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Abstract

Metaproteomics based on high-throughput tandem mass spectrometry (MS/MS) plays a

crucial role in characterizing microbiome functions. The acquired MS/MS data is searched

against a protein sequence database to identify peptides, which are then used to infer a list

of proteins present in a metaproteome sample. While the problem of protein inference has

been well-studied for proteomics of single organisms, it remains a major challenge for meta-

proteomics of complex microbial communities because of the large number of degenerate

peptides shared among homologous proteins in different organisms. This challenge calls for

improved discrimination of true protein identifications from false protein identifications given

a set of unique and degenerate peptides identified in metaproteomics. MetaLP was devel-

oped here for protein inference in metaproteomics using an integrative linear programming

method. Taxonomic abundance information extracted from metagenomics shotgun

sequencing or 16s rRNA gene amplicon sequencing, was incorporated as prior information

in MetaLP. Benchmarking with mock, human gut, soil, and marine microbial communities

demonstrated significantly higher numbers of protein identifications by MetaLP than Pro-

teinLP, PeptideProphet, DeepPep, PIPQ, and Sipros Ensemble. In conclusion, MetaLP

could substantially improve protein inference for complex metaproteomes by incorporating

taxonomic abundance information in a linear programming model.

Author summary

Inferring a reliable list of proteins from identified peptides in metaproteomics is non-triv-

ial because of the prevalence of degenerate peptides in many metaproteome databases.

Degenerate peptides are shared among multiple proteins and, therefore, cannot be

uniquely attributed to any protein. Here, we developed a protein inference algorithm,
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MetaLP, for shotgun proteomics analysis of microbial communities to better handle

degenerate peptides. Two key innovations in MetaLP were the use of taxonomic abun-

dances as prior information and the formulation of protein inference as a linear program-

ming problem. These features enabled MetaLP to produce substantially more protein

identifications in complex metaproteomic datasets than many existing protein inference

algorithms.

This is a PLOS Computational Biology Methods paper.

1 Introduction

Nearly all natural and human-associated ecosystems host microbial communities that are

responsible for cycling necessary nutrients [1–4]. Most studies of these microbial communities

are based on their metagenomes [5]. But metagenomics results cannot determine whether the

genetic potential encoded in the metagenomes is actively expressed as proteins [6], which is a

prerequisite for metabolic activities [7]. Metaproteomics identifies proteins in environmental

samples of a microbial community and provides insights into their functional states in differ-

ent conditions. Discovery metaproteomics studies are generally based on high-throughput liq-

uid chromatography-tandem mass spectrometry (LC-MS/MS). Proteins are digested into

peptides and analyzed by LC-MS/MS to generate MS/MS data [8]. Identification of proteins

from MS/MS data involves two key computational tasks: peptide identification and protein

inference. In peptide identification, MS/MS data is searched against a pre-defined protein

sequence database to identify a set of peptide-spectrum matches (PSM) and peptides. In pro-

tein inference, the identified peptides are assembled into a list of identified proteins.

Inferring reliable proteins from identified peptides is non-trivial because of degenerate pep-

tides that are shared among multiple proteins and, therefore, cannot be uniquely attributed to

any proteins. Many methods have been developed to assign unique and degenerate peptides to

proteins and rank protein candidates based on their identification confidence. Generally, the

protein inference tools are based on either statistical models or machine (deep) learning mod-

els. The methods using statistical models embody a set of statistical assumptions concerning

the generation of proteins and peptides. For instance, ProteinProphet [9] employed an expec-

tation-maximization algorithm to estimate the probability for a protein to be present in a sam-

ple. ProteinLP [10] constructed an optimization problem to handle degenerate peptides and

used linear programming to estimate the protein probabilities. MSBayesPro [11] and Fido [12]

estimated protein probabilities using Bayesian models. Serang et al. proposed a Bayesian

method for computing posterior protein probabilities [13]. EPIFANY [14] used Bayesian net-

works to infer the protein probabilities. Proteins can also be inferred using machine learning

techniques with few or no assumptions [15]. For example, BagReg [16] used a bagging-like

strategy with a logistic regression classifier to extract features and score the proteins. DeepPep

[17] applied a convolutional neural network to score the protein. However, it is still a major

challenge for the existing algorithms to achieve good protein inference in metaproteomics

because many peptides are shared among homologous proteins in different microbial species

in a complex microbial community. These degenerate peptides are difficult to be assigned to

their originating proteins without supplementary biological information.
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Protein inference in proteomics has been assisted using other biological information,

including transcriptomics [18], functional association network [19]. protein interaction net-

works [20, 21]. These studies showed that the number of proteins identified in proteomics

analysis can be improved by utilizing these types of supplementary information.

In this study, we developed a protein inference algorithm, called MetaLP, for shotgun pro-

teomics analysis of microbial communities. It was optimized for metaproteomics to improve

the use of degenerate peptides for protein inference. MetaLP integrated taxonomic abundances

as prior information and formulated protein inference as a linear programming problem.

These features enabled MetaLP to produce substantially more protein identifications in com-

plex metaproteomics datasets than the existing protein inference algorithms benchmarked

here.

