
defined threshold or suspected radiological progression
(PRECISE scores 4–5). At baseline, 13 and 51 biopsies
were performed using transrectal and transperineal ap-
proaches, respectively. At follow-up, 18 and 46 biopsies

were performed using transrectal and transperineal ap-
proaches, respectively.

Image segmentation and analysis

Tumour ROIs were drawn on anatomical T2WI (Fig. 1)
and ADC maps by a fellowship-trained uro-radiologist
(T.B.) with 13 years’ experience of reporting prostate
MRI and an imaging research fellow (N.S.) with 4 years’
experience. The segmentation was performed in consen-
sus using the open-source software ITK-SNAP [26], with
all cases outlined jointly by the two readers. The reliabil-
ity of image segmentation by readers was evaluated by
applying ROI morphological perturbations using the
“Scipy.ndimage.morphology” functions (binary_opening
and binary_closing) in the SciPy version 1.3.2 multi-
dimensional image processing package.

Follow-upMRI studies were scored on a 5-point PRECISE
scale described in Supplementary Table S2 [16]. PRECISE
scores were applied prospectively by four sub-specialist uro-
radiologists with 5–16 years’ experience of reporting prostate
MRI, with each having read > 2,000 cases and considered to
be experts [27, 28]. At the time of reporting, the readers were
not blinded to clinical information, including PSA and PSA
density dynamics. For the purposes of predictive modelling,
the PRECISE scores were dichotomised at a cutoff value of 4
since values 1–3 and 4–5 indicate resolution of previous
features/stable disease and radiological disease progression,
respectively.

Delta-radiomics analysis

The overall workflow of the radiomics pipeline utilised to
develop and validate predictive models for PCa progression
on AS is illustrated in Fig. 2. The T2WI- and ADC-derived
texture features (summarised in Supplementary Table S3)
were extracted using PyRadiomics version 2.0 and Python
version 3.7.5 [29, 30]. 3D feature computation without any
resampling was used to avoid interpolation artifacts.
According to the Imaging Biomarker Standardisation
Initiative (IBSI) [30], the use of the number of bins is favoured
over the bin width in the case of arbitrary intensity units, such
as MRI. Hence, no re-segmentation (i.e. the voxels outside a
specified range being removed from the mask prior to texture
feature calculation) was applied.

Feature robustness was assessed by applying ROI morpho-
logical perturbations and evaluating the relationship between
individual features and MRI acquisition parameters [31–33]
as described in detail in the Calibration and pre-processing
section of the Electronic Supplementary Material. This proce-
dure also simulates the ROI variability by considering intra-
and inter-reader dependence during manual image
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segmentation [34]. Only features considered robust at both
time points were included in the delta-radiomics predictive
modelling.

Delta-radiomics predictive modelling

The delta-radiomics features were computed as the arithmetic
difference between the final and baseline features. For each
radiomic feature (separately for T2WI and ADC), let fbase and
ffinal be its value at the baseline and final scan, respectively,Δf
was calculated as:

Δ f ¼ f final− f base:

Predictive modelling was then carried out using three ma-
chine learning methods: parenclitic networks [35], least abso-
lute shrinkage and selection operator (LASSO) logistic regres-
sion [36], and random forests [37]. For the latter, we used 500
trees with a maximum depth of 10 (for reproducibility, a
random_state parameter of 42 was set). The binary outcome
of PCa progression was used as an outcome, with all delta-
radiomics features used as predictors. The predictive perfor-
mance of each feature was assessed using a leave-one-out
cross-validation (LOOCV) scheme. The prediction was made
for each sample by excluding (withholding) it from the
dataset , t ra ining the classi f ier on the remaining
(independent) samples, and then generating predictions for
the withheld samples using the trained model.

Fig. 1 Comparison of T2-
weighted images of the prostate
obtained at baseline pre-biopsy
(a, c, e) and follow-up (b, d, f)
MRI scans from patients enrolled
on active surveillance. Images (a,
b) were obtained from a patient
with stable 3 + 3 = 6 disease that
showed neither radiological nor
histopathological progression
over a follow-up period of 3 years
(PRECISE 3). Images (c, d) were
obtained from a patient with both
radiological (PRECISE 5) and
histopathological (3 + 3 = 6 to
4 + 3 = 7) progression. Images (e,
f) were obtained from a patient
with confirmed histopathological
progression (3 + 3 = 6 to 3 + 4 =
7) but radiologically stable
disease (PRECISE 3). In all
presented cases, the clinical
outcome was successfully
predicted by all three delta-
radiomics models used
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Statistical and computational analysis

Normal distribution of the data was assessed using the
D’Agostino-Pearson test (threshold p ≥ 0.05). Intergroup
comparison of patient age, PSA, gland volume, PSA density,
and AS follow-up length was performed using the Mann-
Whitney U test. The relationship between the radiomic feature
and individualMRI acquisition parameters was assessed using
Spearman’s correlation analysis.

