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Background
With the deeper understanding of human genome, GENCODE [1], FANTOM [2] and 
other projects have annotated a large number of coding and/or non-coding genes. It 
is known that human genome has ~ 20,000 protein-coding RNAs and potentially more 
non-coding RNAs [1, 3]. However, by matching initiation and termination codons, mil-
lions of potential open reading frames (ORFs) can be identified, which is far more than 
the number of functional elements currently discovered [4]. Among them, the ORF with 
a length of less than 100 codons is defined as a small ORF (smORF), and the protein 
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translated by smORF is called microprotein [5]. By the advantages of ribosome profil-
ing sequencing (Ribo-seq), researchers can identify ribosome-binding RNA fragments, 
which are RNAs in translation, providing strong evidence to support the annotation of 
smORFs [6]. sORFs.org [7] and small proteins database (SmProt) [8] collected over 2 
million and 160,000 human smORFs respectively. Another study used de novo transcript 
assembly to improve annotation accuracy, and identified over 7,500 smORFs [9].

Mass spectrometry (MS) enables the certification of the existence of microprotein 
[10]. Several studies have demonstrated the role of microproteins in humans and other 
mammals. For example, dwarf open reading frame (DWORF), a 34 amino acids (aa) 
microprotein, enhances muscle contraction by increasing the calcium uptake of sarco-
plasmic reticulum [11]. Microprotein inducer of fusion (Minion), specifically expressed 
during skeletal muscle development and regeneration, is found to induce cell fusion and 
muscle formation [12]. In addition, microproteins also play regulatory roles in prolifera-
tion [13, 14], cell respiration [15, 16], and immune regulation [17].

Although the functions of a few microproteins have been studied, the functions of the 
majority of smORFs remain unknown. Therefore, it is emergently necessary to develop 
computational tools to predict the functions of microproteins. ProteomeHD measured 
the co-regulatory relationships of proteins by MS and then predicted the functions of 
proteins and microproteins [18]. Functional smORF-encoded peptides predictor (FSPP) 
used MS, Ribo-seq and RNA sequencing (RNAseq), predicted the function of micropro-
teins by co-expression and co-location networks [19]. However, quantification of large 
number of microproteins or their RNAs is difficult due to the small sizes and large num-
ber. For example, ProteomeHD covered ~ 10,000 proteins, a small fraction of which were 
microproteins, much smaller than the potential number of microproteins, while FSPP 
used only 38 samples. Here, we propose a computational method, smORFunction, to 
predict the function of 526,443 smORFs/microproteins in at most 265 models gener-
ated from 173 datasets, including 48 tissues/cells, 82 diseases (and normal). Then we 
confirmed that smORFunction can successfully predict the function of microproteins by 
case studies and database validations. Moreover, we developed a web tool of our method, 
providing potential helps for the studies of smORFs and microproteins.

Results
smORF RNA quantification based on microarray

Microarray is one of the most common transcriptome quantification methods especially 
before the invention of RNAseq. Although RNAseq is more sensitive than microarray 
and have less noises [20], microarray requires fewer computational resources and has 
generally well similarity with RNAseq [21]. Studies using microarrays, such as the IMI 
MARCAR Project [22] and Microarray Innovations in Leukemia (MILE) [23], have made 
great contributions to medical researches. We collected 617,462 unique smORFs from 
SmProt [8], sORFs.org [7] and the study by Thomas et al. [9]. Using probe reannotation, 
we remaped the probes of microarrays to smORFs and estimated smORF RNA expres-
sions (Fig. 1a, Method).

Then we tested the accuracy of this quantification. By comparing smORFs and 
known RNAs (Ensembl v75) using the samples that underwent both RNAseq and 
microarray, the correlations between the samples decreased in smORFs, but the 
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correlations between the RNAs increased (Fig. 1b). For example, KRASIM is a 99-aa 
microprotein expressed in hepatocellular carcinoma cells, whose overexpression 
reduces the level of KRAS [14]. In three datasets from Gene Expression Omnibus 
(GEO), KRASIM expression estimated by our method were significantly negatively 
correlated with expression of KRAS (Fig. 1c), which does not match the same probe 
as KRASIM, suggests that our method could effectively evaluate the expression of 
smORFs.

