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Abstract: Vaginitis is one of the commonly encountered diseases of female reproductive tract infec-
tions. The clinical diagnosis mainly relies on manual observation under a microscope. There has been
some investigation on the classification of vaginitis diseases based on computer-aided diagnosis to
reduce the workload of clinical laboratory staff. However, the studies only using RGB images limit
the development of vaginitis diagnosis. Through multi-spectral technology, we propose a vaginitis
classification algorithm based on multi-spectral image feature layer fusion. Compared with the
traditional RGB image, our approach improves the classification accuracy by 11.39%, precision by
15.82%, and recall by 27.25%. Meanwhile, we prove that the level of influence of each spectrum on
the disease is distinctive, and the subdivided spectral image is more conducive to the image analysis
of vaginitis disease.

Keywords: vaginitis; multi-spectral image; image classification

1. Introduction

Vaginitis is the most common disease of female reproductive tract infections. It is
reported [1] that in 2019, about 14.7 million female patients among 20–64 years old have
vaginitis in China. As to pathogeny, vaginitis is a general name of various inflammatory
diseases of vaginal mucosa caused by different reasons, mainly including aerobic vaginitis
(AV), bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and trichomonas vaginitis
(TV). A common disease does not mean it is harmless. On the contrary, it is the cause of
serious consequences, such as HPV infection leading to cervical cancer [2,3], miscarriage,
premature rupture of membranes, and premature delivery for pregnancy [4]. So, if vaginitis
is not treated in time, it will seriously endanger women’s health. However, since vaginitis
is caused by a variety of pathogens, its diagnosis and pathogen confirmation is critical
before a gynecologist can give the right treatment.

The present diagnosis method for vaginitis highly relies on experienced laboratorians.
They observe vagina secreted samples with a microscope and give diagnosis results by their
experience. However, for the first hand, after undergoing such manual inspection for a
long time, it is very possible for the laboratorians to get tired and thus raise the rate of diag-
nosis mistakes [5–7], especially for large hospitals with more patients. On the other hand,
training an experienced laboratorian also requires a long time and high expense, which
is less feasible for undeveloped countries. Therefore, computer-aided diagnosis (CAD) is
an appropriate way to help inspectors reduce workload and keep a high correctness rate
in diagnosis.
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Most of the recent studies on CAD for vaginitis are based on support vector machine
(SVM), deep learning, and laws texture energy algorithm. The recent literatures are listed
in the Table 1. In terms of the SVM algorithm, Song Youyi et al. [8] proposed an automatic
detection method for vaginal bacteria based on superpixels and SVM on the Gram-stained
vaginal microscopic image; Guo Rui [9] used a convolutional neural network (CNN) to
extract features and then used an SVM model to recognize candida on 529 microscope
images of leucorrhea. In terms of deep learning algorithms, Zhang Liwei [10] applied
a backpropagation (BP) neural network algorithm to identify 86 micro-images of white
blood cells; Qin Feiwei et al. [11] proposed a fine-grained white blood cell classification
method for microscopic images based on deep residual learning theory and medical field
knowledge; Yan Sineng [12] used the Faster R-CNN network as the detection network
to detect eight types of targets in gynecological microscopic images. The average recall
rate of detection is 74.15%, the average precision rate is 69.94%, and the mAP is 61.74%.
Wang Zhongxiao et al. [13] developed a CNN model and evaluated its ability to automat-
ically identify and classify three categories of Nugent scores from microscope images.
Regarding the Laws texture energy algorithm, Guo Yukun et al. [14] proposed a fast and
effective algorithm to detect and count the number of lactobacilli using the Laws texture en-
ergy method; Ma Liwen [15] proposed a method to detect cell texture based on multi-scale
Laws texture energy and segmented each component in 1500 microscopic images when
recognizing cue cells and epithelial cells. In all, those methods investigate and prove the
feasibility of using microscope images as input to diagnose vaginitis.

Table 1. Recent literature on CAD for vaginitis.

