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Abstract During vertebrate gastrulation, convergence and extension (C and E) of the primary

anteroposterior (AP) embryonic axis is driven by polarized mediolateral (ML) cell intercalations and

is influenced by AP axial patterning. Nodal signaling is essential for patterning of the AP axis while

planar cell polarity (PCP) signaling polarizes cells with respect to this axis, but how these two

signaling systems interact during C and E is unclear. We find that the neuroectoderm of Nodal-

deficient zebrafish gastrulae exhibits reduced C and E cell behaviors, which require Nodal signaling

in both cell- and non-autonomous fashions. PCP signaling is partially active in Nodal-deficient

embryos and its inhibition exacerbates their C and E defects. Within otherwise naı̈ve zebrafish

blastoderm explants, however, Nodal induces C and E in a largely PCP-dependent manner, arguing

that Nodal acts both upstream of and in parallel with PCP during gastrulation to regulate

embryonic axis extension cooperatively.

Introduction
The embryonic body plan first emerges during gastrulation, when the three primordial germ layers

— ectoderm, mesoderm, and endoderm — are formed and shaped, and embryonic axes are mor-

phologically manifest. At this time, the anteroposterior (AP) body axis undergoes dramatic exten-

sion, a process that is essential for proper body plan formation and neural tube closure

(Wallingford and Harland, 2002; Davidson and Keller, 1999). Axial extension results from highly

conserved convergence and extension (C and E) movements that simultaneously elongate tissues

along the AP axis and narrow them in the orthogonal mediolateral (ML) dimension (Keller et al.,

2000; Warga and Kimmel, 1990; Keller and Danilchik, 1988). This process is driven in vertebrate

embryos by a combination of highly polarized cell behaviors, including mediolateral intercalation

behavior (MIB) and directed migration (Keller et al., 2000; Warga and Kimmel, 1990). MIB entails

the ML alignment and elongation of cells and the acquisition of bipolar protrusive behavior through

which cells intercalate in a polarized fashion between their anterior and posterior neighbors

(Shih and Keller, 1992a; Shih and Keller, 1992b).

This ML polarization of cells and their behaviors requires planar cell polarity (PCP) signaling

(Wallingford et al., 2000; Park and Moon, 2002; Jessen et al., 2002; Wang et al., 2006a;

Wang, 2006b; Ybot-Gonzalez et al., 2007; Heisenberg et al., 2000; Kilian et al., 2003;

Topczewski et al., 2001; Tada and Smith, 2000). First discovered in Drosophila, this conserved sig-

naling network is essential for collective polarity across cellular fields, within the plane of a tissue

(Vinson and Adler, 1987; Strutt and Strutt, 2005). Core PCP components acquire asymmetric dis-

tribution within cells (Bastock et al., 2003), with some becoming enriched at the anterior or poste-

rior aspects of vertebrate cells as they undergo gastrulation movements (Wang, 2006b;

Williams and Solnica-Krezel. eLife 2020;9:e54445. DOI: https://doi.org/10.7554/eLife.54445 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.54445
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Roszko et al., 2015; Ciruna et al., 2006; Yin et al., 2008). Because impairment of PCP signaling

dramatically disrupts the polarized cell behaviors underlying axis extension but has little effect on

patterning, it is thought to act as a molecular compass that allows cells to sense and/or respond to

positional cues within the embryo (Yin et al., 2009; Gray et al., 2011). This implies the existence of

a molecular mechanism by which patterning information is communicated to this compass, and ulti-

mately to the cellular machinery that drives polarized C and E cell behaviors.

In contrast with vertebrate embryos, PCP signaling is not essential for axial extension in Drosoph-

ila, which instead requires AP patterning that confers the striped expression of pair-rule genes

(Irvine and Wieschaus, 1994; Zallen and Wieschaus, 2004). These in turn regulate the expression

of Toll-like receptors in a partially overlapping striped pattern, comprising a positional code along

the extending AP axis (Paré et al., 2014). AP patterning is similarly a prerequisite for extension of

the gut tube in Drosophila and Xenopus, and during Xenopus gastrulation (Ninomiya et al., 2004;

Johansen et al., 2003; Li et al., 2008). In particular, Ninomiya et al., 2004 reported that Xenopus

gastrula explants with different AP positional values extend when apposed ex vivo, whereas those

with the same positional identity do not. Notably, these positional values could be recapitulated in

explants by different doses of the TGFb ligand Activin (Ninomiya et al., 2004), which signals largely

via the Nodal signaling pathway during early vertebrate embryogenesis (Pauklin and Vallier, 2015).

These results demonstrate that AP patterning is required for axial extension ex vivo and implies a

crucial role for Nodal signaling at this intersection of tissue patterning and morphogenesis in vivo.

Nodal is a TGFb-superfamily morphogen whose graded signaling within the embryo produces

discrete developmental outcomes depending on a cell’s position within that gradient and the result-

ing signaling level/duration to which it is exposed (Dyson and Gurdon, 1998; Gurdon et al., 1999;

van Boxtel et al., 2015; Dubrulle et al., 2015; Chen and Schier, 2001). Upon binding of Nodal–

Gdf3 (Vg1) heterodimers (Pelliccia et al., 2017; Bisgrove et al., 2017; Montague and Schier,

2017), the receptor complex — comprised of two each of the Type I and Type II serine-threonine

kinase receptors Acvr1b and Acvr2b and the co-receptor Tdgf — is activated and phosphorylates

the downstream transcriptional effectors Smad2 and/or Smad3 (Gritsman et al., 1999; Schier and

Shen, 2000). Nodal signaling is essential for specification of endoderm and mesoderm germ layers

and their patterning along the AP axis, with the highest signaling levels producing endoderm and

the most dorsal/anterior mesoderm fates (Thisse et al., 2000; Gritsman et al., 2000; Vincent et al.,

2003; Dougan et al., 2003; Feldman et al., 1998; Feldman et al., 2000). Mouse embryos

that are mutant for Nodal signaling components fail to gastrulate, resulting in early embryonic lethal-

ity (Conlon et al., 1994). Nodal-deficient zebrafish undergo highly abnormal gastrulation, failing to

specify endoderm and most mesoderm (Dubrulle et al., 2015; Gritsman et al., 1999;

Feldman et al., 1998), resulting in embryos that are comprised largely of neuroectoderm and dis-

playing severe neural tube and axis extension defects (Aquilina-Beck et al., 2007; Gonsar et al.,

2016).

Restoration of mesoderm to maternal-zygotic one-eyed pinhead (MZoep) zebrafish mutants,

which lack the essential Tdgf Nodal co-receptor (Gritsman et al., 1999), improves AP axis length

and the morphology of the neural tube (Araya et al., 2014), implying that Nodal promotes C and E

of the neuroectoderm non-autonomously via specification of mesoderm. However, additional evi-

dence points to a more direct role for Nodal signaling in C and E cell behaviors. First, Activin signal-

ing via Nodal receptors is sufficient for C and E of Xenopus animal cap explants (Ninomiya et al.,

2004; Symes and Smith, 1987; Howard and Smith, 1993) and for the underlying planar polarity of

cells (Shindo et al., 2008). Furthermore, knockdown of two out of six Xenopus Nodal ligands dis-

rupts C and E movements without affecting mesoderm specification (Luxardi et al., 2010). Nodal

and Activin were also shown to promote translocation of the core PCP component Disheveled to

cell membranes, suggesting that it acts upstream of PCP signaling activation (Ninomiya et al.,

2004; Trichas et al., 2011). Further evidence suggests that AP patterning is required in addition to

PCP for C and E morphogenesis (Ninomiya et al., 2004), and while such patterning can be recapitu-

lated by graded exposure of explants to Activin, it is not known whether Nodal and/or other signals

play this role in vivo. Therefore, how Nodal interfaces with the PCP molecular compass during gas-

trulation remains to be determined.

Here, we investigate the role of Nodal signaling in C and E gastrulation movements in zebrafish.

