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Cardiovascular complication is one of the significant causes of death in diabetic mellitus 
(DM) in which diabetic cardiomyopathy, independent of hypertension, cardiac valvular 
disease, and coronary atherosclerosis, occupies an important position. Although the 
detailed pathogenesis of diabetic cardiomyopathy remains unclear currently, mitochondrial 
morphological abnormality and dysfunction were observed in diabetic cardiomyopathy 
animal models according to much research, suggesting that mitochondrial structural and 
functional impairment played an integral role in the formation of diabetic cardiomyopathy. 
Thus, we  have summarized the effect of mitochondria on the process of diabetic 
cardiomyopathy, including abnormal mitochondrial morphology, mitochondrial energy 
metabolism disorder, enhanced mitochondrial oxidative stress, mitochondrial unbalanced 
calcium homeostasis, and mitochondrial autophagy. Based on the above mechanisms 
and the related evidence, more therapeutic strategies targeting mitochondria in diabetic 
cardiomyopathy have been and will be proposed to delay the progression of the disease.

Keywords: diabetic cardiomyopathy, mitochondria, mitochondrial morphology, energy metabolism, oxidative 
stress, calcium homeostasis, mitochondrial autophagy

INTRODUCTION

The prevalence rate of diabetic mellitus (DM) shows such a significant increase that it has 
long been an epidemic disease that badly affects human health. About half a billion people 
are living with diabetes worldwide and the number is estimated to increase by 25% in 
2030 and 51% in 2045 (Saeedi et  al., 2019; Cao et  al., 2020). The early cardiac manifestation 
of DM is diastolic dysfunction with or without systolic reserve dysfunction while systolic 
dysfunction, and even congestive heart failure, may appear in a later stage (Marwick et  al., 
2018). Although the underlying disease of diabetic cardiomyopathy (DCM) is DM, it is a 
kind of primary injury that is independent of hypertension, cardiac valvular disease, and 
coronary atherosclerosis (Dillmann, 2019; Cuijpers et  al., 2020).

Recent studies demonstrated that mitochondria may play an indispensable role in many 
links to the genesis of DCM. It was reported that the activity of mitochondrial respiratory 
chain-related enzymes in Zucker diabetic obese rats decreased significantly (Raza et  al., 2012; 
Daiber and Münzel, 2020), and similar mitochondrial respiratory dysfunction was observed 
in Type 2 diabetic mellitus (T2DM) mice model (Sloan et  al., 2011; Pham et  al., 2014). 
Montaigne et  al. (2014) discovered fragmented mitochondria in cardiomyocytes of diabetic 
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patients, and Anderson et  al. (2009) directly confirmed 
mitochondrial respiratory dysfunction in the atrial myocytes 
of T2DM patients, providing strong evidence to link 
mitochondrial impairment with diabetes incidence (Heusch, 
2019). In this study, we will summarize the effect of mitochondria 
on the process of DCM and the underlying mechanism. In 
addition, we  briefly introduced the latest progress of DCM 
therapy targeting mitochondria.