Method Category Year Reference Approach Object Results

SVM 2015 [8] superpixel and SVM vaginal bacteria Accuracy: 89.27%
2016 [9] CNN and SVM candida Recall: 72%

deep learning

2008 [10] BP neural network white blood cells (5 types) Accuracy: 83.7%

2018 [11] deep residual
learning theory white blood cells (40 types) Accuracy: 76.84%

2019 [12] Faster R-CNN white blood cells (8 types)
Precision:69.94%

Recall: 74.15%
mAP: 61.74%

2020 [13] CNN bacterial vaginosis (3 types) Accuracy: 75.1%

laws texture energy
2015 [14] laws texture energy

and threshold segmentation
lactobacilli Accuracy: 94.2%

2016 [15] CNN and SVM cue cells, epithelial cells Accuracy: 90.07%

Limited by technique development, all the previous studies only use RGB images as
their input. As we know, an RGB image can be roughly seen as a record of three different
spectrum information. Following the line of thinking, if the light from the observed object
is divided into multiple disjoint narrow spectrums and each spectrum is recorded as an
image respectively, the fined-grained response information of the target to the spectrum
is retrieved. This is the basic idea of the multi-spectral imaging technique used in agri-
culture, military, and environmental monitoring [16]. It is also reported [17–19] that the
multi-spectral imaging technique achieves higher accuracy or better specificity for disease
classification than RGB images.

Built on the previous research on CAD and multi-spectral imaging, the present work
proposes a vaginitis classification method based on multi-spectral imaging and feature
fusion. The method, named MIDV (Multi-spectral Imaging-based Diagnosis for Vaginitis),
is consisted of of three successive parts: single-spectrum feature extraction, multi-spectrum
feature fusion, and classifier. The single-spectrum feature extraction part employs a CNN
structure to extract the features from the images, each of which corresponds to a different
spectrum. The classifier part uses SVM to classify the fused multi-spectrum image feature.
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Compared with the traditional RGB image, MIDV increases the classification accuracy by
11.39%, precision by 15.82%, and recall rate by 27.25%. Furthermore, it is found that each
kind of infection in vaginitis has a unique sensitive spectral band. Intuitively, it means
that the features of one infection are more distinctive under a unique spectral band than
under others.

The contributions of this paper can be summarized as follows.

• This paper is the first try to introduce a multi-spectral imaging method for the vaginitis
diagnosis;

• For the first time, it is found that each kind of vaginitis has a unique sensitive spec-
tral band;

• A classification approach MIDV is designed, which combines deep learning with
multi-spectral image feature fusion in the vaginitis domain.

The rest of the paper is organized as follows. Section 2 contains related work, Section 3
is background knowledge, Section 4 is our methodology, Section 5 is the experiment and
results, and Section 6 is the conclusions.

2. Related Work
2.1. Medical Image Analysis Using Transfer Learning Strategy

Transfer learning, which refers to applying knowledge or patterns learned in one
specific field or task to another related but different area or problem, has been considered
as an effective strategy in deep learning algorithms, especially under the scenario of
insufficient data [20]. Due to the high cost of annotation, the medical images dataset is
always relatively small, so a transfer learning strategy is appropriate for processing this
kind of image. The typical transfer learning procedure in medical image analysis is always
like this: first, the CNN model is pre-trained using large non-medical datasets (such as
ImageNet), then the convolutional layer of the model is fine-tuned or frozen (that is, the
parameters are unchanged), and finally, the fully connected layer is retrained by using a
small amount of medical data.

Maghdid Halgurd S et al. [21] carried out COVID-19 detection tasks based on a CNN
model pre-trained by natural image. After migration, the accuracy of detection reached
as high as 98%; Liu Weixiao et al. [22] proposed an integrated network structure using
three natural images pre-training. The trained VGG model there is used as a feature
extractor. Multi-scale feature stitching is performed, and the classification AUC is 87.5%;
Andre Esteva et al. [23] used GoogleNet Inception v3 architecture to pre-train on ImageNet
and then fine-tuned on their dataset. The classification accuracy has reached the level of
professional dermatologists; Noorul Wahab et al. [24] used natural images to pre-train
ResNet and then used it to detect cell mitosis. The experimental results show that the
training method based on transfer learning provides an excellent initial weight, and the
training time is reduced, too. Based on those previous research studies, the Inception v3
architecture is chosen by present work.