Random forests and LASSO regression were implemented
in Python 3.9.0 using the pandas version 1.2.4, scikit-learn
version 0.24.2, glmnet_python version 1.0, and rpy2 version
3.4.2 modules. In parenclitic networks, a support vector ma-
chine (SVM) with radial basis functions was trained for each
pair of features using the “e1071” R package with default
settings. For each sample, a network was then built wherein
vertices corresponded to features and the edge weight was the
disease progression probability as predicted by the SVM clas-
sifier. The mean of the vertices degrees was calculated, and a
generalised linear model (GLM) classification was then con-
structed using the “stats” R package with default settings. The
performance of PRECISE-based and delta-radiomics-based
predictive models was assessed with measures of discrimina-
tion. Specificity and sensitivity were derived using non-
parametric stratified resampling with the percentile method
(2,000 bootstrap replicates) [38]. In addition, areas under the
ROC curve (AUCs) were calculated for eachmodel, alongside
95% confidence intervals using DeLong’s asymptomatically
exact method to evaluate the uncertainty of each AUC [39].
AUC values were compared between the models using
DeLong’s test for correlated/paired AUCs [39]. Positive and
negative predictive values (PPV and NPV) and their 95%
confidence intervals were computed using the standard

approach [40]. Statistical analysis was performed in R version
3.5.1 (R Foundation for Statistical Computing) using the
“pROC” and “reportROC” packages.

Results

Patient characteristics

The study included 64 patients enrolled on the AS programme
in our centre between May 2013 and May 2018. The key
clinicopathological characteristics of the patient cohort are
summarised in Table 1. Twenty-seven patients showed histo-
pathological disease progression and 37 patients harboured
stable disease. Non-progressors were followed up for a medi-
an time of 47 months (IQR, 44–60 months), and time to pro-
gression in progressors was significantly shorter at 43 months
(IQR, 24–29 months; p = 0.009). PSA and PSA density were
significantly higher in progressors compared to non-
progressors (p = 0.01 and p = 0.002, respectively), whilst
age, gland volume, and PI-RADS scores were similar and
demonstrated no significant difference between the two
groups (Table 1). At enrollment biopsy, 51/65 (79%) and
14/65 (21%) lesions represented ISUP grade group 1 and 2
tumours, respectively, with 46/65 (71%) and 19/65 (29%)
target lesions located in the peripheral and transition zones,
respectively.

Delta-radiomics analysis: calibration and pre-
processing

The numbers of highly robust features per number of bins
identified at the calibration and pre-processing stage are

Fig. 2 Flow diagram summarising the key stages of delta-radiomics
analysis used in this study, including calibration, pre-processing, delta-
radiomics feature calculation, and predictive modelling using the leave-

one-out cross-validation (LOOCV) approach. ADC, apparent diffusion
coefficient; ICC, intraclass correlation coefficient; MRI, magnetic
resonance imaging; T2WI, T2-weighted imaging
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presented in Table 2. Spearman’s correlation analysis showed
no significant relationship between any of the texture features
and MRI acquisition parameters (p > 0.05 for all with no
multiplicity correction applied). The selected number of bins
was, therefore, 128, with 34 T2WI- and 53 ADC-derived tex-
ture features overlapping at both time points (Supplementary
Table S4).

PRECISE versus delta-radiomics for predicting disease
progression

Table 3 presents summary performance characteristics of
PRECISE and the three machine learning approaches:
parenclitic networks, LASSO regression, and random forests.
The analysis of sensitivity, specificity, PPV, and NPV did not
allow to identify the best-performing approach: PRECISE
score had the highest specificity (94.7%) and PPV (90.9%),
whilst random forests had the highest sensitivity (92.6%) and
NPV (92.6%). AUC for PRECISE (84.4%) was the highest of

all, compared to 81.5%, 78.0%, and 80.9% for parenclitic
networks, LASSO regression, and random forests, respective-
ly (Fig. 3). This difference, however, was non-significant: p =
0.643 for PRECISE versus parenclitic networks, p = 0.342 for
PRECISE versus LASSO regression, and p = 0.572 for
PRECISE versus random forests. No significant differences
were reported between AUCs of the three delta-radiomics
models (p-value range 0.342–0.768).