Prediction of microprotein function based on expression similarity

Because of the large abundance of smORFs, it is difficult to construct a co-expression 
network like previous studies. Calculating correlations between smORFs and genes 
requires billions times of calculations, which is time-consuming and difficult to store 
and search. Inspired by the nearest neighbor algorithm, we built a BallTree for each 
dataset to find the nearest neighborhoods (genes) of smORFs. The estimated expres-
sions of genes and smORFs in each dataset are converted to their rank orders by row 
(gene/smORF). We used Pearson correlation distance metric to measure the dis-
tances between nodes, which is equivalent to Spearman correlation since the expres-
sions were converted to ranks in advance, but the time efficiency is greatly improved. 
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Fig. 1  smORF RNA quantification based on microarray reannotation. a The workflow of reannotating 
microarray probes to smORFs. b The correlation of the estimated gene or smORF expressions between RNA 
sequencing and microarray. Spearman correlation were calculated between samples or between genes/
smORFs and p values were adjusted using Benjamini–Hochberg procedure. Blue: smORF, red: gene, grey: not 
significant (FDR ≥ 0.05). c The Spearman correlation between KRAS and estimated KRASIM expression in 3 
different datasets
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By using the pre-ranking strategy and BallTree algorithm, the time consumption of 
searching correlated genes changed to 6% of that of no pre-ranking and brute force 
searching (Table 1).

Using this speed-optimized correlation algorism, we calculated the Spearman cor-
relation between smORFs and other known genes. Furthermore, the functions of 
smORFs/microproteins can be predicted using correlated genes through pathway 
enrichment analysis. Considering that biomolecules have different functions in dif-
ferent tissues and diseases, we collected microarray data from 48 tissues/cells and 
82 diseases (and normal) involving 173 data sets and built prediction models respec-
tively. Moreover, by aggregating the predictions of multiple models, we could get 
more reliable results. After applying our method to several microproteins that have 
been studied, we found that our method could successfully predict the functions of 
these microproteins.

For instance, phosphatidylinositol glycan anchor biosynthesis class B opposite 
strand 1 (PIGBOS), a 54-aa microprotein, as well as mitochondrial elongation fac-
tor 1 microprotein (MIEF1-MP), a 70-aa microprotein, were both located in mito-
chondrion [24, 25]. By merging the results of multiple datasets of normal tissues, our 
method successfully predicted their subcellular location in mitochondrion (Fig. 2a, b).

Additionally, micropeptide regulator of b-oxidation (MOXI), a 56-aa micropro-
tein encoded by muscle-enriched long non-coding RNAs (lncRNA) LINC00116, was 
found to be located in mitochondrion and enhance fatty acid β-oxidation [15, 16]. 
By applying our method to several expression datasets of skeletal muscle tissues, we 
successfully predicted not only its cellular localization, but also the enrichment of cel-
lular respiratory pathways such as oxidative phosphorylation (Fig. 2c).

Moreover, non-annotated P-body dissociating polypeptide (NoBody), translated 
from LOC550643, was previously found to interact with the mRNA decapping com-
plex, which involves in RNA degradation and mediates nonsense mediated decay 
(NMD) [26]. Using our method in a variety of normal tissue datasets, the functions of 
NoBody in RNA metabolism and NMD were successfully predicted (Fig. 2d).