2.2. Multi-Spectral Data Fusion

Data fusion methods [25] in the area of multi-sensor are generally carried out on the
layers of data, feature, and decision. Data layer fusion is carried out directly on the collected
original data layer. Data synthesis and analysis are conducted before the original data
of various sensors are preprocessed. The feature layer fusion refers to the middle layer
fusion. It extracts the original information from the sensor before analyzing the feature
comprehensively. Decision fusion processes the data of each sensor to make a judgment.
and then merge all decisions into one result. The advantage of feature layer fusion lies in
realizing considerable information compression, which is conducive to real-time processing.
Moreover, because the extracted features are directly related to decision analysis, the fusion
results can provide the feature information needed for decision analysis to the maximum
extent. Therefore, feature layer fusion is adopted in our algorithm, while data layer fusion
and decision layer fusion are used for comparison.
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With the popularity of deep learning, more and more data fusion techniques and deep
learning models are combined [26,27]. Liu Yu et al. [28] proposed a multi-scale data fusion
framework for bone age assessment of X-ray images based on Non-Subsampled Contourlet
Transform (NSCT) and CNN. Under this framework, a regression model based on feature-
level fusion and a classification model based on decision-level fusion are proposed. The
model integrates multiple VGGNet-16 convolutional neural networks to perform further
feature extraction on the features decomposed by NSCT so that the description is more
precise. Zhang Li et al. [29] proposed a ball screw degradation detection and identification
method based on multi-sensor data fusion and Deep Belief Network (DBN). The time-
domain signal is converted into the corresponding frequency domain signal and fused by
parallel superposition. Then, the fusion result is used as input to train the DBN through un-
supervised learning; finally, the softmax classifier is used for classification. Compared with
the DBN method using unfused datasets, the experimental results show that this method
has better accuracy and stability on the training set and test set. Fu Huiyuan et al. [30]
proposed a multi-scale feature fusion convolutional neural network (MCFF-CNN) based
on the residual network for vehicle color recognition. MCFF-CNN realizes the multi-scale
fusion of image features by combining the output features of different network layers
while fusing the output features of the deep network and the shallow network to obtain
deeper features of the vehicle image. This method can recognize the color of vehicles under
different light conditions, and it has good robustness.

3. Background Knowledge
3.1. Inception v3

CNN (Convolutional Neural Networks) is the most popular deep learning framework,
and it has been widely adopted in the task of image classification, recognition, segmentation,
and super-resolution reconstruction. The Inception v3 model [31] in the Google Inception
Net [32] series is one of the typical CNN architectures that has been widely used in medical
imaging, since it not only performs well on classification results but also keeps a relatively
low requirement of calculation and parameters.

The backbone components of Inception v3 are shown in Table 2. The character of the
network is mainly shown in two aspects. One is to reoptimize the structure of the Inception
Module and design three modules, as shown in Figure 1. The other is introducing the
idea of factorization into smaller convolutions, which splits a larger convolution into two
smaller convolutions. For example, in Figure 1b, the 7 × 7 convolution is divided into 1 × 7
convolution and 7 × 1 convolution. This processing method reduces the parameters and
improves the model’s nonlinear expression ability.

Table 2. The network architecture of Inception v3.

Components Patch Size/Stride or Remarks Input Size

conv 3 × 3/2 299 × 299 × 3
conv 3 × 3/1 149 × 149 × 32

conv padded 3 × 3/1 147 × 147 × 32
pool 3 × 3/2 147 × 147 × 64
conv 3 × 3/1 73 × 73 × 64
conv 3 × 3/2 71 × 71 × 80
conv 3 × 3/1 35 × 35 × 192

3 × Inception As in Figure 1a 35 × 35 × 288
5 × Inception As in Figure 1b 17 × 17 × 768
2 × Inception As in Figure 1c 8 × 8 × 1280

pool 8 × 8 8 × 8 × 2048
linear logits 1 × 1 × 2048

softmax classifier 1 × 1 × 1000
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Figure 1. The inception module of Inception v3. (a) is the first type of inception module, whose input
size is 35 × 35 × 288. (b) is the second type of inception module, which splits n × n convolution into
n × 1 convolution and 1 × n convolution. (c) is the third type of inception module with expanded
filter bank outputs.

3.2. Multi-Spectral

Wavelength is a basic attribute of light waves. Only when it ranges about 450–650 nm,
the light can be noticed by human eyes and sensed as the feeling of color. The common light
is always not mono-wavelength. It is a combination of lights with multiple different wave-
lengths. If prism or gating is inserted into light path, the light of different wavelengths can
be separated from each other. The aim to use multiple narrow wavelength lights is to better
investigate target components since different materials have different reflection or trans-
mission capabilities to the light of different wavelengths. So, using multiple mono-wave or
narrow wavelength lights as a light source provides more detailed spectral “features” of
the target as well as the spatial information, which thus discover more details unseen by
traditional RGB images. This is the basic idea of the so-called multi-spectral technology.