We demonstrate that defective C and E movements in the neuroectoderm of MZoep mutant gastru-

lae are associated with reduced ML cell alignment and protrusive activity. Transplantation of mutant
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cells into the prospective neuroectoderm of wild-type (WT) embryos only partially restored their ML

polarity during gastrulation, demonstrating both cell-autonomous and non-autonomous roles for

Nodal in planar cell polarization. Surprisingly, MZoep–/– neuroectoderm cells exhibited normal,

anteriorly biased localization of Prickle-GFP, a hallmark of PCP signaling activity. Consistent with

active PCP signaling in the absence of Nodal, C and E defects in MZoep mutants were exacerbated

by interference with the core PCP component Vangl2. To examine further this cell-autonomous func-

tion of Nodal signaling in morphogenesis, we employed zebrafish blastoderm explantation to isolate

the effects of Nodal from endogenous signaling centers of intact embryos. We found that, as for

Nodal and Activin in Xenopus animal cap assays, expression of Nodal ligands was sufficient to

induce robust, PCP-dependent ML cell polarization and C and E of naı̈ve zebrafish blastoderm

explants in culture. Treatment of explants with a Nodal inhibitor revealed a continuous requirement

for Nodal signaling in ex vivo extension after mesoderm was specified and even in the absence of

mesoderm, implying a primary, mesoderm-independent role for Nodal in C and E. Together, these

data support a model in which Nodal signaling promotes ML cell polarity and C and E, both

upstream and independent of PCP signaling, and predicts additional AP patterning mechanisms that

instruct the PCP compass during vertebrate gastrulation.

Results

Nodal regulates C and E cell behaviors cell-autonomously and non-
autonomously
Zebrafish embryos that are double mutant for the two nodal-related genes expressed during gastru-

lation, ndr1 (sqt) and ndr2 (cyc), or that lack both maternal and zygotic function of the co-receptor

Tdgf (MZoep–/ –) or the downstream effector Smad2, exhibit severe dorsolateral mesendoderm defi-

ciencies and impaired AP extension of the enlarged neuroectoderm (Dubrulle et al., 2015;

Gritsman et al., 1999; Feldman et al., 1998; Figure 1A). However, underlying cell behavior defects

during gastrulation have not been fully characterized. We therefore analyzed cell movements in the

dorsal region of WT and MZoep mutants by time-lapse confocal microscopy for a period of three

hours, beginning shortly after the onset of C and E movements (80% epiboly, 8.5 hr post-fertilization

[hpf]). Automated tracking of fluorescently labeled nuclei in WT gastrulae revealed clear conver-

gence of cells from lateral positions toward the dorsal midline, and concomitant extension along the

AP axis (Figure 1B–C, top, Video 1). Analysis of cell velocities demonstrated that rates of cell move-

ment were highest in the lateral-, anterior-, and posterior-most regions of the gastrula and lowest in

the center (Figure 1D, top). This is consistent with mediolateral intercalation, which is characterized

by a stationary point near the embryo’s equator and cell velocities that increase proportionally with

their distance from this point (Glickman et al., 2003; Concha and Adams, 1998). MZoep mutant

gastrulae, by contrast, exhibited disorganized cell movement and velocity patterns

that are inconsistent with ML intercalation (Figure 1B–D, bottom). These cells moved along swirling

paths, which contrasted with the direct anterior-, posterior-, and medial-ward movement of WT cells,

and were seen to cross the dorsal midline, which was not observed in WT embryos

(Figure 1B; Concha and Adams, 1998).

Both C and E movements were apparent in WT gastrulae when cell track displacement in the ML

or AP dimension was plotted against the starting position of each cell along these respective axes

(Figure 1E–F). For example, cells on the left side of each embryo exhibited right-ward displacement

and vice versa as they converged toward the midline, resulting in a negative slope (Figure 1E, blue).

Meanwhile, cells in the anterior and posterior of each embryo moved anteriorly and posteriorly,

respectively, extending the AP axis and yielding a positive slope (Figure 1F, blue). Cell track dis-

placement in MZoep–/– gastrulae, on the other hand, was not neatly graded along the ML and AP

embryonic axes as observed in WT embryos (Figure 1E–F, purple). Although convergence was still

apparent in these mutants (Figure 1E), displacement of MZoep–/– cells in the ML dimension was sig-

nificantly reduced compared to WT (Figure 1G, p<0.0001, Kolmogorov-Smirnov [K-S] test), and AP

extension was particularly severely disrupted in terms of both absolute displacement and spatial

organization of cell movements (Figure 1F–G). Although these results are consistent with previous

findings that convergence movements are observed within Nodal-deficient gastrulae despite an

almost complete lack of extension (Gritsman et al., 1999; Feldman et al., 1998), they demonstrate
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that convergence movements are also reduced and disorganized in MZoep mutant gastrulae

(Figure 1E–G).

We next used a fluorescent membrane marker to assess the ML cell elongation, alignment and

protrusive activity underlying C and E in the neuroectoderm of WT and MZoep–/– embryos from 8.5

hpf until the end of gastrulation (10 hpf) (Figure 1H–M). Cell elongation is represented as the aspect

Figure 1. Nodal signaling regulates convergence and extension gastrulation cell behaviors. (A) Bright-field images of live WT and MZoep–/– embryos at

80% epiboly (8.5 hpf). The arrowheads indicate the point of view (dorsal side) for all fluorescent confocal micrographs. (B–D) Representative images of

automated tracking of fluorescently labeled nuclei in the dorsal hemisphere of WT (top) and MZoep–/– (bottom) gastrulae. Tracks represent cell

movements over three hours of time-lapse confocal imaging, beginning at 8.5 hpf, and are colored according to their displacement in the mediolateral

(B) and anteroposterior (C) dimensions or the mean velocity of cell movement (D). Dotted lines indicate dorsal midline. (E, F) Displacement of cell tracks

in the mediolateral (E) and anteroposterior (F) dimensions in WT (blue) and MZoep–/– (purple) gastrulae [as shown in (B–D]). Each dot represents a

single cell track, each color represents an individual embryo, N = 4 WT and 5 MZoep–/–. (G) Absolute displacement of cell tracks in ML (top) and AP

(bottom) dimensions. Bars are mean with 95% confidence interval, p<0.0001, Kolmogorov-Smirnoff (K-S) tests. (H) Representative images of membrane-

labeled neuroectoderm in live WT (top) and MZoep–/– (bottom) gastrulae with cells outlined in yellow. (I, J) Neuroectoderm cell elongation (I) and

alignment (J) at 8.5 hpf (left) and 10 hpf (right). Each dot represents a single cell, black bars are mean values in (I), and median values in (J). N = 3

embryos of each genotype, p<0.0001, Mann-Whitney test in (I), K-S test in (J). (K) Representative images of membrane-labeled donor cells of the

indicated genotypes within the neuroectoderm of unlabeled host gastrulae. N indicates the number of embryos analyzed from three independent trials.

(L) Representative images of protrusions (arrowheads) made by transplanted neuroectoderm cells of the genotypes/conditions indicated in (K). (M)

The orientation of all protrusions between 8.5 and 10 hpf is shown in radial histograms divided into 20˚ bins, with 0 and 180 representing the ML axis.

Yellow and gray quadrants represent ML- and AP-oriented protrusions, respectively. **, p=0.0053; ****, p<0.0001; Chi-square. (N) Alignment of donor

cells as in (J). The number of embryos in each condition is indicated in the corresponding panels in (K). Anterior is up in all images, scale bars are 50

mm. Dotted lines in (J, N) show 20 degrees from ML for reference.
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ratio of each cell (major/minor cell axis), and cell

alignment was measured as the orientation of

each major cell axis with respect to the embryo’s

ML axis, with 0˚ indicating perfect ML orientation.

We found that WT neuroectoderm cells were sig-

nificantly more elongated than MZoep–/– cells

throughout gastrulation (Figure 1I; p<0.0001,

Mann-Whitney tests). Unlike the marked ML

alignment of WT cells that increased over time

(Figure 1J, blue), MZoep–/– cells were signifi-

cantly less well aligned at both 8.5 and 10 hpf

time points (Figure 1J, purple) (p<0.0001, K-S

test). We then measured the orientation of cellu-

lar protrusions within the neuroectoderm of WT

and MZoep–/– gastrulae using cell transplantation

to achieve sparse labeling (Figure 1K–M). Protru-

sions made by WT cells exhibited a strong ML

bias typical of MIB (Figure 1L–M; Keller et al.,

2000), whereas protrusions of MZoep–/– cells

were essentially randomly oriented with a slight

anterior bias (Figure 1L–M). Together, these

results demonstrate a severe disruption of C and

E movements and polarized cell behaviors in

MZoep mutant gastrulae.

