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It is well known that the opportunistic pathogenic yeast, Candida albicans, can form
polymicrobial biofilms with a variety of bacteria, both in vitro and in vivo, and that these
polymicrobial biofilms can impact the course and management of disease. Although
specific interactions are often described as either synergistic or antagonistic, this may be
an oversimplification. Polymicrobial biofilms are complex two-way interacting
communities, regulated by inter-domain (inter-kingdom) signaling and various molecular
mechanisms. This review article will highlight advances over the last six years (2016-2021)
regarding the unique biology of polymicrobial biofilms formed by C. albicans and bacteria,
including regulation of their formation. In addition, some of the consequences of these
interactions, such as the influence of co-existence on antimicrobial susceptibility and
virulence, will be discussed. Since the aim of this knowledge is to inform possible
alternative treatment options, recent studies on the discovery of novel anti-biofilm
compounds will also be included. Throughout, an attempt will be made to identify
ongoing challenges in this area.
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INTRODUCTION

The opportunistic pathogenic yeast, Candida albicans can form biofilms on biotic and abiotic
surfaces including implanted medical devices (Tsui et al., 2016). These biofilms are also often
polymicrobial in nature, containing other fungi (Rossoni et al., 2015; Pathirana et al., 2019), bacteria
(Khan et al., 2021) and viruses (Mazaheritehrani et al., 2014; Ascione et al., 2017). The proximity of
all these organisms within a biofilm allows for interaction via physical means as well as through
secreted compounds, such as quorum sensing molecules, redox active compounds and bioactive
lipids (Fourie and Pohl, 2019). In addition, the availability of and competition for nutrients play
important roles in the interaction (Trejo-Hernández et al., 2014; Arzmi et al., 2016; Fourie et al.,
2018), which is often described as synergistic, competitive or antagonistic (Trejo-Hernández et al.,
2014; Delaney et al., 2018; Garcia et al., 2020), although this may be a simplistic view as it is
becoming evident that the interaction is complex and bi-directional (Fourie and Pohl, 2019). The
outcome of the interaction may also be influenced by various host factors, adding another layer of
complexity (Fourie et al., 2016; Negrini et al., 2019; Van Dyck et al., 2021).
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Pohl C. albicans Polymicrobial Biofilms
Polymicrobial interactions may influence the expression of
virulence factors (Trejo-Hernández et al., 2014; Morse et al.,
2019; Farrokhi et al., 2021) and these biofilms are often more
resistant to antimicrobial drugs than their monomicrobial
counterparts (Ascione et al., 2017; Orazi and O’Toole, 2019;
Little et al., 2021). In addition, polymicrobial interactions may
also influence the host immune response and the outcome of
infection (Bergeron et al., 2017). Thus, understanding these
interactions, including the molecular mechanisms of
regulation, is important to manage C. albicans-containing
polymicrobial biofilms (PMBs).

Since the study of PMBs has gained increasing interest,
especially during the last five years, this review will focus on
the recent advances in the study of C. albicans PMBs, including
the regulation and consequences for antimicrobial susceptibility
and virulence. Recent work regarding discovery of novel anti-
biofilm treatment options will be highlighted.
ADVANCES IN MODELS USED TO
CHARACTERIZE POLYMICROBIAL
BIOFILMS

In order to study the interaction between C. albicans and
bacteria, various biofilm models are used (Gabrilska and
Rambaugh, 2015). The different models are important to
consider as they may influence the formation and regulation of
biofilms, as well as their consequences. This will also impact the
comparability of results across the different platforms Stoffel
et al., (2020). Common in vitro models used to study C. albicans
PMBs include those traditionally used to study single species
biofilms and these have recently been reviewed by Chevalier and
colleagues (2018). An exciting advance in the development of in
vitro models for PMBs, is the nBioChip platform developed by
Srinivasan and co-workers (2017). This platform consists of
hundreds to thousands of identical nanobiofilms, encapsulated
in hydrogel spots. The cells are inoculated into suitable media
and combined with cellulose based hydrogels. The cultures are
robotically printed onto glass sides using a microarray printer
and biofilm allowed to form, which are then scanned using a
microarray reader. PMBs of C. albicans and Staphylococcus
aureus were formed, and the biofi lm morphology
characterized. It was found that the PMBs consisted of
filamentous C. albicans with S. aureus microcolonies
interspersed in between the hyphae. An advantage of this
model is that the biofilms can withstand washing steps
common to most assays This facilitates high throughput
downstream applications, such as screening for antimicrobial
resistance as well as novel antimicrobial drugs. Despite the recent
advances, in vitro models most often utilize nutrient rich media
or physico-chemical parameters that do not necessarily reflect
conditions in the host. During the last five years many models
that attempt to better approximate the conditions within a host
niche have been developed and improved upon.

One of the host niches that is almost synonymous with
biofilms is the oral cavity and several models for PMB
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
formation have recently been developed to more closely
approximate the conditions in the host. These models include
models that better mimic the availability of nutrients
(Montelongo-Jauregui et al., 2016), the oxygen levels present in
root canals (Toral et al., 2017; Abusrewil et al., 2020) as well as
the various bacteria associated with either caries or soft tissue
infection in vitro (Abusrewil et al., 2020; Young et al., 2021). In
addition, commercially available organotypic oral mucosal
models have been used to study the interaction between C.
albicans and bacteria (Krishnamoorthy et al., 2020). However,
a disadvantage of commercially available mucosal models,
identified by Morse and co-workers (2018), is their high
purchase costs. These authors developed cost effective three-
dimensional mucosal models to evaluate the impact of denture
associated biofilm infections by mono- and polymicrobial C.
albicans containing biofilms in terms of tissue damage and
indicated the potential of these models to be further developed
to closer mimic the host responses. In addition to dentures, other
abiotic surfaces (such as titanium used for dental implants) are
also relevant to the oral cavity. An in vitro model of C. albicans/
Streptococcus gordonii dual-species biofilms on titanium discs
Montelongo-Jauregui et al. (2018) has also been developed. All
these models indicated the formation of robust PMBs and
synergistic cross-kingdom interactions between C. albicans and
oral bacteria, under conditions that may be present in the
oral cavity.

Another context in which PMBs are important, is wound
infections. Townsend and co-workers (2016) developed a three-
dimensional wound infection model on complex hydrogel-based
cellulose to mimic diabetic foot ulcer PMB infection by C.
albicans, Pseudomonas aeruginosa and S. aureus. They found
that this model allowed the formation of structurally complex
biofilms, which had a greater impact on antimicrobial
susceptibility, compared to conventional in vitro biofilms.

C. albicans and P. aeruginosa PMBs have also been studied
extensively in the context of the cystic fibrosis lung [reviewed in
(Fourie and Pohl, 2019)]. However, in vitro, these studies do not
consider biofilm formation under flow conditions (Kasetty et al.,
2021). Kasetty and co-workers (2021) examined the dynamics of
polymicrobial interaction using microfluidic devices and found
that, contrary to static in vitro biofilm models, the interaction was
not antagonistic towards C. albicans, but resulted in increased
filamentation of C. albicans and increased biofilm biomass
accumulation by both species. The impact that C. albicans
filamentation may have on the formation of PMBs, was
demonstrated by Ruiz-Sorribas and colleagues (2021) in an in
vitro model of PMBs, containing C. albicans, S. aureus and
Escherichia coli. The research used two different RPMI-1640
based media to obtain different levels of C. albicans hyphal
formation. Their results indicated that biofilms with more
hyphae had larger biomass and resulted in increased expression
bacterial virulence-associated genes. In biofilms rich in hyphae, S.
aureus virulence-associated genes, such as those encoding
haemolysin delta (hld), haemolysin alpha (hla) and clumping
factor A (clfA), were upregulated. Clumping factor A has a role
in bacterial adhesion and promotes S. aureus colonization of biotic
and abiotic surfaces (Herman-Bausier et al., 2018). Similarly, the
February 2022 | Volume 12 | Article 836379
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gene encoding poly-N-acetylglucosamine synthase (icaA),
responsible for exopolysaccharide synthesis was upregulated in
hyphae-rich biofilms compared to hyphae-poor biofilms. This
may indicate an increase in EXM production with implications
for PMB formation and antimicrobial resistance.