Discussion

This proof-of-concept study investigates the comparative per-
formance of the MRI-derived PRECISE scoring system ap-
plied in routine clinical practice by expert uro-radiologists
versus three delta-radiomics models developed using the
parenclitic networks, LASSO regression, and random forests
machine learning methods. The primary performance metric
was the ability to predict histopathological progression of PCa
in patients enrolled on AS. Although PRECISE performance
characteristics appeared marginally superior, there was no sig-
nificance difference between the AUCs achieved by all
methods used in this study. These results pave the way for
future investigations evaluating the role of MRI-derived del-
ta-radiomics as an alternative quantitative means of MRI-
guided follow-up of AS patients that could be standardisable
and less dependent on reader experience.

In this study, PRECISE scoring demonstrated a high per-
formance for predicting PCa histopathological progression
with an AUC of 0.84, which is in line with AUCs of 0.83
and 0.82 reported by Dieffenbacher et al [17] and Caglic
et al [21], respectively. It should be noted that, in addition to
the readers’ expertise, the availability of clinical parameters
may help supplement clinical decision-making and further
improve performance, for example knowledge of PSA kinet-
ics may help call PRECISE 4, when features of radiological
progression may be otherwise equivocal. Among the machine

Table 2 The number of features with high robustness (ICC > 0.8) by
varying the number of bins in the quantisation step for radiomic feature
extraction for T2-weighted and ADC MR images at both baseline and
final time points. ADC, apparent diffusion coefficient; T2WI, T2-
weighted imaging

Number of bins Number of features with high robustness

Baseline Final Total

T2WI ADC T2WI ADC

8 38 47 67 47 199

16 34 49 67 51 201

32 32 52 63 54 201

64 33 55 64 54 206

128 34 57 69 54 214

256 33 56 70 55 214

Table 1 Summary baseline clinicopathological characteristics of the study cohort. The p-values are presented for an intergroup comparison between
progressors and non-progressors performed using the Mann-Whitney U test. AS, active surveillance; PSA, prostate-specific antigen

Parameter Total cohort (n = 64) Progressors (n = 27) Non-progressors (n = 37) p-value

Age, years 67 (60–69) 66 (60–69) 67 (61–69) 0.9218

PSA, ng/mL 5.6 (3.6–7.7) 7.0 (5.2–8.7) 5.0 (3.17–6.9) 0.0102

Gland volume, mL 45.0 (33.0–63.8) 45.0 (29.0–52.0) 45.0 (36.6–66.2) 0.1851

PSA density 0.11 (0.08–0.19) 0.17 (0.11–0.27) 0.09 (0.06–0.16) 0.0024

AS follow-up, mo 46 (35–52) 43 (24–49) 47 (44–60) 0.0093

Biopsy grade group 1 (3 + 3 = 6), n 51 (78%) 23 (85%) 28 (74%) -
Biopsy grade group 2 (3 + 4 = 7), n 14 (22%) 4 (15%) 10 (26%)

Target lesion in the peripheral zone, n 46 (70%) 17 (63%) 29 (76%) -
Target lesion in the transition zone, n 19 (30%) 10 (27%) 9 (24%)
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learning techniques, random forests showed the best perfor-
mance with the highest sensitivity (92.6%) and NPV (92.6%).

To our knowledge, this is the first study applying delta-
radiomics in the setting of MRI follow-up in PCa AS. The
comparable performance of standalone delta-radiomics
models, which only account for quantitative image-derived
texture features of the disease and were subject to rigorous
cross-validation to reduce overfitting, offers potential for fu-
ture studies attempting to introduce accurate and objective
tools for evaluating PCa radiological progression on AS.
Previous studies in PCa using MRI-derived delta-radiomics
to predict tumour response to radiotherapy [41, 42] have also
shown promising results. In other tumour types, delta-
radiomics studies have likewise focused on predicting treat-
ment response, including lung [22, 43], rectal [44, 45], and

gastric [46] cancers, as well as bone and soft tissue malignan-
cies [47, 48]. With the concept of AS being relatively unique
to PCa, using delta-radiomics to track intratumoural morpho-
logical changes occurring naturally in the absence of any ex-
ternal interventions may offer insights into the biological sig-
nificance of certain texture features that show strong correla-
tion with the underlying cytoarchitectural patterns; this tech-
nique may additionally be applicable to other tumour types.