Previous studies have shown that axis exten-

sion can be largely rescued by restoration of

mesoderm to MZoep mutant embryos

(Araya et al., 2014), but the autonomy of Nodal

signaling within the neuroectoderm has not been examined at the level of cell polarity. To determine

whether Nodal regulates ML alignment cell-autonomously within the neuroectoderm, we trans-

planted membrane-labeled MZoep–/– cells into the prospective neuroectoderm of WT host embryos

(Figure 1K). We then measured donor cell alignment at late gastrulation (10 hpf) and found that

MZoep–/– cells within WT hosts were significantly less well aligned than WT control donors

(Figure 1N; p<0.0001, K-S test). At mid-gastrulation (8.5 hpf), some experiments showed that the

alignment of MZoep–/– donor cells was not significantly different from that of WT donor cells in WT

hosts (Figure 1N), whereas other experiments indicated that MZoep–/– donor cells were significantly

less well aligned than WT controls at this stage (Figure 2D; p<0.001, K-S test). Because cell align-

ment in unmanipulated WT gastrulae (Figure 1J) more closely resembles that of the WT control

donors shown in Figure 2D, we conclude that the alignment of MZoep–/– cells within WT hosts is

reduced compared to WT control donors. Notably, mutant cells in WT host gastrulae were signifi-

cantly better aligned than MZoep–/– cells in MZoep–/– hosts at both time points (Figure 1N)

(p<0.0001, K-S test). Orientation of MZoep–/– cellular protrusions was also partially improved within

WT hosts (Figure 1L–M), as the distribution of these protrusions differed significantly from that in

MZoep–/– controls but did not align to the same degree as in WT cells (p<0.0001 and p=0.0053,

respectively, Chi-square test). Together these results reveal an essential role for Nodal signaling in

neuroectoderm C and E cell behaviors, including both non-autonomous and cell-autonomous func-

tions during ML cell polarization.

Nodal functions partially in parallel with PCP signaling during axis
extension
The reduced ML polarity of MZoep–/–neuroectoderm cells resembles PCP mutant phenotypes

(Jessen et al., 2002; Kilian et al., 2003; Topczewski et al., 2001; Ulrich et al., 2003), raising the

possibility that loss of PCP signaling may underlie C and E defects in MZoep mutants. We compared

gene expression in WT and MZoep–/– gastrulae at 90% epiboly (~9 hpf) by RNA-sequencing and

found that of the genes with known roles in PCP signaling in zebrafish, only one (prickle1b) exhibited

altered expression in MZoep mutants (Figure 2—figure supplement 1). Accordingly, wnt5b, vangl2

Video 1. Automated tracking of fluorescent nuclei in

live zebrafish gastrulae. Time-lapse confocal series from

approximately 8.5 to 11.5 hpf in representative WT (left)

and MZoep–/– (right) gastrulae injected with H2B-RFP

RNA. Cell tracks shown below are colored according to

track displacement, with warmer colors indicating

higher displacement.

https://elifesciences.org/articles/54445#video1
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(trilobite), and gpc4 (knypek) transcripts were all detected in MZoep–/– gastrulae by whole mount in

situ hybridization (WISH) (Figure 2—figure supplement 1). Although this suggests that Nodal sig-

naling does not regulate PCP at the level of gene expression, we hypothesized that it could instead

regulate the activity of these signaling components. We therefore assessed PCP signaling activity by

examining the intracellular localization of the core PCP component Prickle fused to GFP (Pk-GFP),

whose association with anterior cell membranes is indicative of PCP activation and polarization

(Ciruna et al., 2006; Yin et al., 2008), using transplantation to achieve sparse labeling of neuroecto-

derm cells. We found that WT cells (in WT hosts) and MZoep–/– cells (in MZoep–/– hosts) exhibited

similar proportions of anteriorly localized Pk-GFP puncta, although MZoep mutant cells contained

significantly more membrane-associated puncta that were not anteriorly localized (chi-square,

p=0.0001) (Figure 2A, B), suggesting that PCP signaling is largely active in Nodal signaling-deficient

gastrulae.

Because PCP signaling establishes planar polarity via intra- and inter-cellular interactions between

its molecular components (Goodrich and Strutt, 2011; Bayly and Axelrod, 2011), we hypothesized

that the partial ML polarization of MZoep–/– cells observed upon transplantation into WT hosts indi-

cates the ability of Nodal-deficient cells to respond to host PCP signaling (Figure 1L, N). To test

this, we disrupted PCP signaling in MZoep–/– embryos using an antisense morpholino oligonucleo-

tide (MO) against vangl2 (Williams et al., 2012) that phenocopies C and E defects of trilobite/vangl2

mutants (Figure 2—figure supplement 1; Solnica-Krezel et al., 1996), and transplanted cells from

these MZoep–/–;vangl2 morphant donors into the prospective neuroectoderm of WT hosts. At both

Figure 2. PCP signaling is active and contributes to C and E in Nodal signaling mutants. (A) Representative images of transplanted Prickle (Pk)-GFP

donor cells (co-expressing H2B-RFP) within the neuroectoderm of membrane-labeled WT and MZoep–/– host gastrulae. Arrowheads indicate puncta at

anterior edges. (B) Pk-GFP localization in the genotypes indicated. N indicates the number of embryos and cells analyzed for each condition from four

independent trials, p<0.001, Chi-square test. (C) Representative images of membrane-labeled MZoep–/– donor cells without (left) and with (right) 2 ng

MO4-vangl2 transplanted into the neuroectoderm of unlabeled host gastrulae from five independent trials. (D) Donor cell alignment as in Figure 1. The

number of embryos in each condition is indicated on the corresponding panels in (C), WTfiWT control N = 10. ***, p<0.001; ****, p<0.0001; K-S tests.

(E) Whole mount in situ hybridization (WISH) for dlx3b and egr2b in WT (top) and MZoep–/– (bottom) gastrulae at 9.5 hpf, uninjected or injected with 2

ng MO4-vangl2. Dorsal views on the left, lateral views on the right. (F, G) Width (F) and length (G) of neural plates in the embryos depicted in (E). Each

dot represents a single embryo, black bars are mean values. Number of embryos in each condition is indicated on the corresponding panel in (E),

p<0.0001, Unpaired T-tests. Anterior is up in all images, scale bar is 20 mm in (A), 50 mm in (C), and 200 mm in (E).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. PCP signaling in Nodal-deficient embryos.
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mid- and late gastrulation stages, ML alignment was significantly reduced in MZoep–/–;vangl2 mor-

phant cells compared with control MZoep–/–cells (Figure 2C, D), further supporting the notion that

PCP is active in the absence of Nodal signaling. Notably, in this series of experiments, we found that

MZoep–/– donor cells were significantly less well aligned than WT control donors at both 8.5 and 10

hpf (Figure 2D). Together with the mosaic analyses described above and in Figure 1K–N, these

results reveal a cell-autonomous role for Nodal in ML cell polarization throughout gastrulation.

Finally, we tested whether disrupting PCP signaling using a vangl2 MO reduced axis extension in

MZoep mutant gastrulae. We found that the neural plates of both WT and MZoep mutants, as

marked by expression of dlx3b, were significantly wider and shorter upon injection with vangl2 MO

than in uninjected controls at late gastrulation stages (Figure 2E–G), indicating reduced C and E.

These results provide further evidence that PCP signaling is active and contributes to C and E move-

ments in embryos lacking Nodal signaling. We noted that WISH staining for dlx3b was noticeably

darker in MZoep–/–gastrulae (Figure 2E), likely reflecting a slight increase in expression levels (Fig-

ure 2—figure supplement 1) compounded by increased cell density resulting from reduced exten-

sion of the neuroectoderm in these mutants (Figure 1; Gritsman et al., 1999). Together, these

results indicate that Nodal does not regulate C and E solely via PCP, and that PCP is not activated

or polarized strictly downstream of Nodal.