Generally, recent multi-spectral imaging technology (number of bands are usually
more than 3) can expend from visible to infrared or ultraviolet, and always implemented
by alternated layouting multiple filters before image sensor, each of which is designed to
allow only the light with specific narrow wavelength to pass and block all other lights.

4. Methodology

This paper proposes a vaginitis classification method based on multi-spectral imaging
and feature fusion, named MIDV (Multi-spectral Imaging-based Diagnosis for Vaginitis).
The main idea of this algorithm is transfer learning and the fusion of a feature layer. In the
current diagnosis of vaginitis, RGB images are commonly used. In order to improve the
accuracy of classification, we have introduced the technique of multi-spectral imaging.
Transfer learning is a solution to build the connection between multi-spectral images
and RGB images. Models pre-trained on RGB images can be applied to multi-spectral
images through transfer learning, which can make use of existing resources and facilitate
the application of new technical means. For multi-spectral image classification, the most
common methods based on CNN models mainly include 1D CNN, 2D CNN, and 3D
CNN. 1D CNN only uses spectral information, and 2D CNN only uses spatial information.
Although 3D CNN can extract both spatial and spectral information, the computational
cost of this method is extremely high. To solve this contradiction and realize the joint
extraction of spatial and spectral information, we adopt the technique of 2D CNN and
spectral feature fusion.

MIDV is shown in Figure 2, which is consisted of two steps: pre-training and then
training and testing. The pre-training step uses RGB images to train a standard inception
v3 classification model. The training and testing step is comprised of three parts: feature
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extraction, fusion, and classification. We adopt the transfer learning strategy in the feature
extraction part, where the trained inception v3 model in step one is transferred. Although
RGB images and multi-spectral images are different images, they are all representations
of the same target. RGB images can be seen as rough classified multi-spectrum images,
so their image features are related. Therefore, we use this pre-trained model to extract
features for each single-spectrum image. In the fusion part, we adopt the strategy of feature
layer fusion, as described in Section 2.2. The concatenate method was utilized according
to the order of the spectrum from small to large wavelength to take full advantage of the
extracted multi-spectral features by the inception v3 model. In the classification part, we
use the support vector machine method (SVM) [33] for the reason of simplicity to verify
the effect of feature layer fusion.

The specific operation steps of our proposed method are described as follows.

• Step 1. Train an inception v3 model using RGB images of vaginal microorganisms.
• Step 2. The last layer of the inception v3 model as the classifier is removed, so the left

parts are used as a feature extractor for multi-spectral images.
• Step 3. Extract features using the inception v3 extractor in Step 2 for every single

spectral image in multi-spectral images.
• Step 4. Arrange the features from small to large according to the wavelength of the

corresponding single-spectrum image and connect them together with the concatena-
tion operation.

• Step 5. Input the fused feature vector into the SVM classifier, and get the disease
category of vaginitis.

Feature extraction Fusion Classification

Step 2: Training & Testing

Step 1: Pre-training

Figure 2. The block diagram of MIDV.

5. Experiment
5.1. Setup
5.1.1. Dataset

The experimental dataset in the present work is comprised of two parts. One is called
the primary dataset used to train and test the classifier, and the other is the auxiliary dataset
used to pre-train the feature extraction model.
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The primary dataset from slide-level labeled is composed of 426,900 multi-spectral
images and 426,900 RGB images from 147 patients. In clinical practice, each patient
will collect samples on a slide when checking for vaginitis-related diseases, so a slide
corresponds to a case. Each patient’s diagnosis result will be marked as the slide-level
label by a professional physician. For multi-spectral image collection, we use the specially
designed instrument to automatically collect multiple fields of view from one slide and
label the images from one slide with the same slide-level annotation. According to the
label, there are 11 types of diseases, including normal flora, aerobic vaginitis (AV), bacterial
vaginosis (BV), vulvovaginal candidiasis (VVC), flora inhibition, BV + AV mixed infection,
BV middle, BV middle + VVC + AV, BV middle + VVC, AV + trichomonas vaginitis (TV),
and abnormal flora combined clinically (AFCC). They are the most common diseases in the
clinic. The number of images for different diseases is shown in Table 3.

Table 3. The primary dataset.

