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p53 performs a plethora of activities, which are directed towards the maintenance of the genomic integrity and constitute its universal
role as a tumor suppressor. 1000 to 10000 latent p53 molecules are permanently available in order to monitor DNA exchange processes
in mitotically growing cells. After the introduction of major DNA injuries the levels of posttranslationally modified p53 proteins rise,
which in turn transcriptionally signal transient cell cycle arrest or apoptotic cell death, depending on the extent of damage. Taken
together, p53 inhibits the manifestation of genomic instabilities at different control levels both during naturally occurring metabolic
processes and in response to genotoxic treatments.

GENOMIC STABILIZATIONVIA
CHECKPOINT CONTROL

Loss of p53 function by either mutation, nuclear exclu-
sion, complex inactivation, or accelerated degradation via the
newly discovered ARF-MDM2 pathway are observed in the
majority of human tumors [1, 2]. The results of extensive
research efforts have indicated that cell cycle control and
the initiation of apoptotic cell death by p53 represent im-
portant pathways to suppress genomic instabilities, thereby
preventing tumorigenesis [3, 4]. p53-dependent checkpoint
functions are triggered by DNA strand breaks introduced ei-
ther directly, e.g., via ionizing irradiation, or indirectly, af-
ter the conversion of DNA adducts by DNA repair or repli-
cation [5]. An alternative signal transduction mechanism
involving p53 seems to emanate from stalled RNA poly-
merases, e.g., after UV irradiation [6]. DNA damage activates
p53 through posttranslational modifications by specific ki-
nases, such as the strand break sensor Atm, acetylases, and
poly(ADP-ribose)polymerase, which prevent proteolysis and
enhance binding of p53 to consensus sequences within the
genome [7–9]. Among the products of p53 target genes, the
cyclin-dependent kinase inhibitor p21WAF1/CIP1 is essential for
the execution of cell cycle arrest at the G1/S transition and
to sustain a G2 arrest under certain circumstances [4, 10].
The product of a 14-3-3 gene, which is also transcription-
ally activated by p53, was reported to inactivate the protein
phosphatase Cdc25C by sequestration [11]. Cdc25C is re-
quired for the activation of Cdc2 kinase at the G2/M check-
point. Contrary opinions exist on a possible role of the p53-
responsive gene GADD45 in excision repair [12–14]. Mean-
while, functions of GADD45 in chromatin remodeling and
of GADD45-p21 complexes in cell cycle regulation were pro-
posed [15, 16]. Apoptotic signaling involves transcription-
independent pathways [17] and the activation of target genes,

such as bax and IGF-BP3, encoding antagonists of Bcl-2 and
insulin-like growth factor-1, respectively [4].

From these observations, it has been concluded that ge-
nomic stabilization and tumor suppression by p53 rely on cell
cycle arrest at the G1/S transition, which prevents the mani-
festation of unrepaired chromosome alterations, on cell cycle
arrest at the G2/M transition, which inhibits the distribu-
tion of defective genomes, and on the initiation of apoptosis
after the introduction of irrepairable damage. This view is
in agreement with the phenotype of p53/mice, which accu-
mulate chromosomal aberrations and suffer from fatal tu-
mors within 6 months [18]. However, p21/mice do not show
increased cancer susceptibilities [19], raising the possibility
that activities of p53, other than those related to growth con-
trol, might contribute to the suppression of tumor forma-
tion. Even further, according to a recent report, p53 seems
to retain tumor suppressor functions in mice after treatment
with PFTα, a drug, which had been selected due to its prop-
erties to specifically inactivate p53-dependent transcription
and apoptosis [20].