Nodal signaling promotes ex vivo extension and tissue patterning
We have demonstrated that Nodal signaling is necessary for full planar polarization of cells and cell

behaviors underlying C and E gastrulation movements. To test whether Nodal is also sufficient for

these behaviors, we sought to define the role of Nodal during axis extension in relative isolation,

independent of other signaling and patterning events within the embryo. To this end, we employed

blastoderm explantation, a technique that is used to excise only the animal-most region of the blas-

toderm from ~2.5 hpf zebrafish embryos, thereby isolating this region from endogenous signaling

centers at the embryonic margin and producing clusters of relatively naı̈ve cells that can be grown

and manipulated in culture (Figure 3A; Xu et al., 2014; Sagerström et al., 1996; Schauer et al.,

2020; Trivedi et al., 2019). To determine the effect of Nodal signaling on such explants, we injected

single-celled WT embryos with synthetic ndr2 mRNA at doses from 2.5 to 100 pg per embryo,

explanted the animal half of each blastoderm at the 256–512 cell stage (2.5 hpf), and cultured

these explants ex vivo until intact siblings reached early segmentation stages (Figure 3A, Figure 3—

figure supplement 1). We found that several of these doses induced robust extension of explants in

culture, whereas explants cut from GFP-injected or uninjected WT control or from ndr2-injected

MZoep–/– embryos failed to extend (Figure 3B–E, Figure 3—figure supplement 1).

Time-lapse imaging of live ndr2-injected explants revealed the onset of extension morphogenesis

at or around 8 hpf (Figure 3F, Video 2), corresponding with the start of C and E movements in

intact embryos (Sepich et al., 2005). All ndr2 RNA doses induced some degree of extension over

control explants, but the intermediate doses (5–25 pg) were most effective, with 10 pg producing

the most extension and the highest dose tested (100 pg) producing the least (Figure 3—figure sup-

plement 1). Therefore, 10 pg ndr2 was used for most subsequent experiments. Automated nuclear

tracking within ndr2-expressing explants revealed patterns of cell movement that were characteristic

of C and E by MIB (Figure 3G–H), with the axis of explant extension defined as ‘AP’ and the orthog-

onal axis as ‘ML’. Indeed, plots of cell track displacement in the ‘ML’ and ‘AP’ dimensions

(Figure 3I–J, blue) yielded the same negative and positive slopes, respectively, observed in intact

embryos (Figure 1). These results demonstrate both convergence and extension movements within

Nodal-expressing explants, although extension was more prominent (Figure 3K). Although cell

movement was detected in RFP-injected control explants, cell track displacement was not spatially

organized (Figure 3I–J, gray) and was significantly reduced compared to that in ndr2-expressing sib-

lings (Figure 3K). We also examined cell divisions within ndr2-expressing explants to address the

possibility that differential proliferation contributes to ex vivo extension. Although divisions were

preferentially localized along the axis of extension, they were not concentrated in any particular

region of the explant, and the number of cell divisions detected at these stages was relatively small

(Figure 3—figure supplement 2). This suggests that, as in intact zebrafish gastrulae (Liu et al.,

2017), cell proliferation is not likely to be a major driver of C and E morphogenesis ex vivo, consis-

tent with a recent report that blocking cell divisions in zebrafish blastoderm explants did not prevent

their extension (Schauer et al., 2020).
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Figure 3. Nodal ligands promote ex vivo C and E of blastoderm explants. (A) Diagram of injection and explantation of zebrafish embryos. (B–E)

Representative bright-field images of live blastoderm explants of the indicated conditions/genotypes at the equivalent of the 2–4 somite stage. (F)

Time-lapse DIC series of a representative explant from a WT embryo injected with 10 pg ndr2 RNA. (G, H) Time-lapse series of H2B-RFP labeled nuclei

(G) and automated cell tracking (H) within a representative explant from a WT embryo injected with 10 pg ndr2 RNA. Tracks represent cell movements

Figure 3 continued on next page
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WISH assays revealed that explants expressed markers of endoderm, mesoderm (Spemann-Man-

gold organizer, axial and paraxial), and neuroectoderm according to the dose of ndr2 with which

they were injected, consistent with Nodal-dependent tissue induction in intact embryos (Chen and

Schier, 2001; Thisse et al., 2000; Feldman et al., 2000; Sampath et al., 1998). For example, low

doses of ndr2 induced robust expression of the neuroectoderm marker sox2 and some paraxial

mesoderm (tbx16), whereas high doses induced expression of the endoderm marker sox17 and the

organizer gene gsc, but less neuroectoderm (Figure 3—figure supplement 1). GFP- or un-injected

control explants expressed none of these tissue-specific markers at appreciable levels. Notably,

explants injected with 10 pg ndr2 exhibited discrete gene expression domains: the mesoderm

markers tbxta, tbx16, and noto were nearly always restricted to one end, sox17 was present in small

spots (likely to be individual endoderm cells), and sox2 was observed in a striped pattern along the

long axis of each explant (Figure 3L, Figure 3—figure supplement 1). Together, these results dem-

onstrate that Nodal signaling specifies a number of tissue types in discrete, spatially organized

domains and promotes C and E morphogenesis to varying degrees depending on ligand dose within

isolated naı̈ve blastoderm.

Blastoderm explants exhibit asymmetric Nodal signaling
The gene expression patterns observed in ndr2-expressing explants revealed asymmetry along the

axis of extension (Figure 3L), which is known to be critical for C and E morphogenesis of Xenopus

explants (Ninomiya et al., 2004). To test whether graded Nodal signaling activity could account for

this asymmetry, we immuno-stained ndr2-injected and uninjected WT control explants for phosphor-

ylated Smad2, an indicator of active Nodal signaling (Figure 4A; Souchelnytskyi et al., 1997). Using

DAPI co-staining to create a nuclear mask, we used 3D automated object detection to quantify the

location and pSmad2 staining intensity of all nuclei within each explant (Figure 4A, see

’Materials and methods’). After filtering out nuclei below a threshold background staining level, we

compared the spatial distribution of the resulting pSmad2-positive nuclei along the ‘axis’ of each

explant (Figure 4B–C). Comparing pSmad2+ nuclei (Figure 4B–C, blue dots) to all nuclei (gray dots)

revealed in ndr2-injected explants a significant

asymmetry of their distribution, which began at

6 hpf and increased until 8 hpf (p<0.0001, K-S

tests), but very few pSmad2+ nuclei that exhib-

ited little to no asymmetric distribution in unin-

jected controls (Figure 4B, C). Of note, the

timing of pSmad2 detection differed between

ndr2-injected explants and intact WT embryos,

where an appreciable pSmad2 signal was detect-

able by 5 hpf (Figure 4—figure supplement 1),

consistent with previous reports

(van Boxtel et al., 2015; Dubrulle et al., 2015).

pSmad2 then persisted in explants until at least

8 hpf, whereas no signal was detected after 6

hpf in embryos (Figure 4—figure supplement

1). No pSmad2 signal was detectable in embryos

treated with the Nodal inhibitor SB-505124

Figure 3 continued

over 3.5 hr of time-lapse confocal imaging beginning at 7.5 hpf and are colored according to mean track displacement. (I, J) Displacement of cell tracks

in the ‘mediolateral’ (I) and ‘anteroposterior’ (J) dimensions in explants from ndr2-injected (blue) and control RFP-injected (gray) WT embryos (as in

Figure 1). Each dot represents a single cell track, each color represents an individual explant. N = 4 explants of each condition from two independent

trials. (K) Absolute displacement of cell tracks in the ML and AP dimensions. (L) Representative images of WISH for the transcripts indicated in explants

from WT embryos injected with 10 pg ndr2 RNA. Scale bars are 200 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Nodal ligand levels regulate cell fate and extension of explants.

Figure supplement 2. Cell divisions within ndr2-expressing explants.

Video 2. Ex vivo extension of zebrafish blastoderm

explants. Time-lapse differential interference

contrast (DIC) series from 7 hpf to 12.5 hpf of

representative explants from an uninjected WT embryo

(left) and a WT embryo injected with 10 pg ndr2 RNA

(right).

https://elifesciences.org/articles/54445#video2
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Figure 4. Nodal-expressing explants exhibit asymmetric Nodal signaling activity. (A) Representative confocal images of immunofluorescent staining for

phosphorylated Smad2 and DAPI-labeled nuclei in 8hpf explants from WT embryos injected with 10 pg ndr2. DAPI z-stacks were used to create a

three-dimensional mask from which nuclear pSmad intensities were detected and measured in an automated fashion. (B, C) Axis position of pSmad2-

positive nuclei (blue) and all nuclei (gray) in explants from WT embryos injected with 10 pg ndr2 (B) or uninjected (C) at the time points indicated. Each

dot represents a single nucleus, pink bars are median values among pSmad2+ nuclei. N indicates the number of explants in each condition from five

Figure 4 continued on next page
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(DaCosta Byfield et al., 2004; Figure 4—figure supplement 1), indicating that this antibody specif-

ically detected Nodal signaling activity. Further evidence of asymmetric Nodal signaling within

explants was provided by increasing levels and asymmetry of lefty1 (lft1) expression, a negative

feedback inhibitor and direct transcriptional target of Nodal signaling (Meno et al., 1999), in ndr2-

expressing but not control explants (Figure 4D). These results demonstrate that injection of ndr2

mRNA at the one-cell stage produces extending explants with asymmetric Nodal signaling activity.