2 Methods

Since a degenerate peptide can be mapped to multiple proteins and a protein can be generated

by more than one organism, the input can be represented as a tripartite graph (Fig 1. The left

is a set of identified peptides. The middle is a set of candidate proteins that have at least one

constituent peptide. And the right is a set of species that may produce those proteins. The abil-

ity to detect a protein present in the samples depends on how we assign the unique and degen-

erate peptides to the proteins that have truly generated them and the abundance of that

protein in the samples. We assume that a species with a larger population size generates more

proteins in a metaproteome sample. Because this assumption may not be strictly correct in

many real-world communities, we relax the taxonomic level to operational taxonomic unit

clusters, each of which may contain multiple organisms that have similar abundance. We for-

mulate the protein inference as an optimization problem for finding a likely smallest subset of

Fig 1. An example of protein inference tripartite graph given identified peptides and protein annotations.

https://doi.org/10.1371/journal.pcbi.1010603.g001
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candidate proteins that best ‘explain’ both the identified peptides and the operational taxo-

nomic unit clusters with known abundances. To solve the optimization problem, we designed

a linear programming (LP) model, named MetaLP, to incorporate the peptide identification

results and taxonomic cluster abundances from metagenomics sequencing. The contribution

allocation of degenerated peptides can be abstracted as an optimization problem as shown in

the constraints in MetaLP. And linear programming is well known for finding the optimal

means of allocating finite resources among competing entities. In addition, it is easy and con-

venient to incorporate the species abundance information in our proposed model. Here, we

expressed the joint probability with a chain rule to transform it into a chain of conditional

probabilities, which could be easily added as logical constraints. All the above factors inspired

us to investigate the linear programming method for the protein inference problem.

The LP model can be solved quickly by existing LP solvers [22]. The following sections will

describe the MetaLP model and the notations used in it, and explain the workflow of protein

inference based on MetaLP model and the estimation of the abundance of operational taxo-

nomic unit (OTU) clusters. Here, OTU is defined as an operational unit used to classify groups

of closely related organisms at the genome level. MetaLP is freely available under the GNU

GPL license at https://github.com/Biocomputing-Research-Group/metaLP, where step-by-

step installation and usage were provided.

2.1 Notations

Suppose we have n peptides identified by an existing database searching tool, m candidate pro-

teins containing these identified peptides, and s candidate operational taxonomic unit clusters.

We use pepi, proj, and otuk to denote the presences of ith peptide, jth protein, and kth opera-

tional taxonomic unit cluster measured in the metaproteome samples, respectively.

Let MS denote the observed mass spectra data. P(pepi|MS) is the probability that the ith
identified peptide exists and is measured in the metaproteome samples. P(proj|MS) denotes

the probability that the jth protein exists and is measured in the metaproteome samples. P
(otuk|MS) denotes the probability that the kth operational taxonomic unit cluster exists and is

measured in the metaproteome samples, which serves as priors to adjust P(pepi|MS).

2.2 MetaLP model

A peptide is present if at least one of its parent proteins and one of its operational taxonomic

units are present, which can be described as in Eq 1.

PðpepijMSÞ ¼
Xm

j¼1

Xs

k¼1

Pðpepi; projjotuk;MSÞPðotukjMSÞ ð1Þ

If the jth protein and the kth operational taxonomic unit cluster do not contain the ith peptide,

the corresponding probability has the value of zero. Here, the joint probability, P(pepi, proj|
otuk, MS), denotes the probability that the ith peptide and the jth protein are present and mea-

sured, given that the kth operational taxonomic unit cluster. This joint probability relates the

peptide probability to the protein probability given the presence of operational taxonomic

units.

We formulate the protein inference problem as an optimization problem using the linear

programming model. The objective is to minimize
Pm

j¼1
PðprojjMSÞ so as to shrink some
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protein probabilities to 0.

minimize
Xm

j¼1

PðprojjMSÞ ð2Þ

The MetaLP model has the following three types of constraints.

8i; PðpepijMSÞ þ � �
Xm

j¼1

Xs

k¼1

Pðpepi; projjotuk;MSÞPðotukjMSÞ ð3Þ

8i; PðpepijMSÞ � � �
Xm

j¼1

Xs

k¼1

Pðpepi; projjotuk;MSÞPðotukjMSÞ ð4Þ

8i; 8j; PðprojjMSÞ �
Xs

k¼1

Pðpepi; projjotuk;MSÞPðotukjMSÞ ð5Þ

The constraints 3 and 4 control the difference between the probability of a peptide being mea-

sured by LC-MS/MS and the probability of it being identified. The � denotes the difference

between the observed and theoretical peptide probabilities. This parameter reflects how confi-

dent the peptide identification tool is. For example, � = 0 means that the input peptide proba-

bility is perfectly accurate. In our experiments, we used 0 as the default setting. The constraint

5 is used to find the minimum value in P(proj|MS). Since only a subset of candidate proteins

are truly present and measured in the samples, some protein probability values should be zero.

Thus, we minimize
Pm

j¼1
PðprojjMSÞ. To achieve this objective function, the LP solver needs to

adjust the joint probability, P(pepi, proj|otuk, MS), based on constraint 5 to set some protein

probabilities to zero. The MetaLP model can be quickly solved with standard LP solvers. In

this study, we used Gurobi Optimizer v9.1.2 [23].