The remaining challenge is that the complex nature of PMBs
and the influences exerted on them by various parameters in the
different models, currently complicates the comparison of data
regarding formation and consequences (e.g. susceptibility to
antimicrobial compounds) of PMBs across different studies
(Chevalier et al., 2018; Stoffel et al., 2020). An important aspect
to take into consideration when designing experiments and
comparing data from various sources is the effect of priority
(i.e. the order in which microbes are inoculated to form biofilms)
(Cheong et al., 2021), as this may drastically influence the
structure (and potentially the gene expression) of a biofilm. An
example is the recently published study where the interaction
between C. albicans and two bacteria, S. aureus and Citrobacter
freundii, was investigated. When C. albicans and C. freundii were
co-inoculated (neutral priority) or when C. albicans was given
priority, the yeast formed hyphal networks, containing very few
yeast cells, with C. freundii attaching and colonizing the hyphae
via mannose-binding lectins. In these biofilms, the proportional
abundance of C. albicans increased. The opposite was observed
when C. freundii had priority, with no hyphae formed, but yeast
cell aggregates formed on a dense C. freundii biofilm and
decreased proportional abundance of C. albicans. Similar
results were seen regarding proportional abundance under the
different scenarios for C. albicans and S. aureus. Interestingly, in
polymicrobial interactions involving all three organisms, C.
freundii out-competes S. aureus for binding sites on C. albicans.

In addition, although mammalian animal models are
probably the most relevant to study C. albicans containing
PMBs, it is impractical and unethical to use them in studies
that require large numbers of animals, such as high throughput
screening of potential anti-biofilm compounds. Here the use of
alternative animal models, such as invertebrates (e.g.
Caenorhabditis elegans, Drosophila melanogaster and Galleria
mellonella) may provide a compromise (Gabrilska and
Rambaugh, 2015; Holt et al., 2017; Farrokhi et al., 2021; Fourie
et al., 2021; Mochochoko et al., 2021), and possible future
endeavors could work to further establish them as PMB
infection models. A summary of the PMB models, some
advances made by them and possible applications are
presented in Figure 1.
INCREASED UNDERSTANDING OF THE
COMPLEX INTERACTIONS

Influence of Environmental and
Host Factors
We have gained an increased appreciation of the complexity of
the interaction between C. albicans and various bacteria, how the
microbes influence each other and how the interactions may be
influenced by the host as well as various environmental factors,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
including nutrient supply, oxygen levels, and the local
microbiome (Krüger et al., 2019; Gaston et al., 2021). As
expected, the different nutrients as well as their concentrations
supplied by different media influenced biofilm architecture,
biomass and metabolic activity (Table 1). Toral and co-
workers (2017) determined the formation of C. albicans-
Enterococcus faecalis, C. albicans-S. aureus biofilms as well as
biofilms consisting of all three organisms on tooth surfaces under
di fferent atmospher ic condit ions , i . e . aerobic and
microaerophilic (10% CO2). It was found that although there
were differences in biofilm formation on the various parts of the
tooth, generally the PMBs grew better in the microaerophilic
atmosphere. Similarly, when the influence of different
atmospheric condition (aerobic, 5% CO2, and anaerobic - 85%
N2, 10% CO2, 5% H2) was evaluated on PMBs consisting of C.
albicans-S. gordonii-Fusobacterium nucleatum-Porphyromonas
gingivalis (Abusrewil et al., 2020), it was found that the greats
biofilm formation occurred under 5% CO2 conditions. This may
be due to the ability of both S. gordonii and C. albicans to grow
well under this condition.

The presence of host factors such as heme may also influence
the interaction in PMBs. Guo and co-workers (2020) found that
competition for heme may not only influence C. albicans-P.
gingivalis biofilm biomass, but that it may provide an advantage
to the bacterium, increasing its vitality as well as resistance to
serum and antibiotics. This advantage may be due to the ability
of P. gingivalis to increase agglutination of erythrocytes and
increasing its expression of heme utilization-related and
gingipain expressing genes under low heme conditions. Host
behavior, such as the use of nicotine, may also influence PMBs in
the oral cavity. In a C. albicans-S. mutans PMB, nicotine caused a
dose dependent increase in biofilm formation (CFU/ml as well as
EXM production) by both organisms, although high levels of
nicotine decreased the C. albicans CFU/ml (Liu et al., 2017).

C. albicans does not only interact with pathogenic bacteria,
but also with commensal bacteria and other commensal fungi
present in the host microbiome and serve to maintain microbial
homeostasis (d’Enfert et al., 2021). Although several researchers
have studied the impact of individual (or a few) members of the
microbiome on C. albicans (as discussed in this review), the
complexity of the microbiome poses challenges in gaining a more
complete picture of how all the interactions within the
microbiome. A recent example of the influence of a
commensal bacterium on a PMB is found in the work of
Huffines and Scoffield (2020) who found that the commensal
bacterium, Streptococcus parasanguinis, influenced C. albicans-S.
mutans PMB formation. In this context, S. parasanguinis
decreased biofilm formation and restricted the incorporation of
C. albicans into the PMB. IT also disrupted S. mutans glucose
metabolism and caused a decrease in in glucosyltransferase
activity and glucan synthesis.

Regulation of the Complex Interaction
The mechanisms by which C. albicans and bacteria facilitate their
interactions have also become clearer, and during the past decade
some C. albicans genes were identified that play a role in these
interactions. Dutton and co-workers (2016) found that deletion
February 2022 | Volume 12 | Article 836379
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of SAP9 (encoding a secreted aspartyl protease) caused C.
albicans to form more compact biofilms and caused a decrease
in incorporation of S. gordonii, Streptococcus mutans,
Streptococcus oralis, Streptococcus parasanguinis, Streptococcus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
sanguinis and Enterococcus faecalis into dual species biofilms,
suggesting that Sap9 may play a role in regulating the
competition between C. albicans and oral bacteria. A possible
role for SAP9 as well as ALS3 and HWP1 in the interaction
FIGURE 1 | Summary of the models discussed in the study of polymicrobial biofilms.
February 2022 | Volume 12 | Article 836379
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between C. albicans an P. gingivalis was also identified
(Sztukowska et al., 2018; Bartnika et al., 2019). These genes
were significantly upregulated in PMBs, grown under normoxic
conditions. These authors further showed that the C. albicans
adhesin, Als3, tightly interacts with the cell surface of P.
gingivalis and that the bacterial gingipains and internalin (InlJ)
are involved in this adhesion, although other proteins, such as
enolase (Eno1) could also play a role. Als3, and possibly Als1,
also mediate the interaction between C. albicans and S. aureus
(Van Dyck et al., 2021). The interaction between C. albicans and
Actinomyces viscosus, which is often associated with root caries,
is considered synergistic, with greater biomass and EXM
produced in these biofilms (Deng et al., 2019a). Deng and co-
workers (2019b) identified that ergosterol may play a role in this
specific interaction as C. albicans erg11D/D strains did not form
enhanced biofilm biomass in PMBs. Another gene, involved in C.
albicans biofilm formation and interaction with bacteria, is SET3
(encoding a component of the Set3/Hos2 histone deacetylase
complex) (Fourie et al., 2021). This gene was found to play a role
during early C. albicans-P. aeruginosa biofilm formation as well
as the virulence of mono- and polymicrobial infection in C.
elegans, although the molecular mechanisms behind this
regulation is still unknown.