Nodal signaling and PCP promote cell polarity underlying C and E ex
vivo
Xenopus animal cap explants that are exposed to Activin signaling exhibit robust ML cell polarization

and intercalation (Ninomiya et al., 2004; Shindo et al., 2008). To analyze planar cell polarity under-

lying Nodal-driven C and E in zebrafish explants, we quantified cell alignment using live fluorescent

membrane labeling (Figure 5). At the equivalent of the 2–4S stage, when intact WT embryos exhibit

strong ML cell alignment (Sepich and Solnica-Krezel, 2016), cells within GFP-expressing control

explants were randomly oriented (Figure 5A,C median angle = 44˚). This was in stark contrast to

ndr2-expressing explants, whose extension was accompanied by robust ML alignment (defined as

perpendicular to the axis of extension) of cells (Figure 5A, C median angle = 19˚). This result demon-

strates that Nodal signaling is sufficient to induce ML cell alignment underlying C and E morphogen-

esis in populations of otherwise naı̈ve embryonic zebrafish cells.

To ask whether Nodal-dependent ex vivo extension and ML cell alignment require PCP signaling,

we generated explants from embryos that were co-injected with 10 pg ndr2 mRNA and vangl2 MO.

Vangl2 morphant explants exhibited overall lengths and length/width ratios that were significantly

reduced compared with those in explants expressing ndr2 alone, but significantly higher than

those in uninjected controls (Figure 5B, D, E). It was recently reported that zebrafish blastoderm

explants from embryos mutant for the PCP components wnt11, wnt5b, and fzd7a/b exhibited a simi-

lar reduction in ex vivo extension (Schauer et al., 2020). Live imaging of fluorescently labeled cell

membranes further revealed that ML cell alignment was reduced but not entirely randomized in

vangl2 morphant explants compared with explants expressing ndr2 alone (Figure 5A, C median

angle = 26˚). Because Nodal is necessary and sufficient for ML cell polarization ex vivo, and this

polarity is reduced upon disruption of PCP signaling, these results indicate that PCP signaling func-

tions downstream of Nodal in explant extension.

Nodal signaling promotes ex vivo C and E independent of mesoderm
The requirement for Nodal signaling in zebrafish axis extension is well-described, but evidence sug-

gests that this role is secondary to the ability of Nodal to specify mesoderm (Aquilina-Beck et al.,

2007; Gonsar et al., 2016; Araya et al., 2014; Smutny et al., 2017). However, the presence of

mesoderm in the absence of Nodal is not sufficient for C and E to occur (Ninomiya et al., 2004;

Howard and Smith, 1993), and loss of a subset of Xenopus Nodal ligands disrupts C and E without

affecting mesoderm formation (Luxardi et al., 2010), indicating a possible primary role for Nodal in

extension morphogenesis. This is consistent with our results showing that polarity of

MZoep–/– donor cells is only partially restored by transplantation into WT hosts (Figure 1), which

both corroborate the importance of mesoderm for proper C and E and suggest an additional cell-

autonomous role for Nodal signaling in C and E cell behaviors. To determine whether Nodal plays a

mesoderm-independent role in ex vivo C and E, we used SB-505124 (SB) to disrupt Nodal signaling

within ndr2-expressing explants after mesoderm was specified (Figure 6A). Addition of 50 mM SB at

4, 5, or 6 hpf completely blocked both explant extension and expression of the mesoderm markers

(and direct transcriptional targets of Nodal signaling; Dubrulle et al., 2015) tbxta and noto at 2–4S

Figure 4 continued

independent trials. Kolmogorov-Smirnov tests were used to compare the distribution of pSmad+ nuclei to all nuclei; ****, p<0.0001; **, p<0.01. (D)

Representative images of WISH for lefty1 in uninjected (top) and ndr2-injected (bottom) explants fixed at the time points indicated. Scale bars are 100

mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Nodal signaling activity in intact embryos.
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stage (Figure 6B–C). By contrast, treatment of intact WT embryos with SB did not prevent AP axis

extension after 5 hpf (Figure 6—figure supplement 1), consistent with previous reports (Hagos and

Dougan, 2007). Critically, explants treated with SB at 8 hpf underwent extension but were signifi-

cantly shorter than DMSO-treated controls despite robust mesoderm marker expression

(Figure 6B, C) (p<0.0001, Mann-Whitney test), indicating that Nodal contributes to ex vivo C and E

after mesoderm formation.

Figure 5. Disrupted PCP reduces Nodal-induced cell polarization and C and E within explants. (A) Representative confocal micrographs of live

membrane-labeled explants of the indicated conditions at the equivalent of the 2–4 somite stage from two independent trials. (B) Representative

bright-field images of blastoderm explants at 2–4S from four independent trials. (C) Explant cell alignment as in Figure 1. The number of explants in

each condition is indicated on the corresponding panel in (A). Mediolateral (ML) is defined as orthogonal to the axis of extension. (D, E) Length/width

ratios (D) and length (E) of explants depicted in (B). Each dot represents a single explant, black bars are median values. The number of explants in each

condition is indicated on the corresponding panel in (B). p<0.0001; Kruskal-Wallis test. Scale bar is 50 mm in (A), 200 mm in (B).
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We next sought to evaluate the role of Nodal signaling in the absence of mesoderm by disrupting

mesoderm formation in ndr2-expressing explants with a discrete two-hour pulse of SB, then allowing

Nodal signaling to resume upon wash-out of the inhibitor (Figure 6D). Treatment from 4 hpf to 6

hpf completely blocked mesoderm marker expression and extension, even after the inhibitor was

removed (Figure 6E, F). Treatment from 6 hpf to 8 hpf similarly blocked expression of

the mesoderm markers tbxta, noto, and tbx16, but dramatically increased expression of

the neuroectoderm markers sox2 and otx2b by WISH (Figure 6E, Figure 6—figure supplement 2).

Moreover, these neural-only explants exhibited marked (albeit reduced compared with DMSO con-

trols) extension (Figure 6E, F), demonstrating that Nodal signaling promotes ex vivo neuroectoderm

C and E even in the absence of mesoderm. Because sustained SB treatment beginning at 6 hpf

completely blocked explant extension (Figure 6B–C), this extension must be driven by Nodal signal-

ing after removal of the inhibitor at 8 hpf. Indeed, inhibiting only this later phase of signaling by SB

treatment at 8 hpf prevented full explant extension even in the presence of mesoderm

(Figure 6C, F), indicating that Nodal signaling after C and E onset contributes significantly to ex vivo

extension morphogenesis. These results support a tissue-autonomous requirement for Nodal signal-

ing in ex vivo neuroectoderm C and E that is distinct from its role in mesoderm formation.

Figure 6. Nodal promotes ex vivo C and E independent of mesoderm. (A) Diagram of the time course of SB-505124 (SB) treatment of ndr2-expressing

explants. (B) Representative images of WISH for the transcripts indicated in explants from WT embryos injected with 10 pg ndr2 RNA, treated with SB

at the indicated time points, and fixed at the equivalent of the 2–4 somite stage from four independent trials. (C) Length/width ratios of explants shown

in (B). Each dot represents a single explant, black bars are median values; p<0.0001, Mann-Whitney test. (D) Diagram of the time course of SB

treatment of ndr2-expressing explants followed by washout. (E) Representative images of WISH for the indicated transcripts in explants from WT

embryos injected with 10 pg ndr2 RNA, treated with SB at the indicated time points, and fixed at the equivalent of the 2–4 somite stage from four

independent trials. (F) Length/width ratios of explants shown in (E), as in panel (C). ****p<0.0001, Mann-Whitney test. Scale bars are 300 mm.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Nodal inhibitor treatment of intact embryos.