2.3 OTU probability estimation

OTU is considered as the operational unit to classify groups of closely related organisms. In

this work, we assume that a microorganism with a larger population may generate more pro-

teins. Thus, the OTU population serves as the prior probability that a protein originates from

the OTU. We defined the OTU clusters based on either the metagenomic binning or the 16S

rRNA sequence clustering. Specifically, the OTU clusters were constructed in one of the fol-

lowing three ways depending on the input data. When the reference genomes were available

for the microbial community, the DNA sequencing reads were mapped to the reference

genomes using BBSplit in BBTools package version 38.94 [24]. When the microbial genomes

need to be reconstructed from the shotgun sequencing data of the metagenome samples, the

DNA reads were assembled using metaSPAdes [25] and metagenome-assembled genomes

were binned using MetaBAT2 [26] from MetaWRAP [27]. The DNA reads were then mapped

to all the bins using Bowtie2 [28], and the abundance of each bin was computed as the number

of DNA reads in that bin. Here, the bins and clusters are used interchangeably. When the 16s

rRNA gene sequencing data was provided, sequences were clustered into bins based upon sim-

ilarity using vsearch version 11 [29]. The result OTU clusters were annotated by searching

against the RDP database [30], and the corresponding results were used to locate reference

genomes and build the matched protein databases. All the above tools were used with their

default parameters.
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Once the OTU clusters were constructed, the protein sequences can be predicted from ref-

erence genomes or assembled genomes and assigned to the corresponding clusters using the

mapping between genomes and clusters. Here, we do not need the OTU clusters at high granu-

larity levels. It would be impractical to have each cluster contain the sequences only from one

species since existing reference genomes may not match the organisms in the experimental

samples. Also, the results in Section 3 demonstrate that the OTU clusters generated by Meta-

BAT2 were accurate enough to significantly improve the number of identified proteins. The

probability of the OTU clusters was calculated as in Eq 6.

PðotukÞ ¼
#Reads 2 OTU Clusterk

#Total Reads
ð6Þ

In Eq 6, each OTU cluster may contain multiple organisms. Given that the mass spectra are

generated independent of the metagenome sequencing data, we have P(otuk) = P(otuk|MS).

We also used the sequencing depth to estimate the OTU probability. The probability of the

OTU clusters was calculated as in Eq. A in S1 Text. The Benchmarking of protein identifica-

tion at 1% FDR were shown in Tables F and G in S1 Text. MetaLP achieved the best perfor-

mance compared to the other tools, including two other variants of MetaLP.

2.4 Schematic overview and implementation

The schematic overview of our MetaLP is shown in Fig 2, which includes the metaproteomics

pipeline (Part A) and metagenomics pipeline (Parts B & C). In our experiments, the input data

for both pipelines were measured from the same biological replicates to ensure that the protein

databases matched with the mass spectra data.

In the metaproteomics pipeline, the mass spectra data were extracted from raw data and

reformatted by MSConverter [31]. MetaLP requires a list of PSMs or peptides with probability

scores generated by database search engines or filters. A sample input of PSMs was provided

in our GitHub repository. We tested with two database search engines, i.e., Comet [32] and

Sipros-Ensemble [33, 34]. PeptideProphet [35] was used as a filter to re-rank PSMs and pro-

duce peptide candidates with probabilities, i.e., P(pep|MS).

In the metagenomics pipeline, we implemented two workflows to obtain OTU clusters, one

based on the whole-genome DNA sequencing (WGS) (Part B) and the other based on 16s

Fig 2. The schematic overview of MetaLP.

https://doi.org/10.1371/journal.pcbi.1010603.g002
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rRNA gene sequencing data (Part C). Details about these two workflows are described in Sec-

tion 2.3. The resultant probabilities of OTU clusters were used in our MetaLP model.

3 Experiments and results

3.1 Experimental design and benchmark datasets

MetaLP was compared with five other popular protein inference algorithms, including Pro-

teinLP [10], ProteinProphet [9], Sipros-Ensemble [33], PIPQ [36] and DeepPep [17]. To inves-

tigate the importance of OTU priors in MetaLP, we also implemented a variant of MetaLP,

denoted as MetaLP�, without the probabilities of OTU clusters (i.e., all P(otu|MS) were set to

1). Note that Sipros-Ensemble is a complete framework that contains database searching, fil-

tering, and protein inference, which are denoted as SE-S, SE-F, and SE-PI, respectively, in the

following sections. For the PIPQ algorithm, we employed all the options provided, which

include equal division, multiple counting, and linear programming, and the results from the

variants of PIPQ are labelled as PIPQ-e, PIPQ-m, and PIPQ-lp. We used two combinations of

database search engines and filters, one with Comet [32] as a search engine and PeptidePro-

phet [35] as the filtering algorithm and the other with Sipros-Ensemble [33] for both database

searching and filtering.

The performance of MetaLP was evaluated on four microbial communities, including three

metaproteome datasets from mock communities [37], three metaproteome datasets from

marine communities [38], three metaproteome datasets from soil communities [39], and one

human gut metaproteome dataset [40]. All metaproteome samples were measured on the LTQ

Orbitrap Elite mass spectrometers (Thermo Scientific) using the Multidimensional Protein

Identification Technology (MudPIT) approach [41].

For the mock community, the taxonomy of the bacteria was known, so the genomes of cor-

responding bacteria were used as OTU clusters. For the marine and soil metaproteome sam-

ples, the organism compositions were unknown and the metagenomic sequencing data was

used to construct OTU clusters. For the human gut metaproteome, we used 16s rRNA gene

sequencing data to obtain OTU clusters. Table 1 shows the number of OTU clusters from each

metaproteome and the percentages of the cross-cluster peptides which was defined as the pep-

tides shared across more than one OTU cluster. The higher the percentage of cross-cluster

peptides was, the more closely related species were present in the metaproteome samples. The

experimental design was based on two factors: the complexity of microbial community com-

position and the estimation accuracy of OTU clusters. As shown in Table 1, the mock commu-

nity, and human gut data have relatively lower complexity and the marine metaproteomes

have relatively higher complexity. We have three routes to estimate the OTU probabilities. The

route using known species was considered to have high OTU estimation accuracy. The route

with unknown species using WGS data has low OTU estimation accuracy, and the route using

16s rRNA data is in the middle. We want to investigate the performance of MetaLP under dif-

ferent levels of microbial composition complexities and OTU estimation accuracy. From the

Table 1. The number of taxonomic clusters and percentage of cross-cluster peptides of all the identified peptides for different microbial communities.