Xu and co-workers (2017) identified one of the six known
master regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80 and Rob 1) of
filamentation in C. albicans, Efg1, as important in the interaction
between the yeast and S. oralis. EFG1 was the only master
regulator encoding gene that was upregulated in the presence of
S. oralis in in vitro biofilms, organotypic oral mucosal models and
on the tongue of orally infected mice. These authors also identified
a downstream effector, Als1, (but not Als3 or Hwp1) that operated
in concert with Efg1 in mediating the C. albicans-S. oralis
interaction. Similarly, during the interaction between C. albicans
and S. gordonii, mutants of three of the six master regulators
(Brg1, Efg1 and Tec1), together with other regulators responsible
for filamentation in C. albicans (Sfl1, Tup1 and Rim101) formed
reduced biofilms with S. gordonii (Chinnici et al., 2019) and the
authors speculated that this indicated that C. albicans
filamentation was crucial for the development of robust PMBs.
These authors also found that regulators involved in cell wall
integrity and adhesion (Leu3, Cta4, Cas5 and Sko1) were negative
regulators of C. albicans-S. gordonii biofilms. However, a study by
Montelongo-Jauregui and co-workers (2019) challenged the idea
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
that C. albicans hyphal formation and adherence are required for
its interaction with S. gordonii in dual-species biofilms. They
showed that C. albicans mutants (efg1D/D and brg1D/D), which
are unable to filament and had biofilm formation defects, could
form robust dual-species biofilms, with S. gordonii adhering to the
yeast cells. These authors also showed that S. gordonii could form
dual-species biofilms with an als3D/D mutant when the two were
co-inoculated in synthetic saliva medium. This lack of Als3
requirement was confirmed using a bcr1D/D mutant, which does
not express any of the Als adhesins, and point to the existence of
other adhesive interactions that may be important in PMB
formation. Interestingly, a study by Wan and co-workers (2021)
found that the binding force between C. albicans and S. gordonii is
approximately 2-fold higher than that between C. albicans and S.
mutans. These interactions may also depend on the enhanced
production of EXM by PMB (Montelongo-Jauregui et al., 2019)
and specific nanostructures, such as C. albicans-produced
nanofibrils (Veerapandian and Vediyappan, 2019).

Some of these surface interacting mechanisms that mediate
the interaction between C. albicans and bacteria have been
characterized. These include localized production of glucans
that are responsible for the adherence of S. mutans to
C. albicans hyphal cells in the oral cavity (Kim and Koo,
2020). S. mutans binding affinity to glucan coated C. albicans
hyphae exceed the binding forces between C. albicans and
S. gordonii, allowing for the formation of larger biofilm
structures during early phases of biofilm formation (Wan et al.,
2021). This may provide a mechanism for glucans to favor
S. mutans binding interactions with C. albicans in the oral
cavity. In addition to glucans, extracellular DNA (eDNA)
found in the biofilm matrix also plays a role in the S. mutans-
C. albicans interaction, especially during the initial attachment
and early stages (Guo et al., 2021). The interaction between
C. albicans and Helicobacter pylori was also further clarified,
indicating strong attachment of the bacterial cells to the surface
of C. albicans via multiple mechanisms (Palencia et al., 2022),
including hydrophobic bonds between non-polar peptide chains
or lipids on C. albicans cell walls and membranes of H. pylori.
Hydrogen bonds may increase the strength of these interactions
and formation of disulfide bonds between cysteine residues of
surface proteins of both microorganisms may also be involved.

Naturally it is not only C. albicans genes and proteins that are
responsible for the interaction between the yeast and various
TABLE 1 | Summary of the recent studies highlighting the impact of different media on Candida albicans containing polymicrobial biofilms.

Bacteria interacting
with C. albicans

Media composition Influence on polymicrobial biofilm Reference

Actinomyces naeslundii RMPI-1640 vs Artificial Saliva Medium Biomass and metabolic activity were C. albicans strain
and media specific

Arzmi et al. (2016)

Streptococcus grodonii RPMI-1640, Todd Hewitt Broth + 0.02% Yeast Extract,
1:1 combination, synthetic saliva

Media composition influenced biofilm architecture,
although all enabled synergistic interaction

Montelongo-Jauregui
et al. (2016)

Streptococcus mutans RMPI-1640 vs Artificial Saliva Medium Biomass and metabolic activity were C. albicans strain
and media specific

Arzmi et al. (2016);
Brito et al. (2021)

Different glucose concentrations [Glucose] >60mM
↑ biofilm biomass
↑C. albicans CFUs/ml
↑ Insoluble EPS
February 2022 | Volu
me 12 | Article 836379
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bacteria, as indicated by the involvement of P. gingivalis proteins
highlighted above (Sztukowska et al., 2018; Bartnika et al., 2019).
Karkowska-Kuleta and co-workers (2018) found that another of
the extracellular virulence factors of P. gingivalis , a
peptidylarginine deiminase enzyme, which converts protein
arginine residues to citrullines, plays a role in the binding of P.
gingivalis to C. albicans, possibly via citrullination of C. albicans
surface proteins. In addition, during the initial interaction
between C. albicans hyphae and S. gordonii, bacterial
carbohydrate metabolism was seen to play a role as fruR, fruB,
and fruA (encoding the transcriptional regulator, fructose-1-
phosphate kinase, and fructose-specific permease) were
consistently upregulated in the presence of C. albicans and
deletion of these genes caused formation of less robust biofilms
(Jesionowski et al., 2016). The streptococcal glucocyltransferase
(Gtf), which synthesize a-glucan exopolymers, were also found
to play a role in the interaction between C. albicans and S. oralis
(Souza et al., 2020a). Interestingly, although deletion of gftR
resulted in increased biofilm matrix, but not bacterial biomass, in
monomicrobial biofilms, this deletion caused an increase in
bacterial biomass in a PMB. The interaction between the
commensal bacterium, Streptococcus intermedius, and C.
albicans was found to cause increased biofilm formation
(Mieher et al., 2021). Here pas (encoding a S. intermedius
surface antigen, belonging to the Antigen I/II family of
proteins) plays a role independent of Als3, as well as srtA
(encoding sortase A – which allows for anchoring of surface
proteins into the cell wall). Recently, Yang and co-workers
(2018) also indicated the importance of the S. mutans adhesin,
antigen I/II, for both the for the incorporation of C. albicans into
the C. albicans-S. mutans biofilm and acid production by the
biofilm. Interestingly, this interaction was also not dependent on
the presence of Als1 and Als3. For all these studies, significant
questions remain regarding the upstream signals and signaling
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
pathways leading to the regulation of the various genes and
mechanisms (Jakubovics, 2017).
CONSEQUENCES OF THE COMPLEX
INTERACTION

Impact on Pathogenesis
The interaction between C. albicans and bacteria can influence
the expression of specific virulence factors and may influence the
outcome of co-infections (Allison et al., 2016; Dhamgaye et al.,
2016) (Figure 2). Many of these co-infections are more
pathogenic than single species infections. Examples include co-
infection of C. elegans by C. albicans and Staphylococcus
epidermidis (Holt et al., 2017) and co-infection of zebrafish by
C. albicans and P. aeruginosa (Bergeron et al., 2017). This
influence of C. albicans on pathogenesis in the oral cavity has
received particular attention during the last six years. Sampaio
and co-workers (2019) examined the ability of C. albicans to
increase the cariogenicity of S. mutans (the bacterium involved in
caries development) biofilms, using cultivation conditions that
mimic the intake of sucrose during the day and lack of food
during the night, over a period of 96h. They found that the PMB
had greater volume and extracellular matrix (EXM) production
and resulted in increased loss of dentine hardness.