MOLECULAR MECHANISMS OF 
MITOCHONDRIA IN DIABETIC 
CARDIOMYOPATHY

Abnormal Mitochondrial Morphology
In normal conditions, mitochondrial fusion and fission keep 
in balance dynamically, which is important to maintain the 
normal physiological function of mitochondria and cells (Lanna 
and Dustin, 2016; Larson-Casey et al., 2020). Once the balance 
is disrupted, the result is markedly reduced energy synthesis 
and increased reactive oxygen species (ROS) production, thus 
promoting cell death and disease progression. In the literatures, 
the molecules related to mitochondrial fusion are Mitochondrial 
Fusion Protein (Mfn1 and Mfn2), Optic Atrophy Factor (OPA1), 
while the main factors mediating fission are Dynamin-Like 
Protein 1 (DLP1, also referred to as DRP1), Mitochondrial 
Fission Protein (Fis1), and Mitochondrial Fission Factor (Mff). 
Makino et  al. (2010) reported that the reduction of OPA1 
was the trigger event of mitochondrial fission, and chronic 
hyperglycemia might inhibit the expression of fusion protein 
OPA1 (Klinge, 2020). After suppressing mitochondrial fission, 
the production of ROS was reduced (Molina et  al., 2009). 
Moreover, the abnormal expression of fusion protein and fission 
protein led to cardiac defect both in structure and function, 
and damaged mitochondrial fusion in the mature heart tissue, 
thereby disrupting heart homeostasis (Galloway and Yoon, 2015; 
Zhou et al., 2020). The research of Parra et al. (2014) demonstrated 
that insulin was related to mitochondrial dynamics, especially 
mitochondrial fusion, and the defect in insulin signal of diabetic 
patients contributed to an impaired expression of Mitochondrial 
Fusion Protein Mfn1, Mfn2, and OPA1. Cardiomyocytes in 
DCM patients manifested impaired systolic function, augmented 
oxidative stress, diminished energy production, fragmented 
mitochondria, and low expression of Mfn1, which was in 
negative correlation to HbA1c level (Montaigne et  al., 2014). 
DRP1 overexpression caused mitochondrial dysfunction and 
insulin resistance in cardiomyocytes, which could be  relieved 
after DRP1 silence (Watanabe et  al., 2014; Kuczynski and 
Reynolds, 2020). Lipid overload increased A-kinase anchor 
protein 121 ubiquitination, regulated DRP1 phosphorylation, 
and altered OPA1 processing (Tsushima et  al., 2018; Ding 
et  al., 2020). OPA1 mutations led to abnormal mitochondrial 
morphology and increased ROS production, as well as 
susceptibility to oxidative stressors (Tang et al., 2009). Researchers 
indicated that DRP1 overexpression or Mfn1 suppression 
markedly raised ROS production (Huang et  al., 2016). Genetic 
fusion interventions (inducing mitochondrial elongation) were 

associated with decreased mitochondrial ROS production, while 
fission interventions (resulting in mitochondrial fragmentation) 
stimulated mitochondrial ROS production (Picard et  al., 2013; 
Jusic and Devaux, 2020). Therefore, there is an inextricable 
link between mitochondrial morphology and DCM: Altered 
mitochondrial morphology is not only causal for but also 
consequential to DCM, hence intensifying oxidative damage 
through reciprocal amplification, which is important to the 
process of DCM. The latest research of Hu et  al. (2019) found 
that in T2DM db/db hearts, mitochondrial fission was exceedingly 
vigorous, and the lessened Mfn2 might be  due to reduced 
expression of peroxisome proliferator-activated receptor α 
(PPARα) and binding of PPARα to Mfn2 promoter. In the 
view of the fact that mitochondrial dynamics is actually the 
basis of mitochondrial function, more profound research is 
needed to effectively intervene mitochondrial fusion and fission 
in DM in order to delay the progression to DCM.

Mitochondrial Energy Metabolism Disorder
Cardiomyocytes are high energy consuming cells whose energy 
production mainly occurs in mitochondria. Under physiological 
conditions, the fatty acid β-oxidation constitutes about 70% of 
the source of energy in heart, with the remaining part produced 
from the oxidation of other nutrients, such as glucose, ketone 
bodies, lactate, and amino acid (Bertero and Maack, 2018; Ma 
et  al., 2020). It is worth noting that compared with glucose, 
fatty acid as energy metabolic substrates requires about 12% 
more oxygen to produce the same amount of ATP. However, 
the fatty acid β-oxidation in diabetic heart increases while the 
glucose oxidation decreases, aggravating hypoxia in myocardium 
with microangiopathy. In DCM patients, ATP is mainly synthesized 
by mitochondrial fatty acid β-oxidation, which can lead to 
increased oxygen consumption and respiratory dysfunction 
in mitochondria.