Metaproteomesa P2 P3 P4 M1 M2 M3 S1 S2 S3 HG

# OTU clusters 22 22 22 169 169 169 71 53 80 13

% Cross-cluster peptides 17% 18% 18% 34% 35% 34% 21% 16% 20% 19%

a Metaproteomes: three mock microbial communities: P2, P3, P4; three marine microbial communities: M1, M2, M3; three soil microbial communities: S1, S2, S3; a

human gut metaproteome: HG

https://doi.org/10.1371/journal.pcbi.1010603.t001
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experimental results, we found that MetaLP could achieve greater improvement for more com-

plex microbial communities and was not sensitive to the OTU estimation accuracy.

3.2 Algorithm testing

Benchmarking datasets were searched using Comet 2018.01 rev. 2 and Sipros-Ensemble Ver-

sion 1.2. The precursor mass tolerance was set to 0.09 Da, fragment mass tolerance was set to

0.01 Da, peptide mass range was set from 700 Da to 7000 Da, Trypsin/P was used for digest

enzyme, and the allowed number of missing cleavage was set to three. All other parameters

were set to default. Comet and Sipros-Ensemble were executed on a workstation with two

2.4GHz Intel Xeon E5–2680 v4 CPUs and 64 GB memory. The PSM identification results were

filtered by PeptideProphet from TPP v5.2.0 with default configuration settings and executed

on a workstation with one 2.6 GHz Intel(R) Xeon(R) Silver 4112 CPU and 32 GB memory.

The protein inference tools were executed on a workstation with a 2.6 GHz Intel(R) Xeon(R)

Silver 4112 CPU and 32 GB memory. The metagenomic sequencing data were assembled and

binned by metaSPAdes and MetaBAT2, respectively, using the default parameters on a work-

station with an Intel Xeon E5–4640 CPU and 512 GB memory. The 16s rRNA gene sequencing

data were clustered and annotated by vsearch v11 on a workstation with a 2.3 GHz Intel(R)

Xeon(R) Gold 5118 CPU and 32 GB memory.

The time and memory consumption of MetaLP is shown in Table D in S1 Text. We picked

one dataset from each microbial community. MetaLP could finish the protein inference in less

than a minute. The memory usage of MetaLP is related to the number of peptides, and it used

2.5 GB memory for the marine data set with 25,411 peptides. We believe that MetaLP can be

easily running at a regular workstation without any memory issues.

3.3 Evaluation

For all the benchmark methods and datasets, we applied the target-decoy strategy [42] to con-

trol the false discovery rates (FDR) at the PSM, peptide, and protein levels. The decoy proteins

were generated by reversing the target protein sequences. The FDR is estimated as in Eq 7. The

identified peptides with FDR controlled at 1% were used as input for MetaLP and other bench-

marked tools. For MetaLP, the probabilities of OTU clusters for decoy proteins were set to the

same values as for the corresponding target proteins. We evaluated the performance of all

methods by the number of target proteins/protein groups with the protein level FDR con-

trolled at 1%. We used protein groups when identified peptides were not distinguishable. Pro-

tein groups were defined as the set of proteins with the same set of identified peptides, which

are not distinguishable. To avoid double standards for evaluation, we applied the same rule to

define protein groups for all the benchmarked algorithms, i.e., at least one unique peptide

needed for an identified protein/protein group.

In addition to the commonly used targetdecoy strategy in Eq 7, we also use the “picked” tar-

get-decoy strategy [43] to control the FDRs. Due to the homology between proteins and spe-

cies, Eq 7 may not work well at protein-level. The “picked” target-decoy strategy may address

this problem by counting the proteins from the same gene once and keeping the one with the

highest score for FDR estimation in a pair of target and decoy proteins.

FDR ¼
#Decoys
#Targets

ð7Þ
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3.4 Performance comparison on mock communities

The MetaLP was compared with eight different combinations of existing database searching

and filtering algorithms on the three mock community samples (Table 2 and Fig A in S1 Text).

Table 2 shows the identifications of proteins filtered at 1% FDR. Across the three mock meta-

proteomes, MetaLP generated more protein identifications than any other protein inference

algorithm. It achieved a 2.1% to 4.7% increase in the number of identified proteins compared

to the second-best among the benchmarked algorithms. Without considering MetaLP, all the

other benchmarked tools performed similarly on the mock communities. The MetaLP without

using OTU cluster probabilities could produce comparable results to the second-best method.

Fig A in S1 Text shows the overlap of identified proteins among benchmarked approaches. On

average, 320 proteins were uniquely identified by MetaLP, which is the second-best among all

the benchmark methods. DeepPep had the most number of uniquely identified proteins, but it

obtained fewer proteins in total. The results for the mock community filtered by the picked

target-decoy strategy at 1% FDR are shown in Table A in S1 Text. MetaLP also achieves a con-

siderable improvement of identified proteins (2.6% to 5.3%). The identified proteins with var-

ied FDRs are shown in Figs J and N in S1 Text, which demonstrate that MetaLP outperformed

other benchmarked protein inference algorithms.