Interestingly, the presence of C. albicans in caries-associated
biofilms does not seem to always lead to increased cariogenicity.
Willems and co-workers (2016) found that the interaction
between C. albicans and S. mutans, may be less virulent. They
grew PMBs for 24-72h on hydroxyapatite (HA) disks or glass
slides and measured lactic acid concentrations, medium pH and
the release of calcium from the HA disks. After 24h the medium
pH of all biofilms decreased to below pH5.5, at which the enamel
FIGURE 2 | Outcome of polymicrobial biofilm infections in different hosts/host niches. Red arrows indicate increased pathogenicity, and the green arrow indicates
decreased pathogenicity as discussed in the text.
February 2022 | Volume 12 | Article 836379
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would be solubilized. However, after 72h, C. albicans was able to
increase the pH to above pH5.5, even though more lactic acid
was produced by S. mutans, possibly by metabolizing the lactic
acid and producing ammonia, which increases the pH (Janus
et al., 2017). This increase in pH caused a decrease in calcium
release. Similar results were obtained by Eidt and co-workers
(2019) who grew biofilms on enamel slabs in the presence of
glucose or sucrose for up to 72h. Thus, the interaction with C.
albicans can reduce the acidogenic and cariogenic potential of S.
mutans biofilms. This interaction may be partially mediated by
the C. albicans quorum sensing molecule, farnesol. At low
concentrations, farnesol can reduce acid as well as EXM
production by S. mutans biofilms (Fernandes et al., 2018).

These studies provide useful information on potential
interactions between C. albicans and single bacterial species,
but the in vivo applicability may still be limited as the oral
microbiome is a complex community consisting of many
microbes interacting with each other (Janus et al., 2017).
Morse and co-workers (2019) increased our understanding of
the impact of an oral bacterial consortium on the expression of
virulence factors (i.e. hyphal formation and expression
of virulence related genes). They found that PMBs consisting
of C. albicans and a consortium of S. sanguinis, S. gordonii, A.
viscosus and Actinomyces odontolyticus resulted in a significant
increase in hyphal production. This increase was abrogated if P.
gingivalis was also included in the consortium. In addition, a
significant increase in the expression of ALS3, EPA1, HWP1,
PLD1, SAP4 and SAP6 was observed in the PMBs without P.
gingivalis. The addition of P. gingivalis to the consortium resulted
in a decrease in the expression of all these genes except SAP4.
HWP1 and SAP6 are associated with the hyphal phenotype,
while PLD1 is also required for hyphal formation under certain
circumstances (http://www.candidagenome.org/) and their
downregulation may correlate with the decrease in hyphal
formation in the presence of P. gingivalis.

The impact of C. albicans on the oral microbiome was
recently studied. Jauns and co-workers (2017) investigated this
using saliva derived biofilms under various oxygen levels
(anaerobic, aerobic, aerobic with 5% CO2). In anaerobic
biofilms, no growth of C. albicans was observed, but in
biofilms grown in the presence of oxygen, C. albicans did grow
as part of the biofilm, forming extensive hyphae in the presence
of CO2. Unexpectedly, C. albicans did not influence lactic acid
production or protease activity in any of the biofilms. However,
since hyphae can act as sites of interaction between C. albicans
and bacteria, the authors investigated the influence of C. albicans
on the microbiome of early biofilms in the presence of CO2. They
found that more anaerobic bacteria (such as Veillonella spp.,
Leptotrichia spp., Prevotella spp. and Fusobacterium spp.) are
present in C. albicans containing PMBs. These bacteria have
been associated with various oral and dental infections. Similarly,
Du and co-workers (2021) found that the introduction of C.
albicans into biofilms obtained from saliva, resulted in significant
changes in the microbial ecology, including increased growth of
Streptococcus spp. and Gemella sanguinis as well as decreased
growth of Klebsiella pneumoniae, Haemophilus parainfluenza
and Rothia dentocariosa. However, in this study, the addition of
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C. albicans significantly increased acidogenicity and
cariogenicity of these biofilms by upregulating bacterial genes
associated with acid production. This increase in cariogenicity by
C. albicans was also seen in a rat caries model. This interaction
was dependent on C. albicans PHR2, which encodes a pH
responsive glycosidase, indicating the importance of
carbohydrate metabolism in this interaction.

These studies have shed light on the very complex interactions
between C. albicans and bacteria and indicate that the species
composition of a PMB can have a significant influence on the
behavior of the biofilmmembers (including virulence). This would
presumably hold true not only for oral biofilms, but for other
biofilms both in the environment and the host.

Impact on the Host Immune Response
Theoutcomeof a PMB infection is not only dependent on the species
composition of the biofilm, but also on the interaction between the
biofilm and the host, especially the host’s immune system.

Cytokines are small proteins or glycoproteins that can
influence both the innate and adaptive immune response. They
are mainly produced by helper T-cells and macrophages,
although cytokine production can be induced in almost all
other cells. Many researchers have examined the influence of
PMB infection on the production of cytokines by various cell
types. The effect of mono-and polymicrobial biofilms of C.
albicans , S. mutans , S. gordonii and Aggregatibacter
actinomycetemcomitans on production of the cytokines,
interleukin-8 (IL-8) and tumor necrosis factor-a (TNF-a), by
whole blood was determined (Bhardwasj et al., 2020). They
observed that both cytokines were most induced when blood
was stimulated with the PMB as well as its supernatant,
compared to any of the monomicrobial biofilms. However,
supernatants of C. albicans-P. gingivalis biofilm reduced the
production of IL-8 by monocyte-like cells although it did
increase production of interleukin 1b (Bartnicka et al., 2020).
The response by TNF-a was dependent on the incubation time
since after an initial increase, the levels of this cytokine
decreased. These authors found that the presence of C.
albicans can stimulate P. gingivalis to produce gingipains,
which can have proteolytic activity against cytokines, thus
weakening the immune response. This protection from the
host was confirmed in a mouse model of polymicrobial infection.

It is known that oral candidiasis may predispose a host to
secondary systemic infection by S. aureus (Allison et al., 2019;
Van Dyck et al., 2021). In this case adhesion of S. aureus to C.
albicans as well the host immune response are needed for
bacterial dissemination. It was found that macrophages co-
cultured with C. albicans were highly attracted toward hyphae
and preferentially engulfed S. aureus attached to the hyphae. This
increase in phagocytosis provides more opportunity for
dissemination of S. aureus to lymph nodes. Interestingly,
although adhesion between C. albicans and S. aureus was not
influenced by candidalysin [C. albicans secreted protein involved
in immune response activation and immune cell recruitment
(Naglik et al., 2019)], this protein was required for dissemination
of S. aureus (Van Dyck et al., 2021). In addition, the interaction
between PMBs on titanium and mucosal tissue was evaluated
February 2022 | Volume 12 | Article 836379
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using a non-commercial in vitro organotypic mucosal model
(Souza et al., 2020b). They found that C. albicans-Streptococcus
spp. biofilms formed on titanium, caused increased tissue
damage without increased proinflammatory cytokine
production, compared to C. albicans monomicrobial biofilms.