INVOLVEMENT IN DNA REPAIR

Ideas on an active participation of p53 in processes of
the DNA metabolism were inspired by the discoveries of
enzymatic activities, such as the reannealing of short DNA
stretches [21, 22] and the 3′ to 5′ exonuclease activity [23].
p53 also binds to the two helicase components, XPB and XPD,
of the dual transcription initiation/repair factor TFIIH, to
CSB, another helicase involved in nucleotide excision repair,
and to the Werner’s Syndrome Protein, a helicase and exonu-
clease with putative functions in DNA replication [4, 24, 25].
Several groups reported on defective nucleotide excision re-
pair in cells lacking wild-type p53, as determined by the re-
moval of pyrimidine dimers [26, 27]. Others noticed an in-
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Figure 1: Maintenance of the genomic stability by multiple functions of p53. p53 surveils the genomic integrity via a hierarchy of different
functions both during proliferation-associated processes and during cellular stress situations.

crease in sister chromatid exchanges after UV in cells from
p53/mice rather than differences in excision repair [28]. The
latter observation might point towards a role of p53 in UV-
irradiation induced DNA exchange events, since recombina-
tion is frequently coupled to DNA synthesis in order to allow
the removal of unrepaired lesions, such as unexcised photo-
products.

Indeed, using different test systems, several groups
found that p53 suppresses spontaneous inter- and intra-
chromosomal homologous recombination events by at least
one to two orders of magnitude [29–32]. p53 has also been
shown to interact with proteins involved in homologous DNA
recombination processes,namely the initial strand transferase
Rad51 and the Rad51 complex partners BRCA1 and 2 [24,33].
With respect to the breast cancer susceptibility gene products
BRCA1 and BRCA2, functions in DNA repair, in the assem-
bly of ionizing radiation-induced Rad51 complexes, in cell
cycle control via transcriptional regulation of p21WAF1/CIP1

and in mediating apoptosis via GADD45 have been ascribed
[34–37]. Concerning the mechanism underlying the control
of homologous recombination events by p53, we suggested
that p53 monitors the fidelity of strand exchange events [32].
SV40-virus based recombination assays in combination with
in vitro binding studies unveiled qualitative and quantitative
correlations between the binding affinities for heteroduplex
joints with certain mismatches and the inhibition of DNA
exchange events creating the corresponding DNA interme-
diates. Since homologous recombination processes are fre-
quently associated with DNA synthesis, it is interesting to note
that p53 was found to excise mispaired nucleotides from DNA

in a polymerase α based in vitro replication assay [38]. Be-
fore p53, another tumor suppressor, MSH2, had already been
described to counteract DNA exchange processes between
divergent sequences beyond its central role in postreplicative
mismatch repair [39]. In agreement with the idea that p53
and MSH2 perform complementary functions in controlling
the fidelity of homologous recombination processes, mice
nullizygous for both MSH2 and p53 display synergistically
increased cancer susceptibilities [40].

The critical question, whether the control of sponta-
neous and radiation-induced homologous recombination
processes is tied to p53’s growth regulatory functions was
answered unequivocally by three groups [41–43]: Analyses
of cell lines, expressing either different p53 mutants or wild-
type p53 together with the p53-antagonist HDM2, demon-
strated that recombination control is performed indepen-
dently of p53-functions in transcription and cell-cycle con-
trol. Furthermore, it was observed that small protein amounts
are sufficient for the inhibition of recombination processes
by p53, whereas growth-related functions are exerted in a
dose-dependent manner. These findings support the dual role
model (see Figure 1), which attributes distinct functions to
p53 in its latent and in its activated state, respectively [24].
It is important to note that homologous recombination in
mitotically growing cells is suppressed by a factor of 1000
as compared to meiotic recombination. This might explain
why meiotic exchange rates are not further elevated by the
loss of p53 functions [44]. On the other hand, elevated fre-
quencies of Rad51-dependent recombination was observed
to accompany cellular immortalization processes [45]. Con-
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sidering the experimental data, which describe the regulatory
role of wild-type p53 in DNA exchange processes of mitoti-
cally growing cells [41–43], the surveillance of homologous
recombination by p53 is a good candidate to play a role in re-
straining spontaneous DNA rearrangements. Consequently,
p53 might prevent tumor formation both by functions in
growth regulatory and in repair processes.
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