3.5 Performance comparison on human gut community

The MetaLP and benchmarked methods were also compared on a human gut microbial sam-

ple with matched MS/MS proteomics data and 16s rRNA gene sequencing data. For MetaLP,

the OTU clusters were generated and annotated as in Section 2.3. The protein database was

constructed by extracting translated proteins from the NCBI database [44] using the corre-

sponding taxonomy identifier provided by the original study [40]. The identified proteins at

1% FDR are shown in Table 2. Similar to the mock community samples, our MetaLP identified

2.2% more proteins for the Comet & PeptideProphet pipeline and 3.4% more proteins using

Table 2. Benchmarking of protein identification at 1% FDR using three mock metaproteomes and a human gut metaproteome.

Database search engines & Filters

Comet with PeptideProphet SE-SFc

Metaproteomesa P2 P3 P4 HG P2 P3 P4 HG

PI toolsb

SE-PI 8627 7524 6605 3602 9153 7258 7006 3393

LP 8684 7605 6686 3945 9168 7324 7038 3682

PP 8678 7620 6579 3895 9157 7327 7010 3571

DP 8641 7617 6452 2762 5330 2758 6916 2370

PIPQ-ed 8648 7612 6681 3976 9193 6403 6926 3872

PIPQ-md 8682 7587 6766 4085 8158 7201 6463 3843

PIPQ-lpd 8764 7721 6746 4141 9206 6657 6933 2931

MetaLP� 8663 7581 6676 3832 9137 7277 7007 3527

MetaLP 9032 7883 6937 4233 9487 7669 7335 4004

a Metaproteomes: three mock microbial communities: P2, P3, P4; a human gut metaproteome: HG.
b Protein inference tools(PI tools): SE-PI, Sipros Ensemble protein inference; LP, ProteinLP; PP, ProteinProphet; DP, DeepPep; MetaLP�, MetaLP model without OTU

cluster probabilities.
c SE-SF: Sipros-Ensemble searching and filtering.
d PIPQ with three different options, i.e., PIPQ-e (equal division), PIPQ-m (multiple counting), PIPQ-lp (linear programming).
e The best entry was in bold, the second best was underlined.

https://doi.org/10.1371/journal.pcbi.1010603.t002
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the Sipros-Ensemble pipeline than the second-best one Fig D in S1 Text demonstrates that 406

proteins were only inferred by MetaLP, which outperformed all the other benchmarked meth-

ods. The identified proteins with varied protein level FDRs are shown in the Figs M and Q in

S1 Text. MetaLP achieves 6.8% and 7.1% more identified proteins for the Comet & Peptide-

Prophet pipeline and Sipros-Ensemble framework, respectively, with FDR controlled by the

picked target-decoy strategy.

3.6 Performance comparison on marine and soil communities

We also compared the performance of MetaLP and other tools on marine and soil microbial

communities samples. All samples had matched metagenome and metaproteome datasets. The

OTU clusters were processed as in Section 2.3. The microbial compositions were highly com-

plex for the marine and soil microbial communities, given the large numbers of OTU clusters

and the high percentages of cross-cluster peptides as shown in Table 1. Table 3 shows the iden-

tifications of proteins filtered at 1% FDR. In general, the Sipros-Ensemble pipeline produced

more identified proteins than the Comet & PeptideProphet pipeline, no matter which protein

inference tool was used. Across all the pipelines and the metaproteome samples, MetaLP

Table 3. Benchmarking of protein identification at 1% FDR using three marine metaproteomes and three soil metaproteomes.

Database search engines & Filters

Comet with PeptideProphet SE-SF

Marine Metaproteomesa M1 M2 M3 M1 M2 M3

PI toolsb

SE-PI 9183 9990 10465 11160 10720 10405

LP 10052 10903 11442 15021 14290 14042

PP 9329 10127 10655 14162 14221 15547

DP 3021 3608 3679 3435 2758 4657

PIPQ-ed 7789 8063 8471 14052 10035 15249

PIPQ-md 10027 8833 8954 12894 14136 16470

PIPQ-lpd 10412 10986 11775 15532 15441 16619

MetaLP� 9180 9964 10412 13387 12248 11062

MetaLP 11881 12826 13342 18562 18228 18030

Soil Metaproteomesa S1 S2 S3 S1 S2 S3

PI toolsb

SE-PI 4901 5272 4906 5859 6216 6005

LP 5021 5373 4935 6546 6464 6520

PP 4941 5378 4946 6528 6512 6632

DP 3115 3037 3427 3640 3369 4307

PIPQ-ed 5231 5443 5153 5905 5553 6079

PIPQ-md 5236 5512 5208 6229 6339 6739

PIPQ-lpd 5255 5535 5203 5955 5748 6662

MetaLP� 4916 5303 4849 6230 6306 6262

MetaLP 5516 5769 5440 7042 7013 7544

a Three marine and three soil metaproteomes M1 (Marine 1), M2 (Marine 2), M3 (Marine 3), S1 (Soil 1), S2 (Soil 2), S3 (Soil 3).
b Protein inference tools(PI tools): SE-PI, Sipros Ensemble protein inference; LP, ProteinLP; PP, ProteinProphet; DP, DeepPep; MetaLP�, MetaLP model without OTU

cluster probabilities.
c SE-SF: Sipros-Ensemble searching and filtering
d PIPQ with three different options, i.e., PIPQ-e (equal division), PIPQ-m (multiple counting), PIPQ-lp (linear programming).
e The best entry was in bold, the second best was underlined.