In addition, there is a kind of uncoupling protein (UCP) 
with the function of ion channel on the mitochondrial inner 
membrane, which induces the decrease of ATP production by 
consuming the proton power of the mitochondrial membrane 
(Demine et  al., 2019). UCP is easily activated by ROS, 
norepinephrine, and fatty acid. It can make the protons pumped 
out from the process of electron transfer in the mitochondrial 
respiratory chain re-enter the mitochondrial matrix through 
the proton channel formed by UCP. This kind of “proton 
leakage” releases the electrochemical potential energy of protons 
in the form of heat, and the oxidative phosphorylation appears 
“uncoupling” because it is not coupled with ATP synthase. 
Five UCP subtypes have been found in mammals, and UCP2 
and UCP3 occupy the dominant position in myocardial 
mitochondria. It was revealed that mitochondrial uncoupling 
in cardiomyocytes of db/db mice was enhanced, and the function 
of mitochondrial respiratory chain was impaired. It was also 
reported that the expression of UCP3 increased after cardiac 
ischemia in db/db mice, with damaged mitochondrial and 
impaired cardiac energy efficiency (Banke and Lewandowski, 
2015; Takov et  al., 2020), which was confirmed in the hearts 
of rats fed with high-fat diet. However, there are controversies. 
Some scholars were convinced that UCPs can protect against 
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free radical damage by regulating mitochondrial respiration, 
inducing reduced production of ROS (Dludla et  al., 2018).

In diabetes or insulin resistance, increased myocardial fatty 
acid content in patients with DCM can cause the activation 
of PPARα, which facilitates the inhibition of pyruvate 
dehydrogenase kinase and the impairment of glucose oxidation 
ability, thereby increasing mitochondrial fatty acid uptake and 
subsequently causing energy consumption (Mirza et  al., 2019). 
In addition, excessive fatty acid accumulation is also considered 
to be  directly related to diabetic myocardial toxic injury and 
dysfunction, which is mainly caused by lipid intermediate 
metabolites, such as ceramide, diacylglycerol, long chain 
phosphatidyl coenzyme A, and so on (Chong et  al., 2017). 
Overall, the metabolism of fatty acid by mitochondria increases 
the oxygen consumption of heart, resulting in changes in the 
structure and function of heart, thereby inducing DCM.

Enhanced Mitochondrial Oxidative Stress
In the physiological state, only a very small amount of oxygen 
is reduced to ROS by single electron reduction (Ghaemi 
Kerahrodi and Michal, 2020; Scialò et  al., 2020). However, in 
diabetes, due to changes, such as high glucose, high lipid, 
insulin resistance, calcium signal disorder, and enhanced 
mitochondrial uncoupling, more nicotinamide adenine 
dinucleotide (NADH) and flavin adenine dinucleotide (FAD) 
would flow to mitochondrial respiratory chain, causing 
hyperpolarization of the mitochondrial inner membrane, 
suppression of electron transfer in complex III, and excessive 
generation of ROS (Shah and Brownlee, 2016; Zhang et  al., 
2020). Thus, the antioxidant capacity of the body is relatively 
insufficient, bringing about the enrichment of a large amount 
of ROS, which enhances the damage of oxidative stress on 
proteins, nucleic acids, and lipids. Finally, the destruction of 
the structural, physiological, and metabolic mechanisms is 
induced, as well as abnormal regulation in cells and tissues.

In cardiac mitochondria of type 2 diabetic mice, an increase 
of superoxide free radicals was found, and inhibition of 
mitochondrial oxidative stress could delay the occurrence of 
DCM in streptozotocin (STZ)-induced diabetic mice. Anderson 
et  al. (2009) confirmed that the oxidative stress of atrial 
mitochondria was enhanced and the mitochondrial function 
was impaired in DM patients (Anderson et  al., 2009). Sun 
et al. (2014) studied diabetic mice in vivo and in vitro, illustrating 
that the morphology of mitochondria in cardiomyocytes changed 
and the level of ROS was elevated in hyperglycemic mice. The 
above studies provide some evidence for the involvement of 
mitochondrial ROS in the pathogenesis of DCM. Besides, ROS 
can damage the structure of diabetic myocardial mitochondria 
and further damage the function of mitochondria by facilitating 
the opening of mitochondrial permeability transition pore 
(mPTP) on mitochondrial inner membrane. Normally, 
mitochondria produce an electrochemical gradient across the 
membrane by electron transfer, and ATP is generated by ATP 
synthase (Tsuyama et  al., 2017; Vlacil et  al., 2020). Following 
the overload of ROS in diabetes, mPTPs, which are very 
sensitive to ROS, turn to be  opened, leading to membrane 
potential depolarization, reversed transport of ATP synthase, 