Figure supplement 2. Time-course of Nodal inhibition in ndr2-expressing explants.
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Discussion
Coordination of embryonic patterning and morphogenesis is among the most fundamental and least

understood problems in developmental biology. AP axial patterning is necessary for the evolution-

arily conserved gastrulation movements of C and E within Drosophila (Irvine and Wieschaus, 1994;

Paré et al., 2014) and vertebrate embryos (Ninomiya et al., 2004), but how C and E movements

are coordinated with embryonic patterning in vertebrates is only beginning to be understood. The

noncanonical Wnt/PCP signaling network is thought to act as a molecular compass that recognizes

anterior and posterior cell edges in order to mediate ML cell polarization (Gray et al., 2011).

Although exogenous Wnt ligands were shown to reorient PCP components and planar cell polarity

in zebrafish and Xenopus gastrulae (Lin et al., 2010; Chu and Sokol, 2016), it is unclear whether

endogenous Wnt ligands, either exclusively or in cooperation with additional signals, orient the PCP

compass in vivo. Additional mechanical cues such as tension at tissue boundaries and directional

strain also regulate planar cell polarity (Chien et al., 2015; Williams et al., 2018), but how such cues

are linked to axial patterning is not well understood. Here, using a combination of intact zebrafish

gastrulae and an ex vivo model of axial extension, we have defined critical roles for the morphogen

Nodal in regulating cell behaviors underlying C and E of the primary embryonic axis. Our findings

support a model in which Nodal signaling promotes C and E cell behaviors both upstream of and in

parallel with PCP signaling, while additional Nodal-independent mechanisms — likely AP patterning

cues — polarize PCP signaling (Figure 7).

Because Nodal signaling is necessary for both AP axial patterning (Chen and Schier, 2001;

Thisse et al., 2000; Feldman et al., 2000) and polarized C and E cell behaviors (this work), it is a

prime candidate to act upstream of PCP to orient the compass, thereby coordinating axial pattern-

ing and morphogenesis. Indeed, we found that impaired C and E in the neuroectoderm of Nodal

signaling-deficient gastrulae was associated with reduced ML cell polarization (Figure 1), a pheno-

type also observed in PCP mutants (Jessen et al., 2002; Kilian et al., 2003; Topczewski et al.,

2001; Ulrich et al., 2003). We further found, as others have observed for Activin and Nodal

(Ninomiya et al., 2004; Shindo et al., 2008; Xu et al., 2014), that Nodal can induce both ML cell

polarity and C and E in naı̈ve explants (Figure 3). Moreover, this ex vivo Nodal-induced C and E is

strongly reduced when PCP signaling is disrupted (Figure 5), indicating that Nodal functions

upstream of PCP signaling. However, additional in vivo evidence suggests a more complex interac-

tion between these two signaling systems. We found that within Nodal-deficient MZoep mutant gas-

trulae, transcripts encoding PCP signaling components were expressed at largely normal levels

(Figure 2—figure supplement 1) and the asymmetric intracellular localization of the core PCP com-

ponent Prickle-GFP was only mildly affected (Figure 2). Finally, defects in C and E cell behaviors and

axis extension, resulting from complete loss of Nodal signaling, were exacerbated by disrupted PCP

signaling (Figure 2), providing additional evidence that PCP signaling remains active in the absence

of Nodal. On the basis of these lines of evidence, we posit that Nodal is not absolutely required for

the asymmetric distribution of this core PCP component nor for the transcriptional regulation of PCP

genes in vivo, and plays only a minor role in regulating PCP signaling in intact embryos. Importantly,

this indicates that Nodal is required for polarized C and E cell behaviors in addition to intact PCP

signaling, rather than acting strictly upstream. Taken together, these data demonstrate that PCP

and Nodal are each necessary – but not sufficient – for full ML polarization of cell behaviors underly-

ing C and E, suggesting that Nodal functions largely in parallel with PCP in vivo (Figure 7). They also

suggest that an additional signal (or signals) beyond Nodal instructs PCP signaling and

the asymmetry of its components within the gastrula (‘X’ in Figure 7).

Results from explant experiments lead us to refined conclusions regarding the relationship

between Nodal and PCP. Because 1) no cell polarity or C and E is observed in the absence of Nodal

signaling in naı̈ve blastoderm explants, 2) expression of Nodal ligands is sufficient to induce PCP-

dependent ML cell polarization and C and E in the absence of other apparent patterning cues (Fig-

ures 3 and 5), and 3) this Nodal-induced ML cell polarization is strongly reduced by interference

with PCP signaling (Figure 5), we interpret these results as indicating that PCP functions wholly

downstream of Nodal in this ex vivo context (Figure 7). Although we cannot rule out the possibility

that an additional non-Nodal signal regulates PCP in explants (‘X’), any such signal would also oper-

ate downstream of Nodal. It is also possible that ‘X’ functions strictly in parallel with Nodal in vivo,

and that this signal is absent from the explant system.
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C and E and cell polarization were reduced but not completely abolished in ndr2-expressing

vangl2 morphant explants (Figure 5), as is observed in intact trilobite/vangl2 mutant embryos

(Jessen et al., 2002). This may indicate that Nodal contributes to polarized cell behaviors ex vivo

through an additional PCP-independent mechanism (‘Y’ in Figure 7), that knockdown of vangl2

alone does not completely abolish PCP signaling, or a combination of both. Indeed, accumulating

evidence suggests that PCP is a complex signaling network comprised of multiple functionally dis-

crete modules, such that loss of one may not entirely disrupt PCP as a whole (Gray et al., 2011). For

Figure 7. A model for the roles of PCP and Nodal signaling in C and E gastrulation movements. In intact embryos (left), Nodal signaling acts largely in

parallel with PCP signaling to regulate the ML cell polarization that underlies C and E. PCP signaling activity and localization of its components are

regulated by an additional unknown signal(s) (X), and maintains residual polarizing activity in the absence of Nodal. In embryonic explants (right), PCP

signaling activity and C and E cell behaviors are regulated wholly downstream of Nodal signaling.
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example, vangl2 and gpc4 compound zebrafish mutants have an additive C and E phenotype, imply-

ing that these two PCP components do not work in a simple linear pathway (Marlow et al., 1998).

scribble and vangl2 were also recently reported to function in parallel with non-canonical Wnt

ligands to align hair cells in zebrafish (Navajas Acedo et al., 2019), reinforcing the notion of multiple

modules under the larger PCP umbrella. This complexity raises the possibility that Nodal signaling

regulates only a subset of PCP signaling modules. For instance, although Nodal is not strictly

required for asymmetric localization of Pk-GFP or Vangl2-dependent cell polarity in vivo (Figure 2),

it may regulate the localization/activity of other PCP modules or PCP-associated molecules.

The results reported here are consistent with, but expand significantly upon, previous models for

the role of Nodal in gastrulation morphogenesis. Ninomiya et al., 2004 proposed that AP pattern-

ing by Nodal-related signals is required to orient the polarity of PCP signaling during C and E gas-

trulation movements. Although we similarly found that Nodal signaling is sufficient to induce both

asymmetric patterning and PCP-dependent C and E, our genetic analyses indicate that Nodal is not

strictly required for PCP polarization in vivo, and that the role of Nodal in C and E is not limited to

AP patterning. Furthermore, although we observed asymmetric Nodal signaling in extending

explants (Figure 4), it is not yet clear that this asymmetry is required for C and E cell behaviors. The

source of this asymmetry is also unclear because the embryos were injected with ndr2 RNA at the

single-cell stage. We speculate that feed-back and feed-forward signaling mechanisms

(Müller et al., 2012) may act to amplify small (and unavoidable) asymmetries in the distribution of

injected RNAs. The importance of Nodal in axis extension has also been attributed to its ability to

specify mesoderm (Aquilina-Beck et al., 2007; Gonsar et al., 2016; Araya et al., 2014), implying

that Nodal-dependent mesoderm is required for C and E rather than Nodal signaling per se. We

demonstrate here that Nodal contributes to ex vivo extension after mesoderm is specified and even

in the absence of mesoderm (Figure 6), arguing for a primary, mesoderm-independent role for

Nodal in C and E in addition to its well-described mesoderm-dependent functions. Transcriptional

targets of Nodal signaling that regulate C and E independently of either PCP or mesoderm forma-

tion (‘Y’ in Figure 7) remain largely unknown, and identification of these molecules will be an impor-

tant goal for future studies.