These studies indicate the complex tri-partite interaction
between C. albicans, bacteria and the host immune response
that is still largely underexplored, although it will have significant
impact on the outcome of co-infections and disease.

Impact on Antimicrobial Resistance
It is well known that the close relationships between microbes
may increase the resistance of one or more of the microbial
partners to antimicrobials (Maisetta and Batoni, 2020). Several
recent studies have increased our understanding regarding the
influence of C. albicans-bacterial interaction on antimicrobial
resistance of the microbes.

The C. albicans-S. aureus interaction has received significant
attention in this regard, with various authors showing that the
presence of C. albicans in the PMB significantly enhanced tolerance
of S. aureus to vancomycin and that this is mediated by C. albicans-
secreted molecules (Kong et al., 2016; Kong et al., 2017; Srinivasan
et al., 2017; Vila et al., 2021). It was seen that b-1,3-glucan, a fungal
cell wall component that is also found in the EXM, coats the
bacterial cells, thus protecting them from the antibiotic (Kong et al.,
2016). C. albicans also increased the tolerance of P. aeruginosa to the
first line antibiotic, meropenem (Alam et al., 2020) as well as the
tolerance of S. gordonii to clindamycin (Montelongo-Jauregui et al.,
2019), possibly also due to the presence of C. albicans-secreted
mannan and glucan. Another molecule secreted by C. albicans is the
quorum sensing molecule, farnesol. Kong and colleagues (2017)
found that this molecule increased oxidative stress in S. aureus,
leading to upregulation of drug efflux pumps and subsequent
increased vancomycin efflux.

Using a mouse subcutaneous catheter model of C. albicans-S.
aureus biofilm infection, Vila and colleagues (2021) indicated that
the observed in vitro vancomycin resistance was also observed in
vivo. Further investigation revealed that C. albicans causes
modulation of S. aureus biofilm related genes (including those
that encode repressors of autolysis, lrg A and lrgB), which would
lead to cell lysis and eDNA production. It was established that C.
albicans-S. aureus biofilms do contain higher levels of eDNA and
that DNAse treatment of these biofilms sensitized S. aureus to
vancomycin and allowed the diffusion of vancomycin through the
EXM. Therefore, it was proposed that in a mixed biofilm, the
secreted/released matrix components and other molecules may
protect S. aureus from this antibiotic. Interestingly, eDNA was
also found to be involved in the increased miconazole resistance of
C. albicans in C. albicans-S. aureus biofilms (Kean et al., 2017),
indicating that the protective effect of PMBs are also applicable to C.
albicans. This was further demonstrated by Kim and colleagues
(2018), who saw that the S. aureus extracellular polysaccharide a-
glucan, can directly bind to C. albicans cells and sequestered
fluconazole, reducing uptake of the antifungal.

The clinical relevance of these studies was indicated by Hu
and colleagues (2021) who observed that, in both local and
systemic infection murine models, polymicrobial infection with
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C. albicans and S. aureus increased pathogenesis. In addition, S.
aureus b-lactam and vancomycin resistance genes and C.
albicans azole resistance genes were significantly upregulated in
these infections, resulting in both antibiotic and antifungal drug
resistant infections. It may also be speculated that the effect of
these secreted compounds indicates that physical contact
between C. albicans and bacteria is not a requirement for the
observed increase in antimicrobial resistance.

In contrast, C. albicans matrix components and farnesol were
found not to be involved in the increased resistance of S. aureus
to other antibiotics (oxacillin, ciprofloxacin, delafloxacin, and
rifampicin) (Nabb et al., 2019). Rather, PMBs were found to
decrease the available glucose at a faster rate than mono-
microbial biofilms. This enhanced metabolism was also
observed by He and co-workers (2017) using RNASeq and
biochemical analyses. According to Nabb and co-workers
(2019), the competition for glucose results in decreased
metabolism of S. aureus, with more cells containing less ATP
and with lower membrane potential in polymicrobial cultures
compared with monomicrobial cultures. These persister
populations may explain the increased antibiotic tolerance. It
will be important to see if this mechanism is also relevant in vivo,
where glucose levels are often limited and greater competition for
glucose, or co-utilization of alternative carbon sources, could be
expected. The role of both bacterial persister cell in antibiotic
resistance in the context of monomicrobial biofilms have been
studied, however the role of C. albicans persister cells seem to be
more controversial with different findings regarding the
occurrence of persister cells in C. albicans biofilms (Denega
et al., 2019; Galdiero et al., 2020b). However, the role of bacterial
(or C. albicans) persister cells in polymicrobial biofilms,
especially their influence on drug tolerance, has not been
studied yet. Other C. albicans-bacteria interactions that
influenced antimicrobial resistance, but for which the
mechanism(s) have not yet been studied are indicated in Table 2.

Although the focus of most research regarding the
consequence of PMB formation on resistance, has been
directed towards antimicrobial resistance, this can be seen as a
type of stress resistance and several recent papers have included
other types of stress resistance, such as starvation resistance (Gao
et al., 2016), resistance to non-antimicrobial drugs, such as
nordihydroguaiaretic acid (Fourie et al., 2017), resistance to
oxidative stress (Lobo et al., 2019) and serum (Guo et al.,
2020). These studies all indicate that not only are PMBs
generally more resistant to antimicrobials, but also to a variety
of other stresses. Further mechanistic insights into this
phenomenon may identify novel drugs or drug targets.
IN SEARCH OF NOVEL THERAPEUTIC
SOLUTIONS TO POLYMICROBIAL
BIOFILMS

During the last five years numerous researchers have attempted
to find novel treatment or prevention options for PMBs. Many of
these studies have investigated plants or their extracts (Table 3).
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Although the data from plant extracts seldom lead to
treatment options in Western medicine, plants do contain
several active compounds that, when purified, can inhibit
growth of various microbes and may be assessed for their
specific ability to inhibit PMBs (Table 4). Unfortunately, most
of the research so far lack detail investigation of the mechanisms
of action, or of toxicity studies in mammalian systems. Thus,
making the translation of the in vitro results to application
very limited.

Since biofilm formation is coordinated by quorum sensing
systems, several researchers have targeted this system in the
development of novel treatment options. The C. albicans
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
quorum sensing molecule, farnesol, was found to reduce
hyphal formation by C. albicans in a biofilm with S. mutans
did not have any effect on the growth of the bacteria (Černáková
et al., 2018; Rocha et al., 2018). Feldman and co-workers (2016)
studied the antibiofilm activity of thiazolidinedione-8 and found
that it was able to reduce biomass of C. albicans-S. mutans
biofilms by affecting various processes, including S. mutans
quorum sensing, EPS production and oxidative stress. The
chemical could also affect C. albicans hyphal formation. This
compound was successfully incorporated into a sustained-release
membrane for possible application in clinical settings (Feldman
et al., 2017). Phenazine-1-carboxamide, is a bacterial phenazine
TABLE 3 | Plants and extracts with activity against Candida albicans containing polymicrobial biofilms.