exhaustion of cell energy, and cardiomyocyte death. ROS can 
also make mPTPs sensitive to calcium ions, resulting in calcium 
overload and further aggravating membrane permeability. In 
addition to mitochondrial ROS, it has also been reported that 
there is an increase of NADH phosphate (NADPH) oxidase-
derived ROS in the myocardium of ob/ob mice, STZ mice, 
and Zucker fa/fa rats, and it has been discovered that direct 
or indirect activation of antioxidant enzymes can effectively 
prevent protein nitrification and inflammation, and can reverse 
DCM damage, suggesting that two pathways of increasing ROS 
exist in diabetic myocardium, i.e., a mitochondrial way and 
an extramitochondrial way (Cong et  al., 2015). Notably, 
mitochondria are not only the major sites of ROS production, 
but also the main targets of ROS attacks. In comparison with 
other intracellular structures, ROS is more likely to damage 
mitochondrial membrane, mitochondrial DNA (mtDNA), and 
its encoded proteins (Vaeyens et al., 2020). To sum up, reducing 
oxidative stress of myocardial mitochondria or improving the 
antioxidant capacity of cells is expected to improve DCM.

Mitochondrial Unbalanced Calcium 
Homeostasis
Normal cardiac function is closely related to the maintenance of 
intracellular Ca2+ homeostasis, which regulates metabolism, muscle 
contraction, and signal transduction (Jia et  al., 2018). In the 
excitation contraction coupling of myocardium, Ca2+ gets into 
the cytoplasm via voltage sensitive L-type calcium channels after 
sarcolemma depolarization, triggering the release of Ca2+ from 
the sarcoplasmic reticulum. During the diastolic process, Ca2+ is 
transferred back to sarcoplasmic reticulum, followed by the surplus 
Ca2+ being pumped out through sarcolemma Na+/Ca2+ exchanger 
and Ca2+ pump on the plasma membrane (Kanaporis and Blatter, 
2017). Nevertheless, in DCM disrupted calcium homeostasis 
induced by the above transporters makes action potential duration 
increased and diastolic relaxation time prolonged (Jia et al., 2016).

In addition to the Ca2+ regulation of endoplasmic reticulum 
(ER), the role of mitochondrial Ca2+ regulatory disorders in 
DCM has attracted much attention in recent years. Mitochondria 
have the function of regulating Ca2+, storing Ca2+, and producing 
energy (Drago and Davis, 2016; Yu et  al., 2016), and some 
laboratories have reported that there are mitochondrial Ca2+ 
regulatory disorders in the heart of diabetic animal models. It 
was demonstrated that Ca2+ overload in cardiomyocytes of diabetic 
patients might lead to respiration and oxidative phosphorylation 
damage, and increase of ROS. Ca2+, enters mitochondrial matrix 
mainly through mitochondrial calcium uniporter (MCU), which 
makes mitochondria acing in the buffering role to shape cytosolic 
Ca2+ signals (Baradaran et  al., 2018). A very slight change in 
the concentration of Ca2+ in mitochondria can activate ATP 
synthase and promote the production of ATP [dissociation 
constant (Kd) ≤ 2 nM; Kirichok et al., 2004; Kamer and Mootha, 
2015]. Study indicated that in cardiomyocytes stimulated by high 
glucose, the expression of MCU and the concentration of Ca2+ 
in mitochondria decreased, accompanied by the disorder of 
glucose and lipid metabolism, and the above change also occurred 
in the heart of type 1 diabetic mice (Diaz-Juarez et  al., 2016). 
In addition, many factors, such as accumulation of free fatty 
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acid, increased oxidative stress, disordered Ca2+, decrease of 
mitochondrial membrane potential, and exhaustion of ATP in 
mitochondria etc., can cause the persistent high-level opening 
of mPTP (Zorov et al., 2014). This not only leads to the imbalance 
of intracellular Ca2+ regulation, but also promotes the release 
of many pro-apoptotic factors, which bind to apoptotic protease 
activator in order to induce caspase cascade reaction and 
promote cardiomyocyte death. Besides, mitochondrial Ca2+ 
overload and intracellular oxidative damage cause and affect 
each other, forming a vicious cycle, eventually leading to 
apoptosis or necrosis and influencing cardiac systolic and 
diastolic function (Joseph et  al., 2016; Salin Raj et  al., 2019). 
In my point of view, studies above suggest that impaired 
mitochondrial function in DCM cardiomyocytes can affect the 
regulation of Ca2+, but the exact molecular mechanism and 
signal pathway needs more profound investigation.