https://doi.org/10.1371/journal.pcbi.1010603.t003
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achieved the highest number of protein identifications. For the Comet & PeptideProphet pipe-

line, the improvements of MetaLP were 14.1%, 16.7%, and 13.3% compared to the second-best

method on the three marine metaproteome data sets. For the Sipros Ensemble pipeline, the

improvements of MetaLP were 19.5%, 18%, and 8.4% compared to the second-best method on

the three marine metaproteome datasets. For the three soil data sets, MetaLP identified 5%,

4.2%, 4.5%, 7.6%, 7.7%, and 11.9% more proteins compared to the second-best ones for Comet

& PeptideProphet and Sipros Ensemble pipelines, respectively. Figs B and C in S1 Text demon-

strate that MetaLP uniquely inferred approximately 20,000 proteins for each marine microbial

sample and approximately 2,000 proteins for each soil microbial sample, which outperformed

all the other benchmarked methods. The identified proteins vs. FDRs are shown in Figs K, L,

O, and P in S1 Text using two target-decoy strategies. The results at 1% FDR controlled by the

picked target-decoy strategy are shown in Table B in S1 Text. MetaLP obtains 9.1% to 30%

more identified proteins for the marine metaproteomes and 3.7% to 12% more identified pro-

teins for the soil metaproteomes. From these experimental results, we found that MetaLP pro-

vided a significant improvement of protein inference in the complex microbial communities,

such as marine and soil communities, than the simple communities, i.e., the mock communi-

ties and the human gut microbiota.

3.7 Performance comparison using a synthetic database with real-world

decoys

All the experiments above used reverse sequences as decoys to estimate FDRs. To make the

benchmarking a better simulation of real-world analysis, we combined the marine database

containing 2,876,135 protein sequences and the human gut database containing 106,140 pro-

tein sequences and searched the human gut MS/MS dataset against this synthetic database

with reverse decoys. The FDR was estimated as before, but we regarded protein identifications

from the marine database as false identifications and protein identifications from the human

gut database as true identifications after the FDR was controlled at 1%. Note that protein

groups that contained at least one human gut protein were classified as true. The probabilities

of the OTUs to which marine proteins belonged were set to zero since we knew no marine pro-

teins were present in the human gut samples. This is one of the key contributions of MetaLP

that it can utilize the genomic information, which informed us that no marine microbes were

in the proteome samples. The identification results from all benchmarked tools are shown in

Table 4. The accuracy is defined as the ratio of the true protein number to the false protein

number at 1% FDR. All the methods achieved more than 93% accuracy. MetaLP obtained the

highest accuracy and yielded the largest number of true proteins and the fewest false proteins.

4 Discussion

4.1 Performance assessment of different OTU estimation strategies

In order to assess the impact of different ways of estimating OTU probabilities, we did a com-

parison for mock communities and the human gut metaproteome because they have similar

microbial complexities (there were 22 species in mock communities and 13 species in the

human gut metaproteome). The OTU probability estimations for the mock communities and

the human gut metaproteome used the whole genome sequencing (WGS) data and the 16s

rRNA sequencing data, respectively. For the mock communities, MetaLP identified 2.6% and

3.9% more proteins on average compared to the second best for the Comet & PeptideProphet

pipeline and Sipros-Ensemble framework, respectively. For the human gut dataset, MetaLP

identified 2.2% and 3.4% more proteins compared to the second best for the Comet &
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PeptideProphet pipeline and Sipros-Ensemble framework, respectively. The comparison

revealed that the performance improvement using the 16s rRNA data was slightly lower than

using the WGS data but not significant. It may be because of the better accuracy of the OTU

clustering using the WGS data than the 16s rRNA sequencing data. In general, MetaLP is not

sensitive to the OTU estimation accuracy.

4.2 Accuracy on proteins containing degenerate peptides

To investigate the performance of different methods in tackling the peptide degeneracy issue,

we present the identification results of five methods when inferring proteins containing degen-

erate peptides (Table E in S1 Text). Since there is no ground truth for the proteins that can be

measured by the MS instrument, following the evaluation metric in ProteinLP [10] and set

stringent cutoff probabilities to annotate the positives using the results generated by Protein-

Prophet. For all the datasets, we count the number of true positives and false positives identi-

fied by ProteinProphet (PP), ProteinLP (LP), DeepPep (DP), and MetaLP among their top-k

ranked proteins. The value of k was set to the number of proteins with high probabilities

reported by ProteinProphet. The cutoff probabilities were set to 0.99 for mock community

data sets and 0.98 for marine, soil, and the human gut metaproteome data sets. The true posi-

tives (TP) and the false positive (FP) proteins were set to the target and decoy proteins in the

top-k ranked proteins. We split the identified proteins into two categories: “degenerate pro-

teins” were proteins that shared peptides with other proteins, and “simple proteins” were those

that had at least one unique peptide not shared by any other protein.

From Table E in S1 Text, we can reach the following conclusions. First, DeepPep reported

the smallest number of TP degenerate proteins and the largest number of FP simple proteins

in all datasets. Given that DeepPep was based on a deep convolutional neural network frame-

work to predict the protein set from a proteomics mixture, it may not generalize well to the

data sets used in this study. Second, ProteinProphet, ProteinLP, and MetaLP� identified nearly

Table 4. Identification of human gut proteins at 1% FDR from a synthetic database containing both the marine

database and the human gut database.

