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ABSTRACT
Background: The literature regarding the relation between egg consumption and type 2 diabetes
(T2D) is inconsistent and there is limited evidence pertaining to the impact of egg consumption

on measures of insulin sensitivity.

Objectives: The aim of this study was to investigate the effect of dietary whole egg on metabolic

biomarkers of insulin resistance in T2D rats.

Methods: Male Zucker diabetic fatty (ZDF) rats (n = 12; 6 wk of age) and age-matched lean
controls (n = 12) were randomly assigned to be fed a casein- or whole egg-based diet. At week 5
of dietary treatment, an insulin tolerance test (ITT) was performed on all rats and blood glucose
was measured by glucometer. After 7 wk of dietary treatment, rats were anesthetized and whole
blood was collected via a tail vein bleed. Following sedation, the extensor digitorum longus
muscle was removed before and after an intraperitoneal insulin injection, and insulin signaling in
skeletal muscle was analyzed by Western blot. Serum glucose and insulin were analyzed by ELISA
for calculation of the homeostatic model assessment of insulin resistance (HOMA-IR).

Results: Mean ITT blood glucose over the course of 60 min was 32% higher in ZDF rats fed the
whole egg-based diet than in ZDF rats fed the casein-based diet. Furthermore, whole egg
consumption increased fasting blood glucose by 35% in ZDF rats. Insulin-stimulated
phosphorylation of key proteins in the insulin signaling pathway did not differ in skeletal muscle
of ZDF rats fed casein- and whole egg-based diets. In lean rats, no differences were observed in
insulin tolerance, HOMA-IR and skeletal muscle insulin signaling, regardless of experimental
dietary treatment.

Conclusions: These data suggest that whole body insulin sensitivity may be impaired by whole
egg consumption in T2D rats, although no changes were observed in skeletal muscle insulin

signaling that could explain this finding. ~ Curr Dev Nutr 2019;3:nzz015.

Introduction

The increasing prevalence of type 2 diabetes (T2D) is a critical public health issue and insulin
resistance is a key contributor to T2D development (1, 2). Insulin resistance is a condition
characterized by hyperinsulinemia, hyperglycemia, and impaired glucose and insulin tolerance
(3). Diet is an important modifiable risk factor for insulin resistance and the progression of
T2D. Therefore, understanding the relation between dietary components, such as whole egg, and
insulin resistance is essential for developing future dietary recommendations for the millions of
individuals with existing T2D, as well as those who are at high risk for developing T2D.

Insulin mediates its metabolic effects by binding to the insulin receptor, thereby modifying the
activity and intracellular location of proteins involved in the insulin signaling pathway. Insulin
binding to the insulin receptor triggers autophosphorylation of the insulin receptor (IR) 8 subunit,
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which activates the receptor and initiates a cascade of phosphorylation
events (4). Key events in the insulin signaling cascade include the
activation of the insulin receptor substrate 1 (IRS-1) via tyrosine
phosphorylation; serine/threonine phosphorylation of Akt and its
subsequent activation; phosphorylation of Akt substrate 160 (AS160) at
serine/threonine residues; and translocation of the glucose transporter
type 4 (GLUT4) from intracellular vesicles to the plasma membrane,
resulting in increased glucose uptake in skeletal muscle and adipose
tissue (5-7). Defects in insulin function through the sequential action of
the insulin receptor, IRS-1, Akt, AS160, and GLUT4 have been reported
in metabolic disorders associated with insulin resistance, such as obesity
and T2D (6, 8). Impaired insulin signaling at any of these key steps
reduces the ability of insulin to promote glucose uptake and utilization.

Limited and inconsistent findings have been reported on the relation
between egg consumption and T2D. Whereas some studies suggest that
egg consumption increases the risk of T2D (9-11), others report a null
association or a beneficial impact on T2D risk and outcomes (12-17).
A meta-analysis found no association between egg consumption and
T2D risk in countries outside of the United States, but found a modest
increase in T2D risk that was restricted to US studies, suggesting that
these results may be confounded by factors such as dietary behaviors
of the US population (18). Results from a recent human study suggest
that the apparent association between egg consumption and T2D risk
in the US population may be due to an interaction between meat and
egg intake, and not egg intake alone (19).