Mitochondrial Autophagy
Mitochondrial autophagy (mitophagy) occurs under the 
stimulation of nutritional deficiency and cell senescence, when 
the depolarization of mitochondria appears and the damaged 
mitochondria are specifically wrapped into autophagosomes 
and then fused with lysosomes, thus completing the degradation 
of damaged mitochondria. With the in-depth study of autophagy, 
it was proved that mitophagy played protective roles. In Beclin1 
or Atgl6 knocked mice, it was also observed that the expression 
of Pink and Parkin was increased, as well as the elevated level 
of manganese-containing superoxide dismutase, prompting that 
increased mitochondrial autophagy might improve myocardial 
harm in autophagy-deficient mice, which might be  associated 
with the Ras related protein 9-dependent unconventional 
autophagy pathway (Xu et  al., 2013; Smadja et  al., 2020). 
Suppression of mitochondrial autophagy mediated by deacetylase 
Sirt3, the first member of the Sirtuin family located in the 
mitochondria of mammalian cells, can lead to diabetic myocardial 
damage (Wang and Zhou, 2020; Wang et  al., 2020). Koncsos 
et  al. (2016) reported that the expression of mitochondrial 
autophagy-associated protein BNIP3 decreased in prediabetic 
rats fed with high-fat diet, followed by myocardial diastolic 
dysfunction (Margadant, 2020). In a recent study, mitochondrial 
dysfunction and DCM were observed in diabetic mice, while 
the injection of Tat-Beclin1 reversed such DCM by activating 
mitochondrial autophagy, indicating mitophagy served as a 
critical quality control mechanism for mitochondria in heart 
during high-fat diet (Tong et al., 2019). Considering out previous 
studies, it can be  speculated that in early stage of DCM, the 
decrease of autophagy causes the upregulation of mitophagy, 
which plays a positive role in myocardium. Then, the ability 
of mitochondrial clearance decreases, resulting in accumulation 
of impaired mitochondria and leading to myocardial damage.

POTENTIAL DCM TREATMENTS 
TARGETING MITOCHONDRIA

Mitochondria, as a therapeutic target in DM-related cardiovascular 
disease, have brought out widespread attention because of more 

comprehensive understanding of mitochondrial effects on DCM 
and the mechanisms of antidiabetic drugs (Gollmer et al., 2020). 
At present, a large quantity of antidiabetic drugs applied in 
clinical therapy have already directly or indirectly eased 
mitochondrial negative effects on DCM, such as metformin. 
Yang et  al. (2019) demonstrated that metformin can activate 
AMPK pathway and improve autophagy through suppressing 
the mTOR pathway and relieving apoptosis in cardiomyocytes 
of neonatal mice with DCM. ER stress is considered a typical 
characteristic in DCM. A recent research showed that in mice 
without DM, activation of ER stress induced by thapsigargin 
damaged mitochondrial respiration, seemingly facilitating mPTP 
opening, and inducing mitochondrial oxidative stress (Chen 
et  al., 2017). After being treated with metformin, these mice 
seemed to reverse their mitochondrial abnormalities in some 
degree, probably by activating protein kinase, indicating that 
metformin might be effective in the negative effects of mitochondria 
on DCM caused by ER stress as well as by other factors.