Plant/extract Antimicrobial used in
combination

Bacterium interacting with
C. albicans

Effect on polymicrobial
biofilm

Reference

Commercial clove (Syzygium aromaticum) essential oil Fluconazole S. aureus 10x increase in anti-biofilm
activity

Budzyńska
et al. (2017)

Mupirocin 4x increase in anti-biofilm
activity

Commercial rosemary (Rosmarinnus officialis) extract E. faecalis/ Anti-biofilm activity De Oliveira et al.
(2017a)P. aeruginosa/

S. aureus/
S. mutans

Commercial thyme (Thymus vulgaris) extract E. faecalis/ Anti-biofilm activity De Oliveira et al.
(2017b)P. aeruginosa/

S. aureus/
S. mutans

Cranberry extract S. mutans Inhibited cariogenic virulence
properties

Philip et al.
(2019)

Cajuputs candy (active ingredient is Melaleuca cajuputi
essential oil)

S. mutans Inhibited early biofilm
development

Wijaya et al.
(2019)

↓ hyphal formation and
bacterial adhesion

Ethanol extract of Lerak (Sapindus rarak) seeds Combination of E. coli, P.
aeruginosa and S. aureus

Inhibits pre-formed biofilms
and removes EXM

Pratiwi &
Hamzah (2020)

Commercial lemongrass (Cymbopogon flexuosus)
essential oil

S. aureus Dose dependent anti-biofilm
activity

Gao et al.
(2020)

Inhibition of EXM production
Methanol extract of Allium oschaninii Klebsiella pneumoniae Inhibited biofilm formation Galdiero et al.

(2020a)
Methanol extract of Allium ursinum K. pneumoniae Inhibited biofilm formation Galdiero et al.

(2020a)
Ethanol extract of Rhamnus prinoides S. mutans Inhibited biofilm formation Campbell et al.

(2020)
LongZhang gargle (root and stem extract of Toddalia
asiatica and Cimicifuga foetida

S. mutans Inhibited biofilm formation Gong et al.
(2021)↓ hyphal formation, impacting

biofilm structure
February 2022 | Volume 12
TABLE 2 | Candida albicans-bacteria interactions that influence antimicrobial resistance.

Bacteria Antimicrobial Outcome Reference

Cutibacterium acnes Micafungin Increased C. albicans resistance Bernard et al. (2018)
Porphyromonas gingivalis Cefazolin Decreased sensitivity of P. gingivalis Guo et al. (2020)

Sulfamethoxazole
Streptococcus gordonii Fluconazole Increased resistance of polymicrobial biofilm Montelongo-Jauregui et al. (2016)

Amphotericin B Increased S. gordonii resistance Chinnici et al. (2019)
Caspofungin
Clindamycin
Erythromycin
Ampicillin

Streptococcus mutans Chlorhexidine digluconate Increased C. albicans and S. mutans resistance Lobo et al. (2019)
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derivative – whose production is regulated by quorum sensing
systems. This compound is well known for its antifungal activity
(Peng et al., 2018) and was evaluated for its ability to inhibit C.
albicans-S. aureus biofilms (Kanugala et al., 2019). It was found
to completely inhibit biofilm formation when incorporated into
porous silica nanoparticles and could successfully be used as
antibiofilm coating on urinary catheters in vitro.

Other small molecules have also been studied for their effects
on PMBs. Fluoride is known for its actions against cariogenic
bacteria. Yassin and co-workers (2016) used this to develop
fluoride releasing dental polymer that was able to inhibit the
growth of C. albicans-Lactobacillus casei-S. mutans PMBs.
Sodium trimetaphosphate is a supplement to fluoride in oral
health and has beneficial effects on tooth enamel, but its effect on
oral biofilms are not well studied (Cavazana et al., 2019),
although it could reduce the metabolic activity and production
of EXM by C. albicans-S. mutans biofilms. When combined with
fluoride, it was also able to reduce biofilm biomass significantly.
Another strategy was to test molecules with anti-C. albicans
activity for their ability to inhibit PMBs. One such compound, 5-
hydroxymethyl-2-furaldehyde, was found to inhibit C. albicans-
S. epidermidis biofilm formation, by affecting attachment and
virulence factors of C. albicans (i.e. hyphal formation, secretion
of hydrolytic enzymes) as well as EXM, in vitro (Swetha et al.,
2021). This compound also had a protective effect against
infection in the C. elegans model. Another compound that has
recently shown antibacterial and antifungal activity is auranofin
– a trialkylphosphine gold complex. This compound was also
recently shown to be able to inhibit C. albicans-S. aureus biofilms
(She et al., 2020). Bay 11-7085 is another small molecule with
possible antibacterial activity that could prevent formation of C.
albicans-S. aureus biofilms, by inhibiting initial attachment and
biofilm growth, especially of C. albicans (Escobar et al., 2021).

Various macromolecules, such as guanylated polymethacrylates,
and branched polyethyleneimine based amphiphilic cationic
macromolecules, were recently found to have activity against C.
albicans-S. aureus biofilms (Qu et al., 2016; Mukherjee et al., 2020),
but the most studied polymer was chitosan, with various authors
indicating the ability of different forms/derivatives of molecule to
inhibit PMBs (Tan et al., 2016; Ikono et al., 2019). This has led to the
development of chitosan-coated surgical sutures and catheters that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
are able to prevent C. albicans-S. epidermidis biofilm formation
(Prabha et al., 2021; Rubini et al., 2021). Chitosan has also been
developed as a nanocarrier material for other potential antibiofilm
compounds. Vieira and co-workers, (2019) used chitosan to coat
iron oxide nanoparticles to form a carrier system for chlorhexidine.
These nanoparticles showed similar or better results against C.
albicans-S. mutans biofilms than free chlorhexidine. Chitosan
nanoparticles loaded with curcumin was also effective against C.
albicans-S. aureus biofilms (Ma et al., 2020). Similar nanoparticles
were also loaded with cellobiose dehydrogenase and
deoxyribonuclease I. These nanoparticles could penetrate the
EXM to act against C. albicans-S. aureus biofilms and degrade
eDNA in the matrix (Tan et al., 2020).

In recent years, the effectiveness of metal nanoparticles
against C. albicans PMBs have also been studied. Silver
nanoparticles were found to be effective against C. albicans-E.
coli (Yasinta et al., 2021) and C. albicans-S. aureus biofilms and
could be incorporated into silicone, that may be used for the
manufacture of catheters (Lara and Lopez-Ribot, 2020) or
maxillofacial prosthesis (Chong et al., 2021). Selenium
nanoparticles (stabilized with either chitosan or bovine serum
albumin) were tested for their ability to inhibit C. albicans-S.
aureus biofilms (Filipović et al., 2021). The authors found that
selenium nanoparticles stabilized with bovine serum albumin
had reduced cytotoxicity towards mammalian cells, but
significantly inhibited the dual species biofilms in a dose
dependent manner. It was observed that C. albicans was more
sensitive to these nanoparticles than S. aureus in the dual
species biofilms.

Certain metal cross linked monomers have antibacterial activity
and this was exploited to develop a dental pit and fissure self-
adhesive sealant, containing di-n-butyl-dimethacrylate-tin, which
exhibited good activity against C. albicans-S. mutans biofilms,
without an effect on the mechanical properties of the sealant or
causing cytotoxicity against mouse fibroblasts (Cocco et al., 2021).

Researchers have also focused on combination therapy in
efforts to inhibit PMBs (Table 5). Although optimization of
concentrations is often an issue in these studies (Rodrigues et al.,
2017), this approach holds promise and clearly indicates the
requirement for the addition of antifungal drugs when dealing
with these types of biofilms. The importance of antifungals in the
TABLE 4 | Plant-derived compounds with activity against polymicrobial biofilms.