It is widely recognized that obesity is a major risk factor for
insulin resistance, which precedes the onset of overt diabetes (1-3).
We previously reported that a whole egg-based diet attenuates
cumulative body weight gain in the Zucker diabetic fatty (ZDF) rat,
a well-characterized genetic model of obesity and T2D (20, 21). The
observed attenuation in body weight gain was attributed, in part, to an
8% reduction in body fat in ZDF rats consuming a whole egg-based diet
(20). Furthermore, we extended this research to a diet-induced model of
obesity and demonstrated that whole egg consumption in diet-induced
obese rats markedly reduces weight gain compared with that in diet-
induced obese rats fed a casein-based diet (CJ Saande, SK Jones, KE
Hahn, CH Reed, MJ Rowling, KL Schalinske, unpublished observations,
2017). There is very limited evidence regarding the association between
egg consumption and measures of insulin sensitivity (13, 22, 23), and,
to our knowledge, the impact of whole egg consumption on insulin
signaling has not been examined. Thus, the objective of this study was
to investigate whether the previously observed reductions in adiposity
in ZDF rats fed a whole egg-based diet are related to improved insulin
sensitivity and enhanced insulin signaling.

Methods

Rats and diets

All animal studies were approved by the Institutional Animal Care
and Use Committee at Iowa State University (IACUC no. 1-18-8674-
R; approval date December 1, 2018) and were performed according
to the Iowa State University Laboratory Animal Resources Guidelines.
Male ZDF (fa/fa) rats (n = 12) and lean (fa/+) control rats (n = 12)
were purchased at 5 wk of age (Charles River Laboratories). Rats were
housed 2/cage with a 12-h light-dark cycle in a temperature-controlled

TABLE 1 Composition of the casein- and whole egg-based
diet fed to lean control and ZDF rats for 7 wk’

Ingredient, g/kg Casein Whole egg
Casein (vitamin free) 200 0
Dried whole egg 0 413
Corn starch 423 387
Glucose monohydrate 150 150
Mineral mix (AIN 93) 35 35
Vitamin mix (AIN 93) 10 10
Biotin 1% 0 0.4
Corn oll 177 0
Choline bitartrate 2 2
|-Methionine 3 3
Macronutrients, kcal/kg
Protein 800 800
Lipid 1593 1593
Carbohydrate 2292 2148
Total energy 4685 4541

'Allingredients were purchased from Envigo with the exception of dried whole egg
(Rose Acre Farms) as well as I-methionine and choline bitartrate (Sigma-Aldrich).
ZDF, Zucker diabetic fatty.

2The total protein and lipid content provided by 413 g of dried whole egg was
48.4% (200 g) and 42.9% (177 g), respectively.

room. All rats were acclimated to a semipurified diet (AIN-93 G) for
1 wk. Following acclimation, rats were randomly assigned to 1 of 2
experimental diets (Table 1): a casein-based diet (n = 12) or a whole
egg-based diet (n = 12). Both diets provided protein at 20% (wt/wt)
and were matched for lipid content (17.7% total lipid) via the addition
of corn oil to the casein-based diet to account for the additional lipid
contribution of the whole egg. Total protein at 20% (wt/wt) in the whole
egg-based diet was achieved by the addition of 413 g/kg dried whole
egg, which provided 48.4% (200 g) protein and 42.9% (177 g) lipid.
Diets were prepared weekly and rats were given ad libitum access to
food and water for a period of 7 wk. Body weight and food intake
were recorded 5 d/wk. Prior to killing the animals, food was withheld
for 4 h and rats were anesthetized via a single intraperitoneal injection
of ketamine:xylazine (90:10 mg/kg body weight). Following sedation,
whole blood was collected via a tail vein bleed and blood samples
were stored on ice until centrifugation. The extensor digitorum longus
(EDL) muscle was removed from one leg prior to an insulin injection
to account for basal differences in insulin signaling. All rats were then
given an intraperitoneal insulin injection (Sigma; 10 U/kg body weight)
and the EDL muscle was removed from the other leg 10 min post-
insulin injection to allow sufficient time for insulin signaling to occur
(24-27). Immediately following tissue removal, muscle samples were
snap-frozen in liquid nitrogen and stored at -80°C for subsequent
analysis. The epididymal fat pad was removed and weighed. All 24
rats were killed by exsanguination. Whole blood was centrifuged in
separation tubes at 4,000 x g for 15 min at 4°C and the resultant serum
was stored at —80°C.