Label_Index Label_Name Image_Count Percentage

0 normal flora 228,275 53.47%
1 AV 48,075 11.26%
2 BV 25,600 6.00%
3 VVC 30,300 7.10%
4 flora inhibition 26,950 6.31%
5 BV + AV 29,950 7.02%
6 BV middle 11,775 2.76%
7 BV middle + VVC + AV 5450 1.28%
8 BV middle + VVC 7275 1.70%
9 AV + TV 3750 0.88%
10 AFCC 9500 2.23%
all sum 426,900 100.00%

The auxiliary dataset is comprised of RGB images of vaginitis that have different
sources as well as fine-grained labels. In clinical use, the laboratory staff collects one or
more visual fields that can well support diagnosis results and record them as digital files.
So, there are always 1–2 images that are collected for each slide, which can be treated
as the very typical example of its disease label. Those images in our auxiliary dataset
come from the slide used to construct the primary dataset. However, compared with the
random collection, these labels are more accurate and thus can be called typical labels.
There are more than 20,000 pictures from more than 20 categories of different diseases.
The fine-grained here is the relative concept against the slide-level label.

5.1.2. Image-Collecting Instrument

To collect multi-spectral images, we employ 24 different bandpass filters. Their central
wavelength spectrum ranges from 400 to 850 nm. The filter interval is 20 nm, and the
half-bandwidth is 14 nm.

5.2. Training Strategy

The feature extraction model employs Inception v3. First, vaginitis RGB images in
the auxiliary dataset are used to pre-train Inception v3, and the difference is that the
classification layer is removed. Then, features are extracted for each spectrum to obtain
a 2048-dimensional feature vector. Finally, each spectrum’s feature vectors are combined
according to the order of the range, and we input the SVM to get the final classification
result. The parameter of SVM is the default value of sklearn.svm.SVC except for the boolean
value of probability.

We use the following metrics to compare the classification performance: accuracy,
precision, recall, f-score, and kappa value. The higher their values are, the better the
classification performance.
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5.3. Results
5.3.1. Comparison with RGB Image

The multi-spectral image and corresponding RGB images are both grabbed for each
field of view under the microscope. Hence, the visible light refers to the RGB image corre-
sponding to the same view area on the scanned glass slide. The comparison with RGB is
mainly from two perspectives, which are called multi-classification and binary classification.
The former refers to the classification of all 11 disease types in the dataset. The latter refers
to each one of the other ten diseases, normal or not. A total of 10 binary classification
methods are used to detect the classification effect of a specific vaginitis disease.

Table 4 presents the five times average value of our proposed multi-spectral image
classification algorithm and visible light image classification results. Our algorithm’s classi-
fication accuracy rate, precision rate, and recall rate are 11.39%, 15.82%, and 27.25% higher
than the RGB image classification results, respectively. Figure 3 is one of the confusion
matrixes of MIDV. Since the number of categories is severely unbalanced, we standardize
the confusion matrix first and then draw the graph. From the figure, we can see that the
classification effect of all diseases is still excellent, which means that our algorithm is not
affected by data imbalance.

Figure 3. The standard confusion matrix of the MIDV algorithm. 0: normal flora, 1: AV, 2: BV, 3: VVC,
4: flora inhibition, 5: BV + AV, 6: BV middle, 7: BV middle + VVC + AV, 8: BV middle + VVC,
9: AV + TV, 10: abnormal flora combined clinically.

Table 4. Comparison with RGB Image (multiple-label classification).

Data_Type Accuracy Precision Recall F1-Score Kappa

RGB image 76.04% 77.36% 48.35% 53.69% 61.07%
multi-spectral image (ours) 87.43% 93.18% 75.60% 81.66% 80.42%

To thoroughly verify the effectiveness of our proposed algorithm, we also conducted
experiments on more CNN-based models, including VGG16 and ResNet50. In this part,
the number of epochs used is small to test the effectiveness of the algorithm quickly and
keep consistent on test conditions, so the classification accuracy of the Inception v3 model
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is not as good as the performance shown in Table 4. The experimental results are shown in
Table 5. It indicates that multi-spectral images outperform RGB images for all models, and
Inception v3 performs better in classification than VGG16 and ResNet50.

Figure 4 shows the binary classification results of the multi-spectral image feature
fusion algorithm and corresponding visible light image classification algorithm. The multi-
spectral image classification algorithm introduced in this article performs better than the
RGB image algorithm for all disease categories. The classification results of diseases such
as VVC are most obvious: 11.02% higher.