Recently, sodium glucose cotransporter 2 inhibitors (SGLT2i) 
have attracted much attention due to its function of improving 
cardiovascular outcomes in diabetic patients (Wiviott et  al., 
2019). Based on those clinical trial findings, the European 
Society of Cardiology has listed SGLT2i as a first-line therapy 
in diabetic patients with high or very high cardiovascular risk 
or existing cardiovascular disease (Cosentino et  al., 2020). The 
myocardial mechanisms of SGLT2i have been suggested, in 
which mitochondria may play a pivotal role. The Na+/H+ 
exchanger 1 (NHE1) in heart has been confirmed as a target 
of SGLT2i. In primary cardiomyocytes of mice, treatment with 
empagliflozin, which is a representative drug of SGLT2i, restrains 
NHE1 flux and depresses cytosolic Ca2+ and Na+ levels, potentially 
by combining empagliflozin with NHE1 (Uthman et  al., 2018; 
Ludwig et  al., 2020). Baartscheer et  al. (2017) reported that 
empagliflozin lowers cytosolic Ca2+ concentrations while raising 
mitochondrial Ca2+ concentrations. Accordingly, SGLT2i may 
alleviate the disruption of both cytosolic and mitochondrial 
Ca2+ homeostasis and may elevate ATP production by the 
activation of mitochondrial Ca2+-sensitive dehydrogenases. 
Besides, several drugs, such as MitoQ, MnTBAP, and MitoTempol, 
have been identified to attenuate mitochondrial defects targeting 
the reducing of mitochondrial oxidative stress (Ilkun et  al., 
2015; Escribano-Lopez et al., 2016). Fang et al. (2018) confirmed 
that resveratrol might alleviate cardiac oxidative stress, 
mitochondrial impairment, and myocardial fibrosis in diabetes 
induced by high glucose. Liu et al. (2018) explored the protection 
of spironolactone against DCM in STZ-induced diabetic rats 
and concluded that its cardioprotective effects were due to 
improving mitochondrial dysfunction and reducing cardiac 
fibrosis, oxidative stress, and inflammation (Liu et  al., 2018). 
Hu et  al. (2019) demonstrated that the reconstruction of Mfn2 
restored mitochondrial membrane potential, inhibited 
mitochondrial oxidative stress, and ameliorated mitochondrial 
function in cardiomyocytes treated by high glucose and high-fat 
through facilitating mitochondrial fusion. Some drugs targeting 
mitochondrial energy metabolism, such as Pioglitazone, the 
agonist of PPAR-γ, have been the first-line treatments for DCM 
(Wassef et  al., 2018). Unfortunately, most of the research is 
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from preclinical study, suggesting that there is a long way to 
go in the treatment of DCM with mitochondria as a target.

DISCUSSION

In summary, mitochondrial impairment plays a critical role in 
the pathogenesis of DCM. Typically, 90% of intracellular ATP 
production is provided via mitochondrial oxidative phosphorylation. 
In T2DM, as the main source of ATP production in mitochondria, 
free fatty acid oxidation replaces part of glycolysis, with elevated 
mitochondrial ROS production and damaged oxidative 
phosphorylation. The change of mitochondrial Ca2+ treatment 
and the breakup of mitochondrial fission and fusion balance 
further exacerbate mitochondrial respiratory dysfunction and lead 
to cell death. Moreover, the mitochondrial dysfunction induced 
by enhanced oxidative stress also increases the opening of mPTP 
induced by Ca2+ overload, causing cardiomyocyte autophagy and 
myocardial necrosis. Notably, mitochondrial autophagy may play 
a protective role in the pathogenesis of DCM (Figure  1).

As such knowledge is mainly derived from animal models, 
it is essential that the effect of mitochondria on human DCM 
be  further investigated in order to search for the potential 

treatment of DCM targeting mitochondria. In fact, some existing 
drugs, e.g., metformin, have the curative effect of reversing 
or at least relieving the mitochondrial negative influence on 
diabetic myocardium. Considering the universal mitochondria-
related diseases in human beings, mitochondrial therapies used 
in practice will enable us to benefit from these new treatments.
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