Insulin tolerance tests

Insulin tolerance tests (ITTs) were performed at week 5 of experimental
dietary treatment. Rats were fasted for a period of 4 h prior to
insulin tolerance testing and given an intraperitoneal insulin injection
(0.5 U/kg body weight). Blood samples were collected from the tail vein
immediately prior to the insulin challenge, as well as 15, 30, 45, and
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TABLE 2 Body and adipose tissue weights and total food intake of lean and ZDF rats fed a casein- or whole egg-based diet for

7 wk'
Lean ZDF P
Casein Whole egg Casein Whole egg Genotype Diet  Genotype x diet
Initial body weight,? g 157 + 5° 155 + 62 191 + &b 191 + 4b <0.001 0.877 0.824
Final body weight,? g 329 £ 7° 334 + 5° 378 + 4 371 + gb <0.001 0.897 0.368
Epididymal fat pad weight,? 0.47 + 0.04% 050 + 0.08°  0.86 + 0.08°  0.83 + 0.03° <0.001 0.992 0.642
g/100 g body weight

Total food intake,® g 990 + 28° 930 + 29° 1843 £ 1355 1732 & 163° <0.001  0.449 0.818
Total energy intake, kcal 4639 + 130% 4224 + 132° 8636 + 6320 7865 + 740P <0.001 0.265 0.729

1ZDF, Zucker diabetic fatty.

2Data are means + SEMs; n = 6. Data within the same row without a common letter differ (P < 0.05).
3Data are means + SEMs; n = 3. Total food intake per cage (2 rats/cage). Data within the same row without a common letter differ (P < 0.05).

60 min thereafter. Blood sampling was performed by making a nick with
a sterilized razor blade toward the end of the tail and blood glucose was
measured with the use of a glucometer (Bayer Healthcare). When blood
glucose was above the detection limit (600 mg/dL), the maximum value
of 600 mg/dL was used.

Serum glucose and serum insulin

Serum collected on the final day of the study was used for analysis of
fasting glucose, fasting insulin, and calculation of HOMA-IR. Serum
glucose was measured with the use of a commercially available colori-
metric kit (Wako Diagnostics). Analysis of serum insulin was measured
by a commercially available immunoassay kit for the detection of insulin
in rat sera (EMD Millipore).

Western blot analysis

EDL muscles were homogenized in 800 uL of lysis buffer [Tris-
hydrochloric acid (pH 7.8, 50 mM), EDTA (1 mM), EGTA (1 mM),
glycerol (10%, wt/vol), Triton-X 100 (1%, wt/vvol), dithiothreitol
(I mM)] containing phosphatase (Sigma) and protease (Thermo
Scientific) inhibitors. Samples were then centrifuged at 4000 x g for
15 min at 4°C and the supernatant was collected. Protein concentrations
were determined via a bicinchoninic acid assay (Pierce) according to
the manufacturer’s instructions. A total of 20 ug protein was loaded
and run on a 4-15% gradient sodium dodecyl sulfate polyacrylamide
gel (Bio-Rad). Following separation, proteins were transferred onto a
polyvinylidene difluoride membrane (EMD Millipore) and blocked at
room temperature for 1 h in Tris-buffered saline with 0.05% Tween
and 5% nonfat dry milk. Membranes were incubated in phosphorylated
(p)-IGFI Receptor 11351136 /Tngulin Receptor BT 11515  ALgSerd73,
Akt, and p-AS160™°*2 antibodies (Cell Signaling) at 1:1000 overnight
at 4°C. Following incubation with primary antibody, membranes were
washed and incubated with an antirabbit secondary antibody (Cell
Signaling) at 1:5000 for 1 h at room temperature. Membranes were
incubated in enhanced chemiluminescent substrate (SuperSignal West
Pico PLUS Sensitivity Substrate or SuperSignal West Femto Maximum
Sensitivity Substrate; Thermo Scientific) for 5 min prior to imaging with
the ChemiDoc XRS detection imaging system (Bio-Rad). Densitometry
was determined with the use of Image Lab software (BioRad) and raw
data was normalized to total protein.
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Statistical analysis

All data were evaluated for statistically significant differences (P < 0.05)
with the use of SPSS Statistics Software version 23 (IBM). Body and
epididymal fat pad weights, food intake, and serum parameters were
analyzed with the use of a 2-factor ANOVA (diet x genotype). An
analysis of main effects was performed when the interaction between
diet and genotype was not statistically significant. Insulin tolerance test
data was analyzed by a 3-factor, repeated-measures ANOVA (time x
diet x genotype) and statistically significant 2-factor interactions were
followed by an analysis of simple main effects. Western blot data was
analyzed with the use of a 3-factor mixed ANOVA to determine the
effects of insulin, diet, and genotype on insulin signaling. All pairwise
comparisons were performed with the use of Fisher’s least significant
difference post-hoc test.

Results

Body and relative adipose tissue weights

As expected, there was a significant main effect of genotype on initial
and final body weight. ZDF rats had a higher mean initial body weight
than their lean counterparts, and body weight was 13% higher in ZDF
rats than in lean rats on the final day of the study. Diet was without
effect on final body weight in both lean and ZDF rats (Table 2). Likewise,
there was a significant main effect of genotype on relative adipose tissue
weight [epididymal fat pad weight (g/100 g body weight)]. The ZDF
genotype was associated with a 74% higher mean relative adipose tissue
weight than the lean genotype. No significant differences in relative
adipose tissue weight were observed across diets within lean or ZDF
rats (Table 2).

Food intake

Main effects analysis indicated a significant effect of genotype on food
intake and total energy intake. ZDF rats exhibited an 86% higher mean
total food intake than lean rats (Table 2). Likewise, total energy intake
was 86% higher in ZDF rats than in lean rats (Table 2). There was no
effect of diet on total food intake or total energy intake.

ITT

Analysis of ITT blood glucose concentrations revealed a significant
effect of time on circulating glucose concentrations, demonstrating that
insulin effectively lowered blood glucose. There was also a significant
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ITT blood glucose in lean and ZDF rats fed a casein- or whole egg-based diet for 5 wk. Data are means + SEMs; n = 3-6.

Data within the same time point without a common letter differ (P < 0.05). Three-factor repeated-measures ANOVA: time, P < 0.001; diet,
P =0.027; genotype, P < 0.001; time x diet, P = 0.662; time x genotype P = 0.031; diet x genotype P = 0.025; Time x diet x
genotype, P =0.572. ITT, insulin tolerance test; ZDF, Zucker diabetic fatty.

effect of genotype and diet, as well as significant diet x genotype
and time x genotype 2-factor interactions. As expected, there was a
simple main effect of genotype (P < 0.001) on blood glucose, indicating
markedly higher blood glucose in ZDF rats than in lean rats at each time
point (Figure 1). A simple main effect of time was also observed in the
ZDF genotype (P = 0.001), but not in the lean genotype (P = 0.836).
Lastly, a simple main effect of diet was observed in the ZDF genotype
(P < 0.001), but not in the lean genotype (P = 0.987). With the
exception of baseline blood glucose, ZDF rats fed the whole egg-based
diet exhibited ~38% higher blood glucose concentrations from the 15-
60 min time points than ZDF rats fed the casein-based diet. In contrast,
blood glucose did not differ between dietary treatment groups in lean
rats at any of the time points (Figure 1).

Serum glucose, serum insulin, HOMA-IR, and homeostatic
model assessment of B-cell function

There was a significant main effect of genotype on serum glucose,
serum insulin, and the HOMA-IR. As expected, mean serum glucose,
serum insulin, and HOMA-IR values were 244%, 629%, and 234%
higher, respectively, in the ZDF genotype than in the lean genotype
(Table 3). Diet was without effect on serum glucose concentrations
within the lean genotype; however, serum glucose concentrations were
increased by 35% in ZDF rats fed the whole egg-based diet than in
ZDF rats fed the casein-based diet (Table 3). No differences in serum
insulin concentrations were observed across dietary groups within the
lean genotype, whereas serum insulin was 68% higher in ZDF rats fed
the casein-based diet than in ZDF rats fed the whole egg-based diet.
There was no effect of diet on the HOMA-IR within the lean or ZDF
genotype (Table 3). Lastly, there was a significant main effect of diet on

the homeostatic model assessment of S-cell function (HOMA-8). The
whole egg-based diet was associated with a mean decrease of 44% in
HOMA-B compared with the casein-based diet (Table 3).

Insulin signaling pathway

Insulin increased phosphorylation of the IR B ISULSL by 2919 in
lean rats fed the whole egg-based diet compared with IR gTyr11s0/1LsL
phosphorylation prior to insulin (Figure 2); however, post-insulin
IR BTyrIS0IISE phosphorylation did not reach statistical significance
(P = 0.215) in lean casein-fed rats compared with pre-insulin
phosphorylated insulin receptor (p-IR) 711501151 No differences in p-
IR gLyri150/1151 were observed pre- or post-insulin in ZDF rats, regardless
of dietary treatment (Figure 2). In lean rats fed the casein- and whole
egg-based diets, the post-insulin ratio of p-Akt*™’*:total Akt was
increased 17-fold and 18-fold, respectively, compared with the pre-
insulin ratio (Figure 3). Pre- and post-insulin p-AktS¢73:total Akt did
not differ in ZDF rats, regardless of dietary treatment. However, in ZDF
rats fed the whole egg-based diet, the post-insulin p-AktS¢"*7:total Akt
ratio did not statistically differ from the lean genotype (Figure 3). No
differences in post-insulin p-AS160™%4? were observed, regardless of
diet or genotype (data not shown).

Discussion
The relation between egg consumption and T2D remains contradictory
and evidence is limited regarding potential mechanisms that may

explain the reported associations between dietary egg intake, glycemic
control, and incident diabetes. The present study aimed to examine the
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TABLE 3 Fasting serum glucose, fasting serum insulin, HOMA-IR and HOMA-8 of lean and ZDF rats fed a casein- or whole

egg-based diet for 7 wk'

Lean ZDF P
Casein Whole egg Casein Whole egg Genotype Diet Genotype x diet
Serum glucose, mg/dL 124 4+ 13¢ 189 £ 19¢ 457 + 31P 618 + 862 <0.001 0.026 0.317
Serum Insulin, ng/mL 0.3 + 0.1¢ 0.4 + 0.1¢ 3.2 + 0.42 1.9 + 0.6 <0.001 0.116 0.078
HOMA-IR 2.1 + 0.46° 4.0 + 1.2° 82 + 9.3° 59 + 20° <0.001 0.344 0.267
HOMA-8, % 51 4 132P 32 4+ 13P 72 4+ 132 37 + 122 0.331 0.046 0.554

1Data are means £ SEMs; n = 6. Data within the same row without a common letter differ (P < 0.05). HOMA-8, HOMA-B8, homeostatic model assessment of B-cell

function; ZDF, Zucker diabetic fatty.

effects of egg consumption on insulin tolerance and insulin signaling in
vivo through the use of a rat model of obesity and T2D. Although egg
consumption impaired glycemic control in ZDF rats during an ITT, no
differences were observed in skeletal muscle insulin signaling between
ZDF rats fed casein- and whole egg-based diets. Although skeletal
muscle is the primary site of insulin-stimulated glucose disposal,
glucose metabolism by the liver and adipose tissue also contributes to
whole body glucose homeostasis (28-30). The relative contribution of
these tissues to systemic glucose metabolism, as well as differences in
timing between insulin tolerance testing and skeletal muscle collection
for insulin signaling analysis, may explain the differential results
observed between whole body insulin tolerance and skeletal muscle
insulin signaling.

Very few studies have investigated the effect of egg consumption
on direct measures of insulin sensitivity (22). In the present study, we
report higher blood glucose during an ITT in ZDF rats consuming
a whole egg-based diet than in ZDF rats fed a casein-based diet.
In support of this finding, egg consumption was inversely associated
with insulin sensitivity and the metabolic clearance rate of insulin in
a cross-sectional analysis of a nondiabetic population, although these
associations became insignificant after adjustment for BMI and dietary
cholesterol (22). Likewise, Djousse et al. (13) reported an increase in
fasting blood glucose and insulin resistance, as measured by HOMA-
IR, across varying amounts of egg consumption in a prospective cohort
of older adults. However, the authors noted that the magnitude of
difference, although statistically significant, was not likely to be of
clinical significance (13). Here, we report higher fasting blood glucose
in ZDF rats after 7 wk of dietary treatment with the whole egg-based
diet, but no differences in HOMA-IR, a model used to quantify insulin
resistance, between ZDF rats fed casein- and whole egg-based diets.

In the early stages of insulin resistance, enhanced pancreatic insulin
secretion attempts to compensate for reduced responsiveness to insulin
in peripheral tissues as a means to maintain normal glucose tolerance. A
physiologic approach to accomplish this goal is by enhanced B-cell mass
and activity (31, 32). As insulin resistance progresses, compensatory
hyperinsulinemia is unable to maintain normal blood glucose concen-
trations. Insulin secretion is continuously stimulated by hyperglycemia,
and B-cell structure and function becomes compromised, ultimately
leading to apoptosis (32). In ZDF rats, 8-cell mass decreases between
6 and 12 wk of age, and is significantly reduced at 12 wk (33-35).
The observed loss of B-cell mass has been attributed an increase in
cell death (33, 34). B-cell dysfunction in ZDF rats is accompanied by
a progressive decline in circulating insulin concentrations, beginning
at 7 wk of age (33, 35). We report significantly lower serum insulin,
concomitant with higher serum glucose, in ZDF rats fed the whole
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egg-based diet compared with ZDF rats fed the casein-based diet after
7 wk of dietary treatment (13 wk of age). Additionally, consumption
of a whole egg-based diet was associated with decreased HOMA- B, an
index of B-cell function, suggesting impaired insulin production and
secretion in rats fed the whole egg-based diet. It is possible that ZDF rats
fed the whole egg-based diet exhibit a higher rate of decline in B-cell
function, potentially explaining these differences. In cultured B-cells,
cholesterol accumulation results in apoptosis and impaired glucose-
stimulated insulin secretion (36-39). The cholesterol content of whole
egg may play a role in the observed reduction in serum insulin; however,
whether whole egg consumption affects 8-cell function in ZDF rats
remains to be determined.

Aberrant insulin signaling in skeletal muscle and adipose tissue
impairs insulin-mediated translocation of GLUT4 and subsequent
glucose uptake. To our knowledge, there are no previous studies
examining the effect of egg consumption on insulin signaling. In the

present study, phosphorylation of IR gly1150/1151

was not significantly
increased in ZDF rats following an insulin injection, regardless of
experimental dietary treatment. This result is consistent with findings
from numerous human studies, which show reduced tyrosine phos-
phorylation of the insulin receptor and its subsequent kinase activity
in states of insulin resistance (40-45). The serine/threonine kinase
Akt is activated by insulin-stimulated phosphorylation at both Thr308
and Ser473 and plays a key role in the regulation of glucose uptake
into insulin-responsive tissues (46). As expected, we report a marked
increase in the ratio of p-Akt>™73:total Akt in lean rats in response to
insulin. Conversely, the p-Akt>73:total Akt ratio was not significantly
increased by insulin in ZDF rats fed both casein- and whole egg-
based diets. In agreement with this finding, several studies report
defective Akt phosphorylation and kinase activity in insulin-resistant
subjects compared with lean controls (47-51). Phosphorylation of
AS160, a downstream substrate of Akt, links insulin signaling to GLUT4
translocation and impaired insulin-stimulated AS160 phosphorylation
has been reported in the skeletal muscle of diabetic human subjects (51,
52). In contrast to these findings, we did not observe differences in post-
insulin p-AS160™°? between lean and ZDF rats, regardless of dietary
treatment group.

Eggs are a source of high-quality protein, and several human studies
report an association between egg consumption, increased satiety, and
reduced caloric intake (53-56). Egg consumption has also been shown
to promote weight loss in a limited number of human studies (57, 58).
In contrast to our previous findings (20, 21), we did not observe a
reduction in body weight gain in ZDF rats fed a whole egg-based diet.
Moreover, relative adipose tissue weight not differ between ZDF rats,
regardless of dietary treatment. It is well documented that weight loss is
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FIGURE 2 Skeletal muscle p-IR gV"1159/1151 (A) and representative
Western blot images of skeletal muscle p-IR g7"150/1151 and total
protein (B) pre- and post-insulin injection in lean and ZDF rats fed a
casein- or whole egg-based diet for 7 wk. Data are expressed
relative to pre-insulin p-IR gV11591151 in |ean rats fed the
casein-based diet. Data are means £ SEMs; n = 5-6. Bars without
a common letter differ (P < 0.05). Three-factor mixed ANOVA:
insulin, P = 0.029; diet, P = 0.492; genotype, P = 0.874; insulin x
diet, P =0.297; insulin x genotype P = 0.169; diet x genotype

P =0.723; insulin x diet x genotype, P = 837. LC-Pre, lean casein
pre-insulin; LC-Post, lean casein post-insulin; ZC-Pre, ZDF casein
pre-insulin; ZC-Post, ZDF casein post-insulin; LWE-Pre, lean whole
egg pre-insulin; LWE-Post, lean whole egg post-insulin; ZWE-Pre,
ZDF whole egg pre-insulin; ZWE-Post, ZDF whole egg post-insulin.
p-IR, phosphorylated insulin receptor; ZDF, Zucker diabetic fatty.

a highly effective strategy to improve insulin sensitivity and glycemia,
both in the prevention and treatment of T2D (59, 60). Furthermore,
numerous human studies report improved glycemic control in type 2
diabetics following adherence to low-carbohydrate, low-glycemic index,
and high-protein diets (61, 62). Indeed, beneficial impacts of egg con-
sumption on blood glucose control have been shown in human subjects
when combined with energy or carbohydrate restriction (12, 23, 63,
64). For example, Pearce et al. (12) reported improvements in glycemic
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FIGURE 3 The ratio of skeletal muscle p-Akt>™73:total Akt (A)
and representative Western blot images of skeletal muscle
p-AktSe473, total Akt, and total protein (B) pre- and post-insulin
injection in lean and ZDF rats fed a casein- or whole egg-based
diet for 7 wk. Data are expressed relative to the pre-insulin
p-AktSe¥73:total Akt ratio in lean rats fed the casein-based diet.
Data are means & SEMs; n = 5-6. Bars without a common letter
differ (P < 0.05). Three-factor mixed ANOVA: insulin, P < 0.001;
diet, P = 0.53; genotype, P = 0.157; insulin x diet, P=0.571;
insulin x genotype P =0.11; diet x genotype P = 0.535; insulin x
diet x genotype, P = 0.609. LC-Pre, lean casein pre-insulin;
LC-Post, lean casein post-insulin; ZC-Pre, ZDF casein pre-insulin;
ZC-Post, ZDF casein post-insulin; LWE-Pre, lean whole egg
pre-insulin; LWE-Post, lean whole egg post-insulin; ZWE-Pre, ZDF
whole egg pre-insulin; ZWE-Post, ZDF whole egg post-insulin.
p-Akt, phosphorylated Akt; ZDF, Zucker diabetic fatty.

and lipid profiles in type 2 diabetics following consumption of a hy-
poenergetic, high-protein diet containing 2 eggs/d. In individuals with
metabolic syndrome, Blesso et al. (23) found a reduction in HOMA-
IR following consumption of a carbohydrate-restricted diet including
3 eggs/d. In the current study, rodent diets were matched for macronu-
trient content and there were no differences in final body weight be-
tween ZDF rats fed casein- and whole egg-based diets. Taken together,

CURRENT DEVELOPMENTS IN NUTRITION



these findings suggest that reported improvements in glycemic control
associated with egg consumption may be related to changes in dietary
macronutrient content or improved body weight management, and not
a direct effect of egg consumption on skeletal muscle insulin signaling.

A limitation of this study is the quantity of dried whole egg used in
the whole egg-based diet, which exceeds the amount of whole egg that
would typically be consumed in a human diet. The quantity of dried
whole egg was determined such that the casein- and whole egg-based
diets were matched for protein content. Additionally, analysis of S-cell
mass and glucose-stimulated insulin secretion would provide insight
into whether S-cell function declines more rapidly in ZDF rats fed the
whole egg-based diet. Lastly, insulin signaling was only analyzed in the
EDL muscle. The EDL is frequently used in analysis of skeletal muscle
insulin signaling (7, 65-68). However, it is possible that sensitivity for
phosphoregulation by insulin may differ in other muscle groups. Future
studies will include analysis of skeletal muscle groups composed of
different fiber types, as well as additional tissues, to provide a more
comprehensive examination of insulin signaling.

In summary, these data suggest that whole egg consumption may
impair insulin sensitivity in T2D rats. Although consumption of a whole
egg-based diet adversely affected whole body insulin sensitivity in ZDF
rats, we were unable to identify changes in skeletal muscle insulin
signaling that could explain this finding. Future studies investigating
the impact of whole egg consumption on S-cell function may offer a
potential explanation for the reduction in fasting serum insulin in ZDF
rats fed a whole egg-based diet. Furthermore, dose-response studies are
warranted to determine whether the observed impairment in insulin
sensitivity is maintained at a lower dose of whole egg.
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