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a b s t r a c t 

The electrically evoked compound action potential (eCAP) has been widely studied for its clinical value for the 

evaluation of the surviving auditory nerve (AN) cells. However, many unknowns remain about the temporal 

firing properties of the AN fibers that underlie the eCAP in CI recipients. These temporal properties may 

contain valuable information about the condition of the AN. Here, we propose an iterative deconvolution model 

for estimating the human evoked unitary response (UR) and for extracting the compound discharge latency 

distribution (CDLD) from eCAP recordings, under the assumption that all AN fibers have the same UR. In this 

model, an eCAP is modeled by convolving a parameterized UR and a parameterized CDLD model. Both the UR 

and CDLD are optimized with an iterative deconvolution fitting error minimization routine to minimize the error 

between the modeled eCAP and the recorded eCAP. 

• This method first estimates the human UR from eCAP recordings. The human eCAP is unknown at the time 

of this writing. The UR is subsequently used to extract the underlying temporal neural excitation pattern (the 

CDLD) that reflects the contributions from individual AN fibers in human eCAPs. 
• By calculating the CDLD, the synchronicity of AN fibers can be evaluated. 
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Background 

A cochlear implant (CI) is an intracochlear device that can restore hearing with direct electrical

stimulation of the auditory nerve (AN). A CI can also be applied to measure electrically evoked AN

responses using the reverse telemetry function. Typically, AN activity is evoked with short electrical 

pulses, and the response comprises the superposition of many action potentials from AN fibers over

time. This response is called the electrically evoked compound action potential (eCAP). To date, single-

fiber action potentials have not been recorded from the human AN. ECAP recordings can provide

information on the amplitude and latency of the evoked compound AN response, but they do not

provide information about the underlying excitation patterns of individual AN fibers. Clinically, the 

eCAP is typically evaluated by examining the main peaks of the eCAP; i.e., the first negative peak

(N1) and the first positive peak (P1) [12 , 13] . Previously, animal studies have reported that the eCAP

waveform was dependent on both the number of action potentials and the degree of synchronicity

in the AN fiber population [6 , 12 , 16] . The temporal firing properties in eCAPs can potentially reflect

additional, valuable information, such as the survival of AN fibers [7 , 12] . However, extracting the

temporal firing properties of single fibers directly from the eCAP is mathematically complex. As a

result, these properties are often overlooked [1–4] . Here we propose a method to extract the temporal

firing properties of the AN fibers in eCAPs. The procedure is based on the findings of our previous

study [14] . 

The action potential generated by a single fiber can be registered by a recording electrode and is

called the unitary response (UR). The UR is generally thought to be constant, and all URs are assumed

to contribute equally to the acoustically evoked CAP [5 , 6] . We assume this concept also holds for

eCAPs [7 , 8 , 14] because the eCAP also represents a superposition of a series of action potentials from

individual AN fibers in response to an electric stimulus over time. Thus, based on these assumptions,

we describe the eCAP as the convolution of many URs with a compound discharge latency distribution

(CDLD), according to Eq. (1) (see also Fig. 1 ): 

eCAP ( t ) = 

∫ t 

−∞ 

CDLD ( τ ) ∗UR ( t − τ ) d τ (1) 

Here, the CDLD is the probability density function, t is time, and τ is the variable of integration.

The CDLD weighs all URs of each excited AN fiber across time and reflects the neural synchronicity

(i.e., the temporal properties). Thus, the temporal firing properties of the AN fibers in eCAPs can be

captured from the CDLDs. Mathematically, the CDLD cannot assume negative values, and the area

under a CDLD curve reflects the number of excited AN fibers. 

The only study on the human CDLD was conducted by Strahl et al. [7] . They predicted the CDLD

by a direct deconvolution of the human eCAP using the guinea pig UR (UR gp ) [7] . The deconvolution

was performed with Eq. (2) : 

CDLD ( t ) = F −1 

[
F ( eCAP ( t ) ) 

F ( UR ( t ) ) 

]
(2) 

Here, t is time, F represents the Fourier transform, and F −1 represents the inverse Fourier transform.