Total Falseb Truec Accuracy

PI toolsa

SE-PI 3221 69 3152 0.979

LP 3509 76 3433 0.978

PP 3433 72 3361 0.979

DP 2287 51 2236 0.978

PIPQ-ed 3582 94 3488 0.974

PIPQ-md 3517 234 3283 0.933

PIPQ-lpd 3543 75 3468 0.979

MetaLP� 3372 68 3304 0.980

MetaLP 3742 8 3734 0.998

a Protein inference tools(PI tools): SE-PI, Sipros Ensemble protein inference; LP, ProteinLP; PP, ProteinProphet; DP,

DeepPep; MetaLP�, MetaLP model without OTU cluster probabilities.
b False IDs of marine proteins.
c True IDs of human gut proteins.
d PIPQ with three different options, i.e., PIPQ-e (equal division), PIPQ-m (multiple counting), PIPQ-lp (linear

programming).
e The best entry was in bold, the second best was underlined.

https://doi.org/10.1371/journal.pcbi.1010603.t004

PLOS COMPUTATIONAL BIOLOGY MetaLP

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010603 October 21, 2022 12 / 20

https://doi.org/10.1371/journal.pcbi.1010603.t004
https://doi.org/10.1371/journal.pcbi.1010603


the same numbers of simple and degenerate proteins in most cases. This showed that these

methods have similar discrimination power on ranking degenerate and simple proteins.

Third, MetaLP was able to identify more TP degenerate proteins and fewer FP proteins than

ProteinProphet, ProteinLP, and MetaLP� on all the datasets. We reasoned that the MetaLP

model can prioritize some degenerate proteins from others with the extra information from

metagenome sequencing data. Therefore, our MetaLP method can handle the degenerate pro-

tein issue better than the benchmarked tools.

4.3 Investigation of parameter � and the quality of identified peptides

The only parameter, �, in our MetaLP model was set to zero by default. To investigate the effect

of this parameter, we ran MetaLP on the human gut, marine, and soil data sets by adjusting

the values of � from 0 to 0.9 with the step size of 0.1. Since all the probabilities were less than or

equal to 1.0, we left out the parameter value of 1.0. Figs E to H in S1 Text show the numbers of

identified proteins under the different values of �. The performance differences between the

optimum value and the default value of � were 2.8%, 5.7%, 4.9%, and 3.9% on average for

mock, marine, soil, and human gut microbial communities, respectively. Even though � = 0 is

not the best choice, the improvement from adjusting � is marginal.

To assess the impact of the identified peptide quality on protein inference, we tested

MetaLP and benchmarked algorithms using all the reported peptides by the search engines

without filtering. The protein inference results at 1% FDR are shown in Table C in S1 Text.

The results demonstrate that MetaLP still performed the best among all the benchmarked algo-

rithms, but there was a slight drop in the improvement of MetaLP compared to ProteinLP, i.e.,

the improvement of MetaLP dropped by 0.9%, 2.1%, and 4.9% on average for mock commu-

nity datasets, marine metaproteomes, and soil metaproteomes, respectively. Note that we did

not test the protein inference function in the Sipros-Ensemble framework because it required

the filtered peptides to infer proteins. From Table C in S1 Text, we can find that PSMs/peptides

do not need to be highly confident for the benchmarked tools to infer proteins. As long as the

probabilities reported by the search engines reflect how likely a peptide matches with a mea-

sured spectrum, existing protein inference tools can adjust the protein probabilities properly.

The � parameter may improve the results when there is a discrepancy between the reported

probability and the actual probability of a PSM/peptide.

4.4 Analysis of the taxonomy information from protein identification

results

To take a deeper look at the identified proteins (only) inferred by MetaLP from the taxonomic

and functional aspects, we analyzed the proteins using BLASTP [45] and annotated the molec-

ular functions and pathways using Uniprot [46] and KEGG [47].

To show the impact of MetaLP on the taxonomy analysis, we mapped the identified pro-

teins at 1% FDR to the corresponding species for mock and soil datasets. For mock communi-

ties, we found that MetaLP identified significantly more proteins for the low-abundant species.

Fig I in S1 Text shows the identified protein counts for the five least abundant species. Com-

pared to the second-best protein inference tool, MetaLP was able to identify more proteins

from those low-abundance organisms, which will provide more functional insights into those

species. For the least abundant species (i.e., Nitrosomonas ureae), we could find more related

pathways using the proteins only identified by MetaLP as shown in Table 5.

For the soil metaproteomes, we analyzed the taxonomic profile by searching inferred pro-

teins against the non-redundant protein database of NCBI. The phylogenetic tree for the taxa

that were only detected from the inferred protein list by MetaLP is shown in Fig 3. There are
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Table 5. Pathways found by the proteins identified only by MetaLP for the least abundant species in the mock

communities.

Pathways

Alanine, aspartate and glutamate metabolism

Bacterial chemotaxis

Monobactam biosynthesis

Nucleotide excision repair

Oxidative phosphorylation

Pantothenate and CoA biosynthesis

RNA degradation

Selenocompound metabolism

Sulfur metabolism

Two-component system

Valine, leucine and isoleucine biosynthesis

https://doi.org/10.1371/journal.pcbi.1010603.t005

Fig 3. Phylogenetic tree of the species only found by the MetaLP from the soil metaproteomes.

https://doi.org/10.1371/journal.pcbi.1010603.g003
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69 taxa detected by the proteins found only by MetaLP. Some taxa were found playing impor-

tant roles in the soil microbial communities. For example, Vicinamibacterales is one of the

major groups constituting the HM-Tol module [48], which is an indicator of metal pollution;

Bradyrhizobium has positive effects on biological nitrogen fixation [49], which is beneficial for

the crops; Spartobacteria is related with metabolising di-(2-ethylhexyl) phthalate (DEHP) bio-

degradation [50]. As shown in Table 6, there are seven more pathways using the proteins iden-

tified only by MetaLP from the least five abundant OTU clusters. Therefore, we believe that,

with the information from OTU clusters, our MetaLP model can provide more sensitive pro-

tein identifications for those low-abundance species.

From the functional aspect, we annotated the molecular functions for the proteins of the

least abundant species (i.e., Odoribacter splanchnicus). We used proteins inferred only by

MetaLP from the human gut metaproteome and the functional annotation is shown in

Table 7. We found that the proteins only inferred by MetaLP are significant for drug design

related to human gut and probiotics: dihydroorotate dehydrogenase inhibitors help arrest the

growth of plasmodium falciparum; elongation factor G affects the adhesion to mucin, which

influences the carbon source for probiotic bacteria; long-chain fatty acid plays an essential role

in assembling the membrane lipids in the gut environment; fructose-bisphosphate aldolase is a

crucial enzyme for gene expression of aloe polysaccharide, which may have prebiotic effects on

gut microbiota; thioredoxin peroxidase is essential for Babesia microti protection against the

adverse environmental factors.

4.5 Relation to the existing works

Supplementary biological information could be incorporated to protein inference. For exam-

ple, Gerster et al. proposed a protein inference method, called MIPGEM [56]. It used a tripar-

tite graph by including, in addition to the relationship between peptides and proteins, the

connection between genes. He et al. designed a linear programming model for protein

Table 6. Pathways found by the proteins identified only by MetaLP for the least abundant OTU clusters in the soil

metaproteomes.

Pathways

Cysteine and methionine metabolism

Biosynthesis of various plant secondary metabolites

Metabolic pathways

Biosynthesis of secondary metabolites

Biosynthesis of cofactors

Glycerolipid metabolism

Biosynthesis of amino acids

https://doi.org/10.1371/journal.pcbi.1010603.t006

Table 7. Molecular functions and corresponding references for the proteins of least abundant species in human

gut proteome.

Protein ID Molecular function Reference

ADY31798 dihydroorotate dehydrogenase [51]

ADY33332 translation elongation factor [52]

ADY32349 long-chain fatty acid-CoA ligase [53]

ADY31784 fructose-bisphosphate aldolase [54]

ADY34425 thioredoxin peroxidase [55]

https://doi.org/10.1371/journal.pcbi.1010603.t007
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inference, called PIPQ, which viewed the protein inference problem as a special protein quan-

tification problem [36]. These two methods and our MetaLP all used tripartite graphs to solve

the protein inference problem. The difference is that MIPGEM constructed a tripartite graph

of peptides, proteins, and genes, whereas MetaLP used taxonomy information not genes. In

metaproteomics, a protein may be produced by more than one species. So, replacing genes by

the taxa is a more general organization of proteins. Also, MIPGEM used a Markovian assump-

tion to deal with the dependencies among peptides and proteins, but MetaLP formulated the

problem as the linear optimization problem. Here, we did not compare the performance of

MetaLP to MIPGEM because MIPGEM achieved comparable performance compared to Pro-

teinProphet in its original study. PIPQ considered the protein inference problem as a protein

quantification problem and the presence of one protein was determined by its abundance,

whereas MetaLP used the genomic information to construct the prior of species abundance.

Another linear-programming-based tool, ProteinLP [10], considered that a protein was pres-

ent if at least one of its peptides was present, whereas MetaLP reported the presence of a pro-

tein by marginalizing the joint probability that the protein, its peptides, and its parent OTUs

were present and measured. The results in Tables 2 and 3 demonstrate that PIPQ performed

the second best in most experimental settings. The improvements made by MetaLP compared

to PIPQ were correlated with the complexity of microbial communities. From Table 4, we

found that PIPQ performed the second best in identifying true proteins for our synthetic data-

set, but its accuracy was not as high as our MetaLP.

The benchmarked protein inference algorithms based on the bipartite graph usually assume

that the proteins and their peptides are equally likely to be present and measured. However,

the presence of a protein is highly related to the distribution of their parent species in the meta-

proteome samples. MetaLP incorporates the species abundance as the prior knowledge. Thus,

the probability of a protein being present and measured is adjusted with regarding to the prob-

abilities of its peptides and the abundances of its parent species. When there are two proteins

with the same support at the peptide level, MetaLP tends to pick the one with evidence from

the metagenomic sequencing data, whereas other tools may randomly pick a protein. This

could be the main reason that some proteins were missed by MetaLP but reported by other

benchmarked tools.

5 Conclusion

In this study, an integrative linear programming model, called MetaLP, was designed to gener-

ate a reliable list of proteins from identified peptides. MetaLP incorporates the taxonomic

abundances as prior information and formulates the protein inference as a linear program-

ming problem. We extracted the taxonomic abundances from the metagenomic sequencing

data or the 16s rRNA gene amplicon sequencing data. The experiments on both mock and

real-world microbial communities demonstrated that MetaLP obtained the highest number of

protein identifications compared to five existing protein inference methods. The improvement

of the metaproteomics results of microbial communities using their taxonomic information

shows the value of integrated meta-omics studies.
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