In this study, we were the first to apply the parenclitic
networks for delta-radiomics predictive modelling. The par-
ticular strength of this novel machine learning approach is that
it is deemed useful in a setting where the number of features is
large whilst the sample size is limited [49], which is often the
case with radiomics studies. Another strength of parenclitic
networks is the ability to embed any multivariate data into
the low-dimensional space of topological indices, which
avoids the risk of overfitting. In this study, no difference in
performance was observed between any of the machine learn-
ing algorithms used. The marginally better performance of the
clinically applied PRECISE system may be explained by the
use of stringent and unbiased strategies to reduce overfitting in
the delta-radiomics modelling. These proof-of-concept re-
sults, therefore, offer promise for the development of im-
proved delta-radiomics performance in larger cohorts.

Our study has several limitations. The sample size was
relatively small, which was dictated by the stringent inclusion
criteria requiring the presence of MR-visible lesions, which
represents only around 50% of patients in AS cohorts [21] and
mandating repeat targeted biopsies performed within a year of
the most recent MRI, which was necessary for histopatholog-
ical confirmation of progression. Gaining access to a larger
cohort will also enable us to fit a single parenclitic networks
model and fine-tune the hyperparameters for the SVM.
Furthermore, the lesion-centred delta-radiomics approach
was selected for several reasons. Firstly, the presence of
MR-visible lesions is associated with an increased risk of pro-
gression on AS [21], thereby warranting closer follow-up of
such patients. Secondly, as this is the first study to use delta-
radiomics in this setting, focusing on the analysis of exclu-
sively intratumoural rather than whole-gland texture features

Table 3 Summary performance characteristics of PRECISE, alongside
parenclitic networks, LASSO regression, and random forests delta-
radiomics models for predicting histopathological progression of
prostate cancer in patients on active surveillance. AUC, area under the

receiver operator characteristic curve; LASSO, least absolute shrinkage
and selection operator; NPV, negative predictive value; PPV, positive
predictive value; PRECISE, Prostate Cancer Radiological Estimation of
Change in Sequential Evaluation

Method Sensitivity Specificity PPV NPV AUC

PRECISE 74.1 (57.5–90.6) 94.7 (87.6–1) 90.9 (78.9–1) 83.7 (72.7–94.8) 84.4 (72.6–96.2)

Parenclitic networks 85.2 (71.8–98.6) 73.7 (59.7–87.7) 69.7 (54–85.4) 87.5 (76–99) 81.6 (70.6–92.5)

LASSO regression 70.4 (53.1–87.6) 84.2 (72.6–95.8) 76.0 (59.3–92.7) 80.0 (67.6–92.4) 78.0 (65.8–90.1)

Random forests 92.6 (82.7–1) 65.8 (50.7–80.9) 65.8 (50.7–80.9) 92.6 (82.7–1) 80.9 (70–91.9)

Fig. 3 Receiver operating characteristic (ROC) curves for PRECISE,
parenclitic networks, lasso regression, and random forest for predicting
histopathological progression of prostate cancer in patients on active
surveillance. The embedded legend denotes areas under ROC curves
for each method
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was deliberate in order to reduce the complexity of the analy-
sis. The use of a whole-gland image segmentation approach
[50, 51] coupled with MRI-derived habitat radiomics [52, 53]
is an area for future work and would be applicable to all
patients enrolled on AS. This will, however, require even
more stringent pre-processing, calibration, modelling, and
cross-validation steps to ensure that the resulting predictive
models are not overfitted by features possibly arising from
temporal changes in concurrent benign conditions (such as
benign prostatic hyperplasia or prostatitis). Finally, as
discussed previously, the reporting clinicians were not pro-
spectively blinded to clinical information, which may have
artificially increased the performance of the PRECISE scoring
system. However, benchmarking alternative diagnostic mo-
dalities against the real-life performance of those already ap-
plied in routine clinical practice offers the fastest route to
understanding the feasibility of their clinical translation.

In conclusion, MRI-derived delta-radiomics demon-
strated comparable performance to expert prostate MRI
readers and offer an objective and standardisable method
for predicting histopathological progression of PCa in pa-
tients enrolled on AS programmes. These results pave the
way for future multicentre studies investigating the diag-
nostic utility of more complex predictive models incorpo-
rating delta-radiomics features alongside standard-of-care
clinicopathological predictors of PCa progression across
different centres.
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