The blastoderm explants described in this study provide a robust, simplified model of axial exten-

sion in which a signaling molecule of interest — in this case, Nodal — can be studied independently

of endogenous patterning and signaling events. It has been shown that some methods of zebrafish

blastoderm explantation do not require the addition of Nodal or any other signaling molecules to

induce extension (Schauer et al., 2020; Trivedi et al., 2019), but these explants are generated from

the entire blastoderm and therefore contain signals (Nodal and otherwise) already present at the

embryonic margin (Erter et al., 1998). By contrast, unmanipulated explants containing only the ani-

mal-most blastoderm are comparatively naı̈ve, as they exclude endogenous signals from the margin,

and fail to extend (Xu et al., 2014; Sagerström et al., 1996; Schauer et al., 2020; Trivedi et al.,

2019 [this work]), similar to classic Xenopus animal cap explants (Howard and Smith, 1993).

Although explants from any species are a powerful tool, we must acknowledge ways in which this

system differs from intact embryos. Namely, because explants do not contain the full complement of

molecular signals and tissue interactions present in intact embryos, the contribution of additional sig-

nals to C and E may be masked by the reliance of explant extension on Nodal alone. This is illus-

trated by the function of PCP both downstream of and in parallel with Nodal in vivo, but strictly

downstream of Nodal ex vivo (Figure 7). The absence of a yolk cell also dramatically alters the

geometry of explanted tissues and removes signaling input from the extraembryonic yolk syncytial

layer (Schauer et al., 2020). Despite these differences, explants exhibit a suite of complex, biologi-

cally relevant behaviors in common with intact embryos, including C and E morphogenetic move-

ments, ML cell polarization, timing of C and E onset, and transcriptional responses to Nodal. These

explants therefore provide a simplified platform that has allowed for new insights into the role of

Nodal signaling in C and E morphogenesis and for dissection of its complex relationship with PCP.

Although Nodal signaling functions wholly upstream of PCP-dependent ML planar polarity of cells

ex vivo, in vivo it functions in an overlapping fashion and cooperates with PCP signaling, whose

activity is regulated by additional, as yet unidentified, signaling events (Figure 7).
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Danio rerio)

tdgf1 (oep) ZFIN RRID:ZFIN_ZDB-
GENE-990415-198

Gene
(Danio rerio)

ndr2 (cyc) ZFIN RRID:ZFIN_ZDB-
GENE-990415-181

Strain, strain
background
(Danio rerio)

AB* ZIRC RRID:ZFIN_ZDB-
GENO-960809-7

Genetic reagent
(Danio rerio)

oeptz257 Hammerschmidt et al., 1996 RRID:ZFIN_ZDB-
GENO-130130-2

Point mutation

Recombinant
DNA reagent

pJZoepFlag1-2 in
pcDNA3
(plasmid)

Zhang et al., 1998 Template for
in vitro transcription

Recombinant
DNA reagent

ndr2 in PCS2+
(plasmid)

Sampath et al., 1998 Template for
in vitro transcription

Recombinant
DNA reagent

membrane Cherry
in PCS2+
(plasmid)

Gift from
Dr Fang Lin

Template for
in vitro transcription

Recombinant
DNA reagent

membrane eGFP in PCS2+
(plasmid)

Wallingford and Harland, 2002 Template for
in vitro transcription

Recombinant
DNA reagent

H2B-RFP in PCS2
(plasmid)

Gift from Dr
John Wallingford

Template for
in vitro transcription

Recombinant
DNA reagent

Drosophila
Prickle-GFP
(plasmid)

Jenny et al., 2003 Template for
in vitro transcription

Antibody Anti-phospho
Smad2/3

Cell Signaling
Technology #8828

RRID:AB_2631089 IF (1:1000)

Antibody Invitrogen
AlexaFluor 488 goat
anti-rabbit IgG

Thermo Fisher
#A-11008

RRID:AB_143165 IF (1:1000)

Antibody Roche Anti-
digoxigenin-AP
Fab fragments

Millipore Sigma
#11093274910

RRID:AB_2734716 1:5000

Commercial
assay or kit

Roche Digoxigenin
RNA
labelling mix

Millipore Sigma
#11277073910

Other Roche BM Purple AP
staining solution

Millipore Sigma
#11442074001

Sequenced-
based reagent

MO4-vangl2
Morpholino
antisense
oligonucleotide

GeneTools
(Williams et al., 2012)

AGTTCCACCTTACT
CCTGAGAGAAT

Commercial
assay or kit

Invitrogen mMessage
mMachine SP6 kit

Thermo Fisher
# AM1340

Commercial
assay or kit

RNeasy Mini kit Qiagen
#74104

Chemical
compound, drug

Ambion
Trizol reagent

Thermo Fisher
#15596018

Chemical
compound, drug

SB-505124 Millipore Sigma
# S4696

50 mM

Peptide,
recombinant protein

Roche Pronase Millipore Sigma
#10165921001

Other New-born
calf serum

Invitrogen
#26010–066

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Imaris Oxford Instruments RRID:SCR_007370 Live cell tracking

Software,
algorithm

ImageJ/FIJI ImageJ/FIJI RRID:SCR_002285 Image analysis

Software,
algorithm

Prism 8 Graphpad RRID:SCR_002798 Statistics
and graphs

Zebrafish
Adult zebrafish were raised and maintained according to established methods (Westerfield, 1993)

in compliance with standards established by the Washington University Institutional Animal Care and

Use Committee. Embryos were obtained from natural matings and staged according to morphology

as described (Kimmel et al., 1995). All studies on WT embryos were carried out in AB* back-

grounds. Additional lines used include oeptz257 (Hammerschmidt et al., 1996) on AB* background.

oep–/– embryos were rescued by injection of 50 pg synthetic oep RNA (Zhang et al., 1998) and

raised to adulthood, then intercrossed to generate maternal-zygotic oep–/–embryos. Fish were cho-

sen from their home tank to be crossed at random, and the resulting embryos were also chosen

from the dish at random for injection and inclusion in experiments.

Microinjection of synthetic RNA and morpholino oligonucleotides
Single-celled embryos were aligned within agarose troughs made from custom plastic molds and

injected with 1–3 nL volumes using pulled glass needles. Synthetic mRNAs for injection were made

by in vitro transcription from linearized plasmid DNA templates using Invitrogen mMessage mMa-

chine kits. Doses of RNA per embryo were as follows: 100 pg membrane Cherry (a kind gift from Dr

Fang Lin), 50 pg membrane eGFP (Wallingford and Harland, 2002), 25 pg H2B-RFP (a kind gift

from Dr. John Wallingford), 50 pg Drosophila pk-gfp (Jenny et al., 2003), and 2.5–100 pg ndr2

(Sampath et al., 1998). Injection of 2 ng MO4-tri/vangl2 (Williams et al., 2012) was carried out as

for synthetic RNA.

Pharmacological treatments
50 mM SB-505124 (Sigma #S4696) was added to the media of embryos and explants in agarose-

coated 6-well plates at the times specified. For wash-out experiments, SB-containing medium was

removed and explants were washed twice with 0.3x Danieau solution, before fresh explant

medium was introduced.

Immunofluorescent staining
Embryos and explants were stained for phosphorylated Smad2 as described in van Boxtel et al.,

2015. Briefly, samples were fixed overnight in 4% paraformaldehyde (PFA), rinsed in phosphate-

buffered saline (PBS) + 0.1% Tween-20 (PBT), and dehydrated to 100% methanol. Prior to staining,

samples were rehydrated into PBS, rinsed in PBS + 1% Triton X-100, and incubated in ice-cold ace-

tone at �20˚C for 20 min. Samples were then blocked in PBS+ 10% FBS and 1% Triton X-100, and

then incubated overnight at 4˚C with an anti-pSmad2/3 antibody (Cell Signaling #8828) at 1:1000 in

block. Samples were rinsed in PBT/1% Triton X-100 and incubated with Alexa Fluor 488 anti-Rabbit

IgG (Invitrogen) at 1:1000. Embryos were co-stained with 40,6-diamidino-2-phenylindole, dihydro-

chloride (DAPI) and rinsed in PBS + 1% Triton X-100 prior to mounting in 2% methylcellulose for con-

focal imaging.