Lastly, mitochondrial micropeptide-47 (Mm47) is a 47-aa mitochondrial micropro-
tein impacts the activation of the Nlrp3 inflammasome [17]. Although this micro-
protein is not annotated in the three studies we collected, the result of basic local 
alignment search tool (BLAST) [27] shows its high similarity to a 21-aa microprotein 
located at chromosome 7 (+):135358848–135358913 (GRCh37) (Additional file  1: 
Figure S1a). It is reasonable to consider that they have similar functions. Prediction of 
the function of this 21-aa microprotein in normal tissues shows that it was located in 
mitochondrion, which is the same as Mm47 (Additional file 1: Figure S1b).

Table 1  The time consumption of searching correlated genes using different methods

The algorithms were run on Intel(R) Core(TM) i7-7700HQ CPU with 24 GB RAM

Time (s) Brute force
No pre-ranked

Brute force
Pre-ranked

BallTree
Pre-ranked

Pre-rank – 0.344 (± 0.00299) 0.348 (± 0.00805)

Build model – – 21.7 (± 0.166)

Search 17.9 (± 0.157) 1.713 (± 0.0445) 1.08 (± 0.471)
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Further validation of prediction process

To further observe the validity of our approach, we collected 270 microproteins 
from the Universal Protein Resource (UniProt) [28], as well as corresponding GO 
functional annotations. Using the Genotype-Tissue Expression (GTEx) microarray 
data set (GSE45878), we predicted the functions of these microproteins. The results 
showed that at least one function of 202 microproteins (74.8%) could be success-
fully predicted (Fig.  3a). Moreover, we downloaded the human protein interactions 
from the STRING [29] database. Only interactions involving the microproteins we 
collected were retained. Using the estimated microprotein RNA expression from the 
GTEx microarray dataset, we calculated the expression correlation between micro-
protein RNA and known genes. We found that the correlation coefficients (Rho2 of 
Spearman’s test) of the microprotein-protein pairs with the interactions were sig-
nificantly higher than those of the pairs without interaction records (Fig. 3b). These 
results further demonstrate the accuracy of our method for the quantitative measure-
ment and functional prediction of smORFs.

The cellular component overview of microprotein

Using our method, we explored the cellular components of microproteins. First, we 
randomly selected 10,000 microproteins. Then we selected up to 1000 positively 
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related known genes for each microprotein using the GTEx microarray dataset. The 
cellular components of these microproteins was predicted by enrichment analysis. 
The results showed that 52.04% of the microproteins were predicted to be associated 
with the catalytic complex (FDR < 0.2, Fig. 3c). The first ranking of the catalytic com-
plex did not change when a stricter FDR (FDR < 0.05) was used. Followed by trans-
ferase complex and ribonucleoprotein complex, with 44.95% and 44.90%, respectively. 
The possible reason is that the relatively large size of these gene sets (1355, 778, and 
680) makes it more possibly to have significant results. On the other hand it also 
means that unknown proteins are more likely to belong to these components, provid-
ing a potential direction for future research.

A web tool for microprotein function prediction

By the advantage of the speed-optimized correlation algorism, it is possible to perform 
prediction while requesting. We developed our method into a web tool, smORFunction 
(https​://www.cuila​b.cn/smorf​uncti​on), which contains 617,462 unique smORFs anno-
tated by SmProt, sORFs.org and the study of Thomas et al. smORFs can be searched by 
sequence using exact mode or BLAST, or by coordinate in reference genome (GRCh37 
or GRCh38). For 526,443 smORFs that can be mapped to at least one probe of one 
microarray platform, we provide functional predictions in at most 48 tissues/cells, 82 
diseases (and normal), including GO terms, KEGG pathways, and REACTOM pathways 
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(Fig. 4). This tool will provide inspirations for the research on the functions of smORFs 
and microproteins.

Discussion
Similarities based on networks are widely used to predict the functions of proteins 
and non-coding RNAs [30]. Using protein–protein interaction network, the functions 
of unknown proteins can be annotated by interacted proteins with known functions 
[31, 32]. The functions of microRNAs (miRNAs) can be predicted based on upstream 
transcription factor regulation network [33] or downstream target gene network [34]. 
Non-coding RNA function annotation server (ncFANs) used coding-non-coding gene 
co-expression network to annotate lncRNA functions [35].

Some of the existing smORF/microprotein function prediction tools also used the net-
work for function prediction. ProteomeHD used MS to identify the co-regulation of pro-
teins and to predict the functions of proteins and microproteins [18]. FSPP annotated the 
functions of microproteins through co-expression and co-location networks constructed 
by MS, Ribo-seq and RNAseq [19]. The quantification of smORFs using RNAseq or MS 
requires more computational resources and time. Given the small molecular weight of 
microproteins, only a few microproteins can be detected and quantified by MS. In con-
trast, microarrays allow faster access to more smORFs of more datasets. ProteomeHD 
covered ~ 10,000 proteins, a small fraction of which were microproteins, much smaller 
than the potential number of microproteins, while FSPP used 38 samples from 5 human 
cell lines. In our research, prediction models for up to 526,443 smORFs are provided, 
involving 48 tissues/cells, 82 diseases (and normal).

Additionally, the consistency of microarray quantification of smORFs with RNAseq 
is similar to that of known genes, suggests that our method could effectively evaluate 
the expression of smORFs. But there is a phenomenon that the correlations between the 
samples decreased in smORFs, but the correlations between the RNAs increased. We 
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think this may be due to the large number of smORFs. There are about 20,000 known 
genes, whereas we quantified about 500,000 smORFs. This makes it more likely that the 
smORFs contain outliers that make correlations decrease. But for calculating the cor-
relations between RNAs, smORFs and known genes use the arrays of the same length 
(number of samples). We think this is more comparable. Moreover, when calculating 
correlated genes, we only focus on the correlations between RNAs, making this meas-
urement more important than the correlations between samples. Our quantification of 
smORFs obtained higher correlations between RNAs than known genes, suggesting that 
our re-annotation and quantification process is reliable enough.

Building networks for hundreds of thousands of smORFs is difficult, so we simplified 
this step using Spearman’s correlation, equating to building a two-layer smORF-gene 
network. Based on the reannotation of microarray probes, our tool predicts the function 
of smORFs by correlated genes with functional annotation. Although protein and RNA 
are often inconsistent [36, 37], and it is difficult for microarray to evaluate the expression 
of transcripts with low abundance and those without intersection with the probes [20], 
our method still achieved well prediction performance. Furthermore, our tool includes 
more smORFs and more models of different tissues and diseases than existing tools.

Microarray platforms usually have tens of thousands of probe sets, but are still far 
fewer than potential smORFs. 526,443 of all the smORFs we collected can be annotated 
by at least one probe set of one platform. Although RNAseq can be used to evaluate the 
expression levels of all the smORFs, the process of sequence alignment and counting 
reads requires more time and computational resources. Meanwhile, MS quantification 
also requires massive calculations, and not all microproteins can be detected. In addi-
tion, the same probe may match multiple genes and/or smORFs, resulting in inaccurate 
estimation of the expression of smORFs. This non-unique mapping problem also exists 
in RNAseq and MS. Research shows that similar sequences may have similar functions 
[38]. Other study shows that near transcripts in the genome tend to have similar func-
tions [39]. Therefore, it is reasonable to think that the smORFs that match to the same 
probe may have similar functions. Besides, these genes and smORFs share the signal 
intensity of the same probe in unknown proportions. We hypothesize that these propor-
tions remain consistent across samples from the same dataset, tissue, and disease. Based 
on this assumption, it can be calculated that regardless of these unknown proportions, 
the Spearman’s correlation between smORFs and other genes is constant, so the pre-
dictions remain unchanged, reducing the impact of quantitative inaccuracies caused by 
non-unique mapping.

Conclusions
In summary, we collected 617,462 unique smORFs from SmProt, sORFs.org, and the 
study of Thomas et  al. By reannotating the microarray probes, 526,443 smORFs are 
matched to the probes. The expression of smORFs was estimated by these rematched 
probes, and the accuracy of this quantitative method was evaluated. Furthermore, we 
collected 173 datasets from the GEO, including 48 tissues/cells, 82 diseases (and nor-
mal) and generated 265 prediction models. The functions of the smORFs were pre-
dicted by correlation analysis and pathway enrichment. After applying our method to 
270 known microproteins from literatures and database, our method generally performs 



Page 9 of 13Ji et al. BMC Bioinformatics          (2020) 21:455 	

well. Finally, we developed our method into a web tool, smORFunction, which could 
provide references for the functional researches of smORFs and microproteins.

Methods
The collection of smORFs

The annotations of smORFs were accessed from SmProt (https​://bioin​fo.ibp.ac.cn/
SmPro​t/) [8], sORFs.org (https​://sorfs​.org/) [7], and the study of Thomas et al. [9]. The 
coordinate information of the three databases is GRCh37, GRCh38 and GRCh37, respec-
tively. CrossMap (v0.3.0) [40] was used to map the coordinate of smORFs to the other 
reference genome, respectively. The same internal IDs were given to the same smORFs. 
617,462 different human smORFs were eventually collected. The Gene Ontology (GO) 
terms of known microproteins were collected from the Universal Protein Resource (Uni-
Prot, https​://www.unipr​ot.org/) [28]. The human protein–protein interactions were 
obtained from STRING database (https​://strin​g-db.org/) [29].

Omics data collection

The raw files for RNAseq (SRA) and microarray (CEL) were downloaded from the GEO 
datasets. GSE104610 and GSE104973 respectively used microarray and RNAseq to con-
duct RNA quantification on samples that had undergone the same treatment, which was 
used to evaluate the accuracy of probe reannotation in our study. In addition, 173 micro-
array data of disease and/or normal tissue samples were collected for functional predic-
tion of smORFs.

Microarray data processing

The CEL files were processed using R package oligo (v1.48.0) [41] and ff (v2.2-14). Pack-
age ff was used with default parameters. Samples from different datasets were separated 
for background correction and normalization, and the probe signals were estimated 
using Robust Multichip Average (RMA) algorithm. The probes were annotated to Entrez 
IDs by Ensembl BioMart. The duplicate Entrez IDs were aggregated by their median.

RNAseq data processing

SRA files were converted into fastq files by SRA Toolkit (v2.9.6), and quality controls 
were carried out by fastp (v0.20.0) [42]. We used HISAT2 (v2.1.0) [43] to align sequences 
in fastq files to the reference genome GRCh37, using default parameters. SAM files are 
converted to BAM files using SAMtools (v1.9) [44] and sorted. featureCounts (v2.0.0) 
[45] was used to count reads to coding and non-coding RNAs (Ensembl v75) and 
smORFs we collected. Parameters ’–p –t exon –g gene_id’ were used for the quantifica-
tion of Ensembl RNAs. Given that there are many overlapping smORFs, the -O param-
eter is additionally used when counting reads of smORFs. Read counts were finally 
normalized as fragments per kilo-base per million mapped reads (FPKM).

Probe reannotation

Affymetrix microarray (HTA 2.0, hg u133 plus 2, hg u133a, hg u133b, HuGene 1.0 st v1, 
HuGene 2.0 st v1, HuEx 1.0 st v2) probe sequences were downloaded from the website 
of Affymetrix (https​://www.affym​etrix​.com/suppo​rt/techn​ical/bypro​duct.affx). Each 

https://bioinfo.ibp.ac.cn/SmProt/
https://bioinfo.ibp.ac.cn/SmProt/
https://sorfs.org/
https://www.uniprot.org/
https://string-db.org/
https://www.affymetrix.com/support/technical/byproduct.affx
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probe set contains several different probes. We used SeqMap [46] to align the probe 
sequences to GRCh37, using /output_all_matches and /do_not_output_probe_with-
out_match parameter and number of mismatches was set to 0. Probes that can be 100% 
matched and have fewer than 100 matches are retained, the same parameters as which 
were used in BioMart (https​://www.ensem​bl.org/info/genom​e/micro​array​_probe​_set_
mappi​ng.html). Next, the probes’ coordinates are intersected with those of smORFs, 
using BEDTools (v2.26.0) [47]. The probe sets with at least one base intersection is anno-
tated to the corresponding smORF. At the same time, the proportion of the probes that 
overlap with such smORF in the probe set to all the remaining probes in the probe set is 
also calculated.

Estimation of smORF expressions

Totally n different probe sets are annotated to a smORF with proportions (weights) w1, 
w2, …, wn. The probes with weight ≤ 0.1 were removed. Given that RMA normalization 
takes the signal intensities to the logarithm, we used the exponentiation to reverse this 
process. By multiplying the weight with the signal intensity, we obtained the estimated 
smORF expression. For the same smORFs that could match multiple probes. we evalu-
ated the median, mean, and maximum expressions by comparing the performs of ‘cor-
relations between RNAs’, and finally chose the median expression. The signal strength 
of these probes in the sample is RMA1, RMA2, …, RMAn. Then the expression E of this 
smORF is estimated as:

Finding correlated genes

Spearman correlation was used to calculate the correlation between smORF and known 
genes (Entrez ID). The expressions of genes and smORFs in each dataset are converted 
to their rank orders by row (by gene/smORF). The records that have the same value were 
ranked using their mean rank. We built a BallTree for each dataset to find the near-
est neighborhoods (genes) of smORFs. The leaf size was set as 5 after trying different 
parameters to find the one with the best time efficiency. We used Pearson correlation 
distance metric to measure the distances between nodes:

where rankgene and ranksmORF are the ranks of the expressions of a gene and a smORF in 
a dataset, respectively. This is equivalent to Spearman correlation since the expressions 
were converted to ranks in advance, but the time efficiency is greatly improved.

Function prediction

By default, in dataset S, at most 1000 genes with rho ≥ 0.5 were retained, and the num-
ber of these genes is NS. We obtained the functional annotated gene sets of GO [48, 
49] (including biological process, cellular component, and molecular function), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [50] and REACTOM [51] from Molecular 

E = log2 median
(

w12
RMA1 ,w22

RMA2 , . . . ,wn2
RMAn

)

(wi > 0.1)

Distance = 1−
cov

(

rankgene, ranksmORF

)

σrankgene · σranksmORF

https://www.ensembl.org/info/genome/microarray_probe_set_mapping.html
https://www.ensembl.org/info/genome/microarray_probe_set_mapping.html
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Signatures Database (MSigDB, https​://www.gsea-msigd​b.org/gsea/msigd​b) [52]. Hyper-
geometric distributions are used for evaluate function prediction. The total background 
genes TS were set to be the intersection of the gene that can be annotated by the probes 
with all genes contained in all functional gene sets. For the functional gene set contain-
ing MS genes, IS genes were screened to be correlated. Then p value can be calculated as 
follows:

For all datasets, a summarized p value can be calculated:

Further, the false discovery rate (FDR) is estimated using Benjamini–Hochberg method. 
By default, functional terms with p ≤ 0.05 and FDR ≤ 0.2 are selected as the predicted 
functions of smORF.

Statistical analysis

Wilcoxon rank sum tests were used to calculate the significance of difference between 
two groups of continuous variables. Correlation between two continuous variables were 
estimated using Spearman’s tests.

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03805​-x.

Additional file 1: Figure S1. The function prediction of Mm47 using its similar microprotein. (a) The alignment 
between Mm47 and smORF at chr7: 135358848–135358913 (+) using BLAST protein (BLASTp). (b) The prediction 
of gene ontology cellular components of the similar microprotein. Related terms were marked in red. FDRs were 
calculated using Benjamini–Hochberg procedure.
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