Compound Plant source Bacterium interacting with
C. albicans

Effect on polymicrobial biofilm Reference

Curcumin Curcuma longa S. mutans Inhibition Li et al. (2019)
S. aureus-P. aeruginosa- E. coli Downregulation of C. albicans agglutinin-like genes Tan et al. (2019)

Inhibition Ma et al. (2020)
Hamzah et al. (2020a)

Gymnemic
acid

Gymnema
sylvestre

S. gordonii Inhibit eDNA production, hyphal formation, adhesion. Downregulation
of S. gordonii gtfG1)

Veerapandian and
Vediyappan (2019)

Luteolin Various E. faecalis Inhibition Fu et al. (2021)
Decrease in EXM production

Nepodin Rumex crispus S. aureus Inhibition Lee et al. (2019)
A. baumannii Decrease hyphal formation

Quercetin Various S. aureus- P. aeruginosa- E. coli Anti-biofilm activity Hamzah et al. (2020b)
Zerumbone Zingiber

zerumbet
S. aureus Anti-biofilm activity Shin and Esom (2019)
S. aureus-P. aeruginosa- E. coli Hamzah et al. (2020c)
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treatment of PMBs was also demonstrated by Luo and co-
workers (2021), who found that C. albicans-S. aureus biofilms
treated with amphotericin B, exhibited not only a reduction in C.
albicans cell numbers, but also a decrease in bacterial cells – due
to the supportive role of C. albicans hyphae in the development
of these biofilms.

An alternative treatment option that has gained a lot of
interest recently, is the use of antimicrobial peptides and
peptoids. The amphiphilic nature of antimicrobial peptides
allows them to bind to microbial membranes, causing
disruption. A previously identified antifungal peptide product
of the immunoglobulin gene, IGHJ2, was studied for its ability to
inhibit formation of C. albicans-P aeruginosa-S. aureus PMBs
(Di Fermo et al., 2021). This natural peptide was, however, not
very effective in inhibiting biofilm formation in vitro. In a wound
infection model, the peptide did cause a reduction in S. aureus
and C. albicans numbers, but these were not statistically
significant. The antimicrobial activity of natural peptides can
be enhanced by various modifications to form synthetic peptides.
Three such synthetic peptides have recently been demonstrated
to be effective against C. albicans-S. aureus and C. albicans-K.
pneumoniae biofilms in vitro and in mice and G. mellonella
infections (Gupta et al., 2019; Galdiero et al., 2021a; Maione
et al., 2021). Peptoids are peptide-mimics with increased
resistance to proteases and therefore better stability in vivo
(Luo et al., 2017). Three peptoids were tested against C.
albicans-S. aureus and C. albicans-E. coli biofilms. Although
these peptoids were able to reduce the cell numbers of C.
albicans and bacteria, differences between the peptoids were
observed depending on the composition of the dual
species biofilms.

Other amphiphilic molecules that have been studied for their
ability to prevent PMB formation, are biosurfactants, including
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
lipopeptides, rhamnolipids and sophorolipids (Ceresa et al.,
2021). Of the biosurfactants tested, one containing
rhamnolipids was found to be most effective in preventing C.
albicans–S. aureus and C. albicans–S. epidermidis biofilm
formation. The antimicrobial properties of other lipids,
including fatty acids, are well known and their effect on PMBs
have also been evaluated. Saw palmetto oil, and the main fatty
acids myristic acid (14:0) and lauric acid (12:0), were found to
significantly inhibit C. albicans-S. aureus, C. albicans-E. coli
biofilms as well as PMBs consisting of all three microbes in
vitro and in C. elegans (Kim et al., 2021). Similar results were
obtained for pentadecanoic acid (15:0) and pentadecanal against
C. albicans-K. pneumoniae biofilms (Galdiero et al., 2021b).
These lipids and lipid-based compounds may hold promise as
a coating for medical implants (Ceresa et al., 2021; Galdiero
et al., 2021b).

Although bacteriophages are an innovative strategy to combat
polymicrobial bacterial biofilms (Mgomi et al., 2021), this is still
unexplored in the context of C. albicans polymicrobial biofilms.
Szafránski and co-workers (2017) did hypothesize how the
interactions within the complex multispecies oral biofilm,
containing C. albicans and various bacteria, may be targeted by
bacteriophages directed at the different bacterial members.
Interestingly, the P. aeruginosa phage, Pf4, was able to directly
inhibit C. albicans biofilm formation as well as preformed
biofilms. possibly by sequestrating iron (Nazik et al., 2017).
These studies open the doors to further explore the
applicability of bacteriophages in the inhibition of C. albicans-
bacterial PMBs.PMBs can also form on non-implanted surfaces
where disinfectants may be used to remove them. One such
surface is dental unit waterlines. Costa and co-workers (2016)
examine the ability of three recommended disinfectants to
prevent or remove PMBs, consisting of C. albicans,
TABLE 5 | Combination therapy against polymicrobial biofilms.

Drug combinations Bacteria interacting
with C. albicans

Effect on polymicrobial biofilm Reference

Polymyxin and amphotericin B P. aeruginosa Combination of amphotericin B and highest concentration of
polymyxin could eradicate polymicrobial biofilms

Rodrigues
et al. (2017)

Flucloxacillin, ciprofloxacin and fluconazole S. aureus and P.
aeruginosa

Combination of all three drugs was required to inhibit all three
microbes in the biofilm

Townsend
et al. (2017)

Anidulafungin and tigecycline S. aureus Synergism against in vivo intra-abdominal biofilms Rogiers et al.
(2018)

2-aminobenzimidazole and curcumin S. aureus Increased biofilm inhibition by combination Tan et al.
(2019)

Caspofungin and polymyxin B P. aeruginosa Combination was able to significantly reduce the total biomass of
mixed biofilms

Fernandes
et al. (2020)

Antifungal chalcone-based derivative and antibacterial
polycyclic anthracene-maleimide adduct

S. aureus Synergistic biofilm inhibition Bonvicini
et al. (2021)

Berberine and amphotericin B S. aureus Synergistic biofilm inhibition with reduced hyphal formation and
adhesion

Gao et al.
(2021)

Farnesol combined with myricetin, C135* and compound
1771**

S. mutans Eliminated bacteria from dual species biofilm Lobo et al.
(2021)

C135 and fluoride S. mutans Eliminated bacteria from dual species biofilm Lobo et al.
(2021)

Bacterial biosurfactant and DNase S. epidermidis Synergistic activity against biofilms Srikanth et al.
(2021)
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P.aeruginosa and the amoeba, Vermamoeba vermiformis. The
efficiency of the three disinfectants depended on their
composition, and the concentration used, although none were
able to completely eradicate mature PMBs. Of the three species
in the biofilms, C. albicans was the most sensitive and V.
vermiformis the least. Novel antiseptics, such as pyridoxine-
based quaternary ammonium derivatives of terbinafine, are
also investigated for their ability to eradicate C. albicans-S.
aureus biofilms and was found to be very effective against both
organisms (Garipov et al., 2020). The mechanisms of action
include membrane damage and targeting of pyridoxal-
dependent enzymes.