87.98%

99.09%

76.07%

90.09%

95.12% 95.27%
96.26%

92.97%

89.56%

85.44%

92.29%

99.67%

87.09%

95.26%

98.66% 99.06% 98.73%

95.81%
96.30%

92.69%

70.00%

75.00%

80.00%
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95.00%

100.00%

1 2 3 4 5 6 7 8 9 10

A
c
c
u
r
a
c
y

Disease label

The binary classification result
RGB Image Multi-spectral Image

Figure 4. Binary classification results of the multi-spectral image feature fusion and corresponding
RGB image classification algorithms. The corresponding relationship between the disease label serial
number and the disease category is as follows: 1: AV (VS normal flora), 2: BV (VS normal flora),
3: VVC (VS normal flora), 4: flora inhibition (VS normal flora), 5: BV + AV (VS normal flora), 6: BV
middle (VS normal flora), 7: BV middle + VVC + AV (VS normal flora), 8: BV middle + VVC (VS
normal flora), 9: AV + TV (VS normal flora), 10: abnormal flora combined clinically (VS normal flora).

Table 5. Comparison with RGB Image in more CNN-based models (multiple-label classification).

Model Data_Type Accuracy Precision Recall F1-Score Kappa

VGG16 RGB image 61.99% 42.51% 32.78% 30.30% 38.82%
multi-spectral image 66.56% 77.49% 58.14% 62.89% 50.97%

ResNet50 RGB image 72.68% 59.98% 46.77% 49.12% 56.14%
multi-spectral image 77.28% 84.72% 71.18% 72.56% 64.97%

Inception v3
RGB image 68.90% 52.49% 41.86% 42.36% 49.48%

multi-spectral image
(fewer epochs) 84.65% 85.97% 85.25% 83.11% 78.30%

5.3.2. Comparison with Other Fusion Methods

It has been mentioned in Section 2.2 that standard data fusion methods can be classified
as data layer fusion, feature layer fusion, and decision layer fusion. For multi-spectral
images, the PCA dimensionality reduction method is usually used in data processing due
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to the high data dimension. In the present work, the data layer fusion algorithm indicates
that the input data is 24 dimensions matching 24 spectra, Then, the 24-dimensional data
are transformed into three-dimensional by the PCA method to fit the pre-trained model.
Next, the same pre-trained model is applied for feature extraction. Decision layer fusion
refers to the feature extraction and classification of the 24 spectrum segments, and the final
result is determined by which category appears the most.

Table 6 shows the comparison results of the proposed feature layer fusion algorithm,
data layer fusion algorithm, and decision layer fusion algorithm. The performance of
feature layer fusion achieves the best result in terms of accuracy, precision, recall, f-score,
and kappa. The accuracy value of feature layer fusion is 9.97% higher than data layer fusion
and 8.13% higher than decision layer fusion.

Similar to Section 5.3.1, we conduct extended experiments on VGG16 and ResNet50. In
this part, the number of epochs used is small, so the classification accuracy of the Inception
v3 model is not as good as the performance shown in Table 6. The experimental results are
shown in Table 7. The results show that the classification effect of feature layer fusion is
better than that of the data layer and decision layer for all CNN-based models. In addition,
the feature layer fusion effect of Inception v3 performs best, which indicates that Inception
v3 is more effective in extracting multi-spectral image features.

Table 6. Comparison of other fusion methods.

Fusion Type Accuracy Precision Recall F1-Score Kappa

data layer fusion 77.46% 80.23% 53.78% 59.57% 63.56%
decision layer fusion 79.30% 89.32% 55.49% 62.67% 65.95%

feature layer fusion (ours) 87.43% 93.18% 75.60% 81.66% 80.42%

Table 7. Comparison of other fusion methods on more CNN-based models.

Model Fusion Type Accuracy Precision Recall F1-Score Kappa

VGG16
data layer fusion 52.41% 6.49% 9.61% 7.36% 1.22%

decision layer fusion 53.52% 11.18% 9.16% 6.47% 0.21%
feature layer fusion 66.56% 77.49% 58.14% 62.89% 50.97%

ResNet50
data layer fusion 53.51% 8.65% 9.15% 6.45% 0.16%

decision layer fusion 55.16% 18.50% 11.46% 10.29% 6.03%
feature layer fusion 77.28% 84.72% 71.18% 72.56% 64.97%

Inception v3
data layer fusion 52.90% 16.66% 17.39% 14.77% 20.78%

decision layer fusion 57.19% 41.70% 17.46% 19.04% 11.65%
feature layer fusion(fewer epochs) 84.65% 85.97% 85.25% 83.11% 78.30%