Whole mount in situ hybridization
Antisense riboprobes were transcribed using NEB T7 or T3 RNA polymerase and labeled with digox-

ygenin (DIG) (Roche). Whole-mount in situ hybridization (WISH) was performed according to

Thisse and Thisse, 2008. Briefly, embryos and explants were fixed overnight in 4% PFA in PBS,

rinsed in PBT, and dehydrated into methanol. Samples were then rehydrated into PBT, incubated for

at least two hours in hybridization solution with 50% formamide (in 0.75 M sodium chloride, 75 mM
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sodium citrate, 0.1% tween 20, 50 mg/mL heparin (Sigma), and 200 mg/mL tRNA) at 70˚C, then

hybridized overnight at 70˚C with antisense probes diluted approximately 1 ng/mL in hybridization

solution. Samples were washed gradually into 2X SSC buffer (0.3 M sodium chloride, 30 mM sodium

citrate), and then gradually from SSC to PBT. Samples were blocked at room temperature for several

hours in PBT with 2% goat serum and 2 mg/mL bovine serum albumin (BSA), then incubated over-

night at 4˚C with anti-DIG antibody (Roche #11093274910) at 1:5000 in block. Samples were rinsed

extensively in PBT, and then in staining buffer (PBT +100 mM Tris [pH 9.5], 50 mM MgCl2, and 100

mM NaCl) prior to staining with BM Purple AP staining solution (Roche).

RNA-sequencing
RNA for sequencing was isolated from 50 pooled WT or MZoep–/– embryos at the 90% epiboly

stage from three independent clutches per genotype (three biological replicates). Embryos were

lysed and total RNA was isolated using Trizol reagent (Ambion), then cleaned up using a Qiagen

RNeasy kit. Samples were submitted to the Washington University Genome Technology Access Cen-

ter for library preparation, including depletion of ribosomal RNA. Libraries were sequenced using an

Illumina HiSeq3000 to obtain single-ended 50-bp reads. Raw reads were trimmed with cutadapt to

remove low-quality bases and aligned to Danio rerio genome GRCz10 using STAR_2.5.4b

(Dobin et al., 2013) with Ensembl v83 annotation. Aligned reads were quantified using feature-

Counts 1.6.3 from the subreads package (Liao et al., 2013).

Blastoderm explants
Embryos were injected with ndr2, H2B-RFP, and/or membrane GFP RNA (and MOs) at the one-cell

stage as described above, or left uninjected, then dechorionated using Pronase (Roche). At the 256–

512 cell stage, watchmaker’s forceps were used to excise the animal portion of each embryo in an

agarose-coated dish filled with 3X Danieau solution, cutting the blastoderm at approximately 50% of

its height and collecting the animal-most ~1/3 of cells from each embryo, as described in Xu et al.,

2014. Explants were allowed to heal briefly, then transferred into agarose-coated 6-well plates con-

taining explant medium — comprised of Dulbecco’s modified eagle medium with nutrient mixture

F-12 (Gibco 11330032) containing 2.5 mM L-glutamine, 15 mM HEPES, 3% newborn calf serum (Invi-

trogen 26010–066), 50 units/mL penicillin, and 50 mg/mL streptomycin (10,000 U/mL pen-strep at

1:200, Gibco 15140163) — and incubated at 28.5˚C until the desired stage.

Transplantation
For cell autonomy and Pk-GFP transplants, host and donor embryos were injected with RNA encod-

ing fluorescent nuclear and membrane markers, MOs, and/or Pk-GFP as described above. For cell

autonomy, donor embryos were injected with membrane Cherry or membrane GFP and cells

were transplanted into unlabeled hosts. For Pk-GFP localization, donor embryos were co-injected

with mCherry, prickle-GFP, and H2B-RFP RNA and cells were transplanted into mCherry-injected

hosts. Hosts and donors were dechorionated using Pronase, then arranged within the wells of a cus-

tom-molded agarose plate at approximately sphere stage. Approximately 20–40 cells were trans-

ferred from donors to hosts using a fine-pulled glass capillary.

Microscopy
Live embryos/explants expressing fluorescent proteins were mounted in 0.75% low-melt agarose,

and fixed embryos/explants subjected to immunofluorescent staining were mounted in 2% methyl-

cellulose in glass- bottomed 35 mm Petri dishes for imaging using a modified Olympus IX81 inverted

spinning disc confocal microscope equipped with Voltran and Cobolt steady-state lasers and a

Hamamatsu ImagEM EM CCD digital camera. For live time-lapse series, 60–100 mm z-stacks with a

1–2 mm step were collected every 3–5 minutes (depending on the experiment) for 3 hours using a

20x or 40x dry objective lens for intact embryos and a 20x objective for explants. Temperature was

maintained at 28.5˚C during imaging using a Live Cell Instrument stage heater. For immuno-stained

embryos and explants, 100 mm z-stacks with a 1 or 2 mm step were collected using a 10x or 20x dry

objective lens, depending on the experiment. Bright-field and transmitted light images of live

embryos and in situ hybridizations were collected using a Nikon AZ100 macroscope.
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Image analysis
ImageJ was used to visualize and manipulate all microscopy data sets.

Individual cell measurements
Within live embryos and explants expressing either membrane eGFP or membrane Cherry, a single

z-plane (in ubiquitously labeled embryos) or a projection of several z-planes (when measuring trans-

planted cells) through the neuroectoderm was chosen for each time point. To measure cell orienta-

tion and elongation, the AP axis in all embryo images was aligned prior to manual outlining of cells.

A fit ellipse was used to measure the orientation of each cell’s major axis and its aspect ratio. To

assess Pk-GFP localization, isolated donor cells co-expressing Pk-GFP and H2B-RFP were scored

according to the subcellular localization of GFP signal. Cell protrusions were manually detected

within time-lapse stacks of transplanted neuroectoderm cells and their orientation measured in

ImageJ. These orientations were binned into one of 12 sectors (30˚ each), which were categorized as

mediolateral (within 60˚ of horizontal), anteroposterior (within 60˚ of vertical), or neither (the remain-

ing 120˚). The distribution of protrusions within each of these categories was then compared

between experimental conditions using Chi-square tests.

Automated nuclear tracking
Imaris software and the ImageJ TrackMate plugin were used to detect and track labeled

nuclei automatically in the dorsal hemisphere of WT and MZoep mutant gastrulae and in embryonic

explants injected with RNA encoding H2B-RFP, and to produce color-coded depictions of their tra-

jectories and measurements of speed and displacement. Track displacement in the X (mediolateral)

and Y (anteroposterior) dimensions were calculated independently, and plotted against their starting

positions within the embryo/explant using Graphpad Prism 8 software. Cell divisions were manually

detected within time-lapse stacks of explants from WT embryos co-injected with H2B-RFP and ndr2

RNA, and their locations with respect to the center of each explant were measured using ImageJ.

Morphometric measurements
To measure the length/width ratios of explants, we divided the length of a segmented line drawn

along the midline of each explant (accounting for curvature) by the length of a perpendicular line

spanning the width of the explant near its midpoint. To measure width of the neural plate in whole-

mount embryos, dorsal-view images were collected of each embryo, and a line was drawn from one

side of the dlx3b expression domain to the other side at the level of the future mid-hindbrain bound-

ary marked by egr2b expression. Length measurements were made similarly by measuring from the

anterior to posterior aspects of the dlx3b expression domain in lateral-view images. Images were

coded and analyses were performed blinded to ensure unbiased measurements.

pSmad2 immunostaining in explants
DAPI z-stacks were converted into 3D masks, which were used to create z-stacks of nuclear pSmad2

labeling. All stacks were oriented such that the highest apparent pSmad2 signal (if any) was to the

left, and the ImageJ ‘3D Objects counter’ plugin was used to detect the location and pSmad2 fluo-

rescence intensity of all nuclei in a given explant. All nuclei with fluorescence intensities above a

threshold background level were categorized as pSmad2-positive.

Statistical analysis
Graphpad Prism 8 software was used to perform statistical analyses and to generate graphs of data

collected from embryo and explant images. The statistical tests used varied as was appropriate for

each experiment and are described in the text and figure legends. Data were tested for normal dis-

tribution, and non-parametric tests (Mann-Whitney and Kolmogorov-Smirnov) were used for all non-

normally distributed data. Normally distributed data with similar variance between groups were ana-

lyzed using parametric tests (T-tests). All tests used were two-tailed. Circular histograms were cre-

ated using PAST software.
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