PMBs can also be inhibited without the use of chemicals. An
example of such an approach is the use of atmospheric-pressure
cold plasma, generated by gas ionization leading to the
production of reactive oxygen and nitrogen species UV
radiation and an electromagnetic field. This approach was able
to inhibit both microbes in C. albicans-S. aureus biofilms in vitro
and in reconstituted oral epithelium, without evidence of
cytotoxicity (Aparecida Delben et al., 2016). Another
nonchemical approach is the use of antimicrobial blue light
(Ferrer-Espada et al., 2018). This antimicrobial action is
thought to be mediated by intracellular porphyrins that act as
photosensitizers. Exposure of a C. albicans-P. aeruginosa biofilm,
grown in 96-well plates, to blue light at radiant exposure of either
216 or 500 J/cm2, caused a decrease in cell numbers for C.
albicans, but an increased for P. aeruginosa, compared to their
monomicrobial counterparts. Similar experiments performed
using CDC biofilm reactor, showed a decrease in cells for both
C. albicans and P. aeruginosa (Ferrer-Espada et al., 2019). It
should however be noted that 500 J/cm2 caused significant
reduction in metabolic activity of keratinocytes. Similar results
were obtained by Tsutsumi-Arai and co-workers (2021), who
indicated that both C. albicans and S. mutans cell numbers in a
dual species biofilm are reduced by exposure to blue light, with C.
albicans being more sensitive. The treatment caused an increase
in reactive oxygen species, and this could be correlated to the
higher levels of porphyrins present in C. albicans cells.
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It is evident that significant research efforts are focused on
finding novel therapeutic options for C. albicans containing
biofilms, many of these studies included possible mechanisms of
actions as well as cytotoxicity assays and in vivo testing. It is hoped
that these practices will become more widespread and will increase
the likelihood of finding options that have the potential to be
translated from the laboratory (or field) to the clinical setting.
DISCUSSION: FUTURE PROSPECTS

We are entering an exciting time in the study of pathogenic
microbes, where the intersection between traditional medical
microbiology and microbial ecology is becoming more evident.
This is to be expected since PMBs and polymicrobial infections
form unique habitats where not only the microbes interact with
each other, but also with the host, resulting in complex and often
as yet unpredictable outcomes for disease progression and
antimicrobial efficacy. It is envisioned that tools, such as
metagenomic and metatranscriptomic analyses, more common
place in microbial ecology may add significant new knowledge
regarding not only the organisms present in polymicrobial
biofilms in the host, but also the molecular interaction between
them. This is indeed a complex field, but as indicated in this
review, many exciting advances are being made.
AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.
FUNDING

Funding was provided by the National Research Foundation
(NRF) of South Africa to CP (grant number 115566).
REFERENCES
Abusrewil, S., Brown, J. L., Delaney, C. D., Butcher, M. C., Kean, R., Gamal, D.,

et al. (2020). Filling the Void: An Optimized Polymicrobial Interkingdom
Biofilm Model for Assessing Novel Antimicrobial Agents in Endodontic
Infection. Microorganisms 8, 1988. doi: 10.3390/microorganisms8121988

Alam, F., Catlow, D., Di Maio, A., Blair, J. M. A., and Hall, R. A. (2020). Candida
albicans Enhances Meropenem Tolerance of Pseudomonas aeruginosa in a
Dual-Species Biofilm. J. Antimicrob. Chemother. 75, 925–935. doi: 10.1093/jac/
dkz514

Allison, D. L., Scheres, N., Willems, H. M. E., Bode, C. S., Krom, B. P., and Shirtliff,
M. E. (2019). The Host Immune System Facilitates Disseminated
Staphylococcus aureus Disease Due to Phagocytic Attraction to Candida
albicans During Coinfection: A Case of Bait and Switch. Infect. Immun. 87,
e00137-19. doi: 10.1128/IAI.00137-19

Allison, D. L., Willems, H. M. E., Jayatilake, J. A. M. S., Bruno, V. M., Peters, B. M., and
Shirtliff, M. E. (2016). Candida-Bacteria Interactions: Their Impact on Human
Disease. Microbiol. Spectr. 4. doi: 10.1128/microbiolspec.VMBF-0030-2016
Aparecida Delben, J., Evelin Zago, C., Tyhovych, N., Duarte, S., and Eduardo
Vergani, C. (2016). Effect of Atmospheric-Pressure Cold Plasma on Pathogenic
Oral Biofilms and In Vitro Reconstituted Oral Epithelium. PloS One 11,
e0155427. doi: 10.1371/journal.pone.015542

Arzmi, M. H., Alnuaimi, A. D., Dashper, S., Cirillo, N., Reynolds, E. C., and
McCullough, M. (2016). Polymicrobial Biofilm Formation by Candida
albicans, Actinomyces naeslundii, and Streptococcus mutans Is Candida
albicans Strain and Medium Dependent. Med. Mycol. 54, 856–864.
doi: 10.1093/mmy/myw042

Ascione, C., Sala, A., Mazaheri-Tehrani, E., Paulone, S., Palmieri, B., Blasi, E., et al.
(2017). Herpes Simplex Virus-1 Entrapped in Candida albicans Biofilm
Displays Decreased Sensitivity to Antivirals and UVA1 Laser Treatment.
Ann. Clin. Microbiol. Antimicrob. 16, 72. doi: 10.1186/s12941-017-0246-5

Bartnicka, D., Gonzalez-Gonzalez, M., Sykut, J., Koziel, J., Ciaston, I., Adamowicz,
K., et al. (2020). Candida albicans Shields the Periodontal Killer
Porphyromonas gingivalis From Recognition by the Host Immune System
and Supports the Bacterial Infection of Gingival Tissue. Int. J. Mol. Sci. 21,
1984. doi: 10.3390/ijms21061984
February 2022 | Volume 12 | Article 836379

https://doi.org/10.3390/microorganisms8121988
https://doi.org/10.1093/jac/dkz514
https://doi.org/10.1093/jac/dkz514
https://doi.org/10.1128/IAI.00137-19
https://doi.org/10.1128/microbiolspec.VMBF-0030-2016
https://doi.org/10.1371/journal.pone.015542
https://doi.org/10.1093/mmy/myw042
https://doi.org/10.1186/s12941-017-0246-5
https://doi.org/10.3390/ijms21061984
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Pohl C. albicans Polymicrobial Biofilms
Bartnicka, D., Karkowska-Kuleta, J., Zawrotniak, M., Satała, D., Michalik, K.,
Zielinska, G., et al. (2019). Adhesive Protein-Mediated Cross-Talk Between
Candida albicans and Porphyromonas gingivalis in Dual Species Biofilm
Protects the Anaerobic Bacterium in Unfavorable Oxic Environment. Sci.
Rep. 9, 4376. doi: 10.1038/s41598-019-40771-8

Bergeron, A. C., Seman, B. G., Hammond, J. H., Archambault, L. S., Hogan, D. A.,
and Wheeler, R. T. (2017). Candida albicans and Pseudomonas aeruginosa
Interact to Enhance Virulence of Mucosal Infection in Transparent Zebrafish.
Infect. Immun. 85, e00475–e00417. doi: 10.1128/IAI.00475-17

Bernard, C., Renaudeau, N., Mollichella, M. -L., Quellard, N., Girardot, M., and
Imbert, C. (2018). Cutibacterium acnes Protects Candida albicans From the
Effect of Micafungin in Biofilms. Int. J. Antimicrob. Agents 52, 942–946.
doi: 10.1016/j.ijantimicag.2018.08.009

Bhardwaj, R. G., Ellepolla, A., Drobiova, H., and Karch ed, M. (2020). Biofilm
Growth and IL-8 & TNF-a-Inducing Properties of Candida albicans in the
Presence of Oral Gram-Positive and Gram-Negative Bacteria. BMC Microbiol.
20, 156. doi: 10.1186/s12866-020-01834-3

Bonvicini, F., Belluti, F., Bisi, A., Gobbi, S., Manet, I., and Gentilomi, G. A. (2021).
Improved Eradication Efficacy of a Combination of Newly Identified
Antimicrobial Agents in C. albicans and S. aureus Mixed-Species Biofilm.
Res. Microbiol. 172, 103873. doi: 10.1016/j.resmic/2021.103873

Brito, A. C. M., Bezerra, I. M., Borges, M. H. D. S., Cavalcanti, Y. W., and Almeida,
L.D.F.D.D. (2021). Effect of Different Salivary Glucose Concentrations on
Dual-Species Biofilms of Candida albicans and Streptococcus mutans.
Biofouling 37, 615–625. doi: 10.1080/08927014.2021.1946519
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