5.3.3. Spectrum Sensitivity

To investigate the impact of each spectrum on the classification results, we also carried
out multi-classification and binary classification on each spectrum. Table 8 is the multi-
classification result of a single-spectrum image and RGB image. The results show that
the best-performing spectrum for the overall accuracy is 600 nm, which is 2.53% higher
than the RGB image. For each disease, precision in multi-classification has improved
compared with RGB images. We also found that each disease has a feature spectrum. The
best performer is BV middle + VVC, where the precision rate increases 31.9% and the
corresponding spectrum is 690 nm. A typical visual field of BV middle + VVC is presented
in Figure 5. Figure 5a is the RGB image of BV middle + VVC in visible light, and Figure 5e
is the most sensitive band photograph collected under the 690 nm spectrum. It can be
noticed that the 690 nm spectrum image suppresses some cells and microorganisms in the
image and meanwhile enhances the lactobacilli. Table 9 is the comparison result of the
binary classification of single-spectrum images and RGB images. The results show that each
disease has improved compared with RGB images, and the best-performing spectra are
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also diverse. The most remarkable improvement is the accuracy of the binary classifications
of AV-TV and normal flora.

(a)RGB
(e)690nm

(b)440nm (c)500nm

(d)620nm

(g)850nm(f)750nm

Figure 5. (a) is the RGB image of a typical visual field of BV middle + VVC in visible light. (b–g) are
the images collected under the 440 nm, 500 nm, 620 nm, 750 nm, and 850 nm spectrum, respectively.
(e) is the most sensitive band photograph collected under the 690 nm spectrum. It can be seen that
the 690 nm single-spectrum image suppresses some cells and microorganisms in the image while
enhancing the lactobacilli compared to the RGB image.

Table 8. Multi-classification result of single-spectrum image and RGB image, and AFCC is abnormal
flora combined clinically.

Label_Name Most Sensitive Spectrum Single-Spectrum Precision RGB Precision Improve

accuracy 600 nm 78.57% 76.04% 2.53%
normal flora 640 nm 78.90% 77.10% 1.80%

AV 540 nm 73.60% 64.90% 8.70%
BV 850 nm 87.50% 82.90% 4.60%

VVC 580 nm 95.70% 85.60% 10.10%
BV-AV 810 nm 84.70% 75.40% 9.30%

BV middle 850 nm 79.20% 62.30% 16.90%
BV middle + VVC + AV 580 nm 95.80% 84.40% 11.40%

BV middle + VVC 690 nm 92.30% 60.40% 31.90%
AV-TV 480 nm 100.00% 84.80% 15.20%
AFCC 480 nm 100.00% 90.00% 10.00%
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Table 9. Binary classification result of single-spectrum image and RGB image, and AFCC is abnormal
flora combined clinically.

Label_Name Most Sensitive Spectrum Single-Spectrum Precision RGB Precision Improve

AV-TV 670 nm 96.22% 89.56% 6.67%
VVC 750 nm 80.21% 76.07% 4.13%

BV middle 640 nm 98.09% 95.27% 2.83%
AFCC 580 nm 88.16% 85.44% 2.72%

flora inhibition 650 nm 92.41% 90.09% 2.32%
BV-AV 810 nm 97.23% 95.12% 2.11%

BV middle + VVC 440 nm 94.63% 92.97% 1.66%
BV middle + VVC + AV 730 nm 97.86% 96.26% 1.60%

AV 540 nm 89.19% 87.98% 1.20%
BV 460 nm 99.46% 99.09% 0.37%

6. Conclusions

This paper introduces multi-spectral images into the auxiliary diagnosis of vaginitis
for the first time. It proposes an algorithm based on multi-spectral image feature fusion
and transfer learning. Compared with the traditional RGB image classification algorithm,
our algorithm has better classification performance in accuracy, precision, recall, f1-score,
and kappa value. The classification effect of the Inception v3 model we adopted is also
significantly better than that of VGG16 and ResNet50. The feature layer fusion with the 2D
CNN method we adopted also performs better than the PCA processing method on the
data layer and the element maximum rule method on the decision layer. By using sensitive
analysis, we found that each disease has a sensitive band, under which the pathogen is
foregrounded and other disruptive components in the image are surpassed. This finding
could be used to improve diagnosis algorithms or instruments for vaginitis.
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