Strahl et al. observed a CDLD with two Gaussian components, which could be attributed to two

https://doi.org/10.1016/j.heares.2020.108037
https://doi.org/10.1016/j.heares.2020.108037
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eCAP UR CDLD

A B C

Fig. 1. An example of the deconvolution model. (A) According to Eq. (1) , the recorded electrically evoked compound action 

potential (R-eCAP, green interrupted line) was predicted (P-eCAP, blue interrupted line) with the convolution of (B) a UR model 

(also see Eq. (3) ) and (C) a compound discharge latency distribution (CDLD) model (blue line, see Eq. (4) ), by implementing the 

deconvolution fitting error minimization routine. The CDLD model consists of two Gaussian components: the early Gaussian 

component (E-Gauss, red dotted line) and the late Gaussian component (L-Gauss, green dashed line). 
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eparate groups of neural responses. However, when we reproduced their method on human patient

ata (see details in [14] ) we obtained unrealistic CDLDs because they contained negative phases

nd high-frequency components. To suppress these negative phases and high-frequency components,

trahl et al. filtered the CDLD with a 2.5 kHz low-pass filter and shifted the CDLD upward. However,

his post-processing might have compromised the validity of the CDLD in its ability to reflect the

emporal firing properties of the AN. 

To facilitate a direct deconvolution of the human eCAP into a CDLD to describe the temporal firing

roperties of AN fibers underlying the eCAP, Strahl et al. used the UR gp , because the human UR (UR h )

as, and still is unknown. However, there are several anatomical differences between the two species

hat potentially can affect the shape of the UR. There are differences in the size and shape of the

ochlea [11 , 14] and the spiral ganglion cell body is myelinated in guinea pigs, but not in humans

17] . Moreover, eCAP recordings in humans are usually performed at intracochlear sites, e.g., [7 , 8 , 14] ,

hereas the UR gp used in [7] was recorded at the round window niche [6] . The application of a direct

econvolution of the human eCAP into a CDLD using the UR gp can thus be expected to yield a less

alid CDLD. 

To overcome these problems we propose an iterative deconvolution model to simulate the

econvolution computation. The recorded eCAPs are entered as input for this model to obtain the UR h

nd the corresponding CDLDs. This model consists of a two-step procedure ( Fig. 2 ). It estimates the

R h in step one ( Fig. 2 A) and derives the temporal firing properties of AN fibers underlying the eCAP

n step two ( Fig. 2 B), without the need for any post-processing of the CDLD. In both steps, an eCAP

s modeled by convolving a UR model with a CDLD model. Then, the modeled eCAP is optimized by

teratively adjusting the variables in the parameterized UR and CDLD models, until the modeled eCAP

atches the recorded eCAPs. In step one, the descriptive parameters of both the UR and CDLD model

re variable. After optimization, an estimate of the UR h and CDLD is obtained for each eCAP waveform

vailable. A unified UR h is subsequently estimated by averaging the available collection of individual

R h s ( Fig. 2 A). Using the unified UR h obtained in step one, a similar procedure is used in step two

here only the CDLD parameters are iteratively varied ( Fig. 2 B). The resulting CDLDs can reveal the

emporal firing properties of AN. More detailed information about the deconvolution model is given

n the below sections. 

odel construction of the UR and CDLD 

According to Eq. (1) , the UR and the CDLD are required to simulate the recorded eCAPs. At present,

he UR h has not been described with electrophysiological recordings. Because the UR h might be
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Fig. 2. Iterative deconvolution model workflow. The recorded electrically evoked action potential (eCAP) waveforms are pre- 

processed and used as the input for the deconvolution fitting error minimization routine (DMR, enclosed in the dashed square) 

in both step one and step two. This DMR is conducted by the lsqcurvefit function provided in MATLAB. In the DMR, the 

predicted eCAP ( eCA P P ) is calculated by the convolution of the parameterized unitary response (UR) model ( U R p ) with the 

parameterized compound discharge latency distribution (CDLD) model ( CDL D p ). (A) In step one, both the U R p and the CDL D p 
are optimized with the DMR to achieve an approximate match between the eCA P P and the baseline-corrected ( eCA P C ). When 

the fitting error (i.e., the difference between the eCA P P and the eCA P C ) reaches the minimum, the UR and CDLD are obtained. 

In this step, each eCAP generates a UR. The URs are obtained from a series of eCAPs, and the average of these URs is defined as 

the human UR ( U R h , enclosed in the red square). (B) In step two, the U R h is fixed, and only the CDL D p is iteratively adjusted 

with the DMR to generate the best fitting CDLD for each individual eCAP (CDLD, enclosed in the red square). Conv represents 

the convolution function in MATLAB. 
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different from the UR gp [11] or other animals, it is preferable to estimate the UR h [14] . As a starting

point, we used the UR gp function reported in [6] to estimate the UR h . For this purpose, the UR was

parameterized as shown in Eq. (3) . 

U R p ( t ) = 

U 

σ
( t − t 0 ) e 

[
− ( t −t 0 ) 

2 

2 σ2 

]
(3) 

The UR model consists of a negative (N) and positive (P) phase; the transition point between the

negative component and the positive component is defined as t 0 . Hence, for t < t 0 , the magnitude, U

(V), of the negative peak is U N , and the width, σ (sec), of the negative component is σN ; and for t >

 0 , the magnitude of the positive peak is U P and the width of the positive component is σP . Boundary

limits for the variables in Eq. (3) are introduced to constrain the solutions (see details in step one,

Fig. 2 ). 

Earlier studies have observed eCAPs with two positive peaks, which might originate from two 

separate groups of neural responses [12 , 13] . Consistent with Strahl et al. [7] , our method implements

a parameterization of the CDLD with a mixture of two Gaussian components, as shown in Eq. (4) (also

see Fig. 1 C). 

CDL D p = α1 ∗N ( μ1 , σ1 ) + α2 ∗N ( μ2 , σ2 ) (4) 

where N is a Gaussian distribution; the variables α1 , μ1 and σ1 belong to the early Gaussian

component (in time), and the variables, α2 , μ2 and σ2 belong to the late Gaussian component. The

variables α1 and α2 represent the peak amplitudes; μ1 and μ2 are the peak latencies; and σ1 and σ2 

represent the peak widths. Similar to Eq. (3) , boundary limits for the variables in Eq. (4) are set to

constrain the solutions (see details in step one and two, Fig. 2 ). Details are given below. 
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ptimization routine 

The procedure described here involves the application of a deconvolution fitting error minimization

outine (DMR) in step one and two. The parameterized UR model (UR p , Eq. (3) ) and the parameterized

DLD model (CDLD p , Eq. (4) ) are used to predict a recorded eCAP waveform using indirect

econvolution. This indirect procedure uses a convolution step to estimate UR h and CDLD by

mplementing DMR to optimize the match between eCAP p and the recorded eCAP. The initial values

nd boundary limits of the UR p and CDLD p parameters must be assigned for the DMR to run. Then,

he eCAP p and the baseline-corrected eCAP (eCAP c ) (see details in the next section), initial values

nd boundary limits of the UR p and CDLD p parameters are used as input into the DMR. The DMR

teratively manipulates the parameters of the UR p and the CDLD p in step one ( Fig. 2 A), or only the

DLD p in step two ( Fig. 2 B) within the boundary limits to minimize the fitting error (see Fig. 2 )

ith the lsqcurvefit function provided in MATLAB (Mathworks 2016a, Natick, MA, USA). The fitting

rror refers to the difference between the eCAP p and the eCAP c. Accordingly, the eCAP p gradually

onverges to the eCAP c . When the fitting error reaches the minimum value (i.e., the eCAP p optimally

pproximates the eCAP c ), the DMR outputs the values of the UR p and CDLD p parameters. With

hese values, the UR and CDLD (step one) and subsequently the final CDLD estimate (step two) can

e generated. The MATLAB script of this DMR is attached in the supplementary material of this

ublication. 

xtraction of temporal AN firing properties from eCAPs 

In this section, we will describe the workflow to calculate the CDLD from recorded eCAP

aveforms. Before any analysis can be performed, the raw eCAP waveforms have to be pre-processed.

irst, a baseline correction is carried out. The eCAP tail can be used to determine the baseline, because

eural responses and any remaining artifacts are not expected to be present in this part of the eCAP

aveform. At approximately 1.5 ms after stimulus artifact a reliable baseline estimate can be obtained

9 , 14] . The baseline correction is performed by subtracting the average amplitude of the tail section

rom the eCAP waveform. In addition, we have observed that performing a convolution on a finite-

ength signal typically introduces distortions at the leading and trailing ends of the signal. To prevent

istortion of the eCAP waveforms, signal extensions can be deployed [15] by adding 50 samples to

he start and end of each waveform. This is realized by performing a linear extrapolation to baseline.

his extrapolation only affects the CDLD before and after the recording window [6 , 14 , 15] . 

The two steps proposed for deriving the temporal firing properties of the AN from eCAPs are

hown in Fig. 2 . Before the CDLD can be determined, the UR h has to be estimated from the available

CAP dataset with the DMR ( Fig. 2 A). In step one ( Fig. 2 A), the parameters of both the UR p ( Eq. (3) )

nd the CDLD p ( Eq. (4) ) are variable and will be optimized by the DMR. This ensures that the eCAP p
ptimally matches the baseline-corrected eCAP (eCAP c ). After the last iteration, the UR and CDLD

f the optimal eCAP p are derived. In our data set [14] a series of eCAPs were recorded at different

lectrode contacts with different stimulus levels from different subjects. According to the assumption

hat the UR is identical in all contributing AN fibers and across electrode contacts, stimulus levels and

ubjects [7 , 8 , 14] , a representative human UR can be estimated by averaging all these URs obtained

rom a series of eCAPs. The UR model and the CDLD model can interact freely in step one; thus, the

emporal firing properties can be manifested in both the UR and the CDLD. Consequently, the resulting

DLDs do not accurately reflect the temporal information in eCAPs and these CDLDs are discarded and

e-calculated by using a constant UR, as outlined below. 

As mentioned in the Model Construction section, the initial values and boundary limits of the

arameters have to be assigned before performing the DMR. Because the UR h and UR gp are expected

o be similar [10] , we used the morphological parameters of the UR gp as a reference for the UR h [6] .

ccordingly, the UR and CDLD outcomes were constrained with the following domain values [14] : U N

0.02, 0.25], σN [0.02, 0.13], U P [0, 0.12], σP [0.08, 0.25], t 0 [ −0.25, 0.06], α1 [0, 0.35], μ1 [0.04, 1.3],

1 [0, 0.3], α2 [0, 0.35], μ2 [0.04, 1.3], σ2 [0, 0.3]. Based on the parameters of UR gp , the initial starting

alues of the DMR parameters are set to: U N (0.12), σN (0.045), U P (0.06), σP (0.12), t 0 ( −0.06), α1

0.08), μ1 (0.38), σ1 (0.06), α2 (0.05), μ2 (0.5), σ2 (0.14). Then, the parameters of the UR model
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( Eq. (3) ) and the CDLD model ( Eq. (4) ) are iteratively manipulated simultaneously with the DMR,

until they approximate the recorded eCAPs ( Fig. 1 , green line). 

Setting appropriate starting values and boundaries for the DMR parameters is necessary, both to 

obtain a realistic UR h and CDLD with the DMR and to converge to an optimal eCAP p . An important

factor to consider when setting the starting values and boundaries for the DMR parameters is the

morphology of eCAP recordings, particularly the eCAP waveforms that have the maximal and minimal 

amplitudes in one’s dataset. The morphological characteristics of eCAPs include, but are not limited 

to the main peak (i.e., the N1 and P1) and, maybe, a second peak (i.e., the N2 and P2) and the

corresponding peak latencies, [12 , 14] . These parameters are influenced by extrinsic factors, including

the stimulation level, intra-cochlear test electrode location, the separation between the stimulating 

and recording electrodes, stimulus polarity, artifact reduction methods, and implant designs [3 , 12] .

For instance, a larger eCAP main peak would most likely require wider boundaries for α1 and

α2 , and longer peak latencies would require wider boundaries for μ1 and μ2 . Moreover, because

the parameter estimates are sensitive to the initial values of the DMR parameters, they should be

optimized manually, when needed, to achieve an adequate fit. The goodness of fit to overall data was

evaluated by calculating the normalized root mean square error (NRMSE). Therefore, the initial values 

and boundaries might need to be optimized with different datasets. In [14] , the parameters of human

UR were estimated: U N = 0.155 μV, σN = 0.038 ms, U P = 0.022 μV, σP = 0.155 ms, t 0 = −0.128. For

the human dataset, this UR can be used directly for step two. Nevertheless, we strongly recommend

that researchers should examine the consistency of human UR when using their own datasets. 

In step two ( Fig. 2 B), the temporal firing properties of the AN in human eCAPs are extracted

by calculating CDLDs ( Fig. 2 B). Due to the interaction between the UR h and CDLD (see above), the

CDLD calculation with the DMR must use a constant UR h . With the fixed UR obtained in step one,

the DMR can only adjust the parameters of the CDLD model ( Eq. (3) ), with the recorded eCAPs as

input. Consequently, because the fixed UR h and CDLD model can no longer interact, all the temporal

firing properties in eCAPs are driven into CDLDs. Thus, these CDLDs validly reflect the temporal firing

properties in the eCAPs. Similar to step one, we constrain the domains for the variables in the CDLD

model with the following values: α1 [0, 0.35], μ1 [0.15, 1.35], σ1 [0, 0.45], α2 [0, 0.35], μ2 [0.15, 1.35],

σ2 [0, 0.45]. The starting values of the DMR parameters were set as follows: α1 (0.08), μ1 (0.59),

σ1 (0.06), α2 (0.05), μ2 (0.6), σ2 (0.14). The combined boundary limits of these variables allow the 

model to produce CDLDs without negative phases; thus, unrealistic CDLDs can be avoided without 

any post-processing. Similar to step one, the starting values and the boundary limits for the CDLD

parameters in Eq. (4) can be optimized manually, when needed, to achieve an adequate fit according

to the morphology of eCAPs in different datasets. 

Method validation 

The validation of the method was discussed in detail in our previous study [14] . In that study,

the model presented here was applied to a relatively large data set of human eCAP growth function

recordings. This data set consisted of 4982 eCAPs from 111 CI recipients who received a HiRes90K

device (Advanced Bionics, Valencia, CA), either with a 1 J or a Mid-Scala electrode array. The eCAPs

were recorded measured on eight odd electrode contacts with stimulus levels from 50 to 500 current

unit. We have validated both steps of the method. 

First, we validated step one, namely the estimation of the UR h , by comparing the resulting eCAP p s

obtained with our estimated UR h [14] to the eCAP p s obtained with UR gp [6] in step two. Based on the

goodness of fit measure (NRMSE, the normalized root mean square error provided in MATLAB), the

eCAPs achieved with UR h were better than those achieved with UR gp [14] . The UR h reduced the fitting

error for all eCAPs by approximately 18%. This result supported our assumption that the UR of human

AN fibers differs from the UR gp [6] . The assumption that the UR is constant may be contested, as it can

hypothetically vary across subjects, electrodes and/or current levels. However, the assumption of UR 

constancy is necessary, because a fixed UR is needed to optimize the derivation of CDLD in step two.

As such, the UR is used solely as a necessary intermediate step to extract a valid CDLD from the eCAP.

While a fixed UR is necessary and sufficient for our goal, our deconvolution model can nonetheless be

used to investigate whether the UR differs across subjects or different stimulus conditions by running
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he deconvolution model for each condition separately. However, to more conclusively resolve such

uestions, direct recordings of the UR h are necessary. 

Second, we validated the extraction of the CDLD with the fixed UR by evaluating the goodness of fit

f the predicted eCAPs. In general, 93.6% of the recorded eCAPs were predicted accurately, with a > 0.9

oodness of fit (NRMSE). Thus, these CDLDs provided a good picture of the temporal firing properties

f the AN fibers in eCAPs. Importantly, realistic CDLDs were obtained that lacked any negative phases

ithout any post-processing. The remaining 322 eCAPs had deviant waveforms, with relatively small

1 peaks and large P1 peaks; thus, they could not be predicted well with our model (NRMSE < 0.9).

his may have been caused by the use of a fixed UR that was based on the group-average. This unified

R consisted of a large negative phase and a small positive phase, with a strictly positive CDLD. A UR

ith this shape could not be used to model the deviant eCAP waveforms with the DMR method (for

etails, see Dong et al. [14] ). However, those cases were fairly rare (6.4%). 

Third, we validated the assumption that the CDLD model with two Gaussian components was the

ptimal model. We designed alternative CDLD models with 1–6 Gaussian components and simulated

he recorded eCAPs with the DMR. When the number of Gaussian components increased from 1 to 2,

he fitting error diminished substantially (by 78%). When the number of Gaussian components rose

rom 2 to 6, the fitting outcome remained fairly similar and showed little benefit (error reduced

y 7.6%; see Figure 7 in Dong et al. [14] ). This result was consistent with the finding of Strahl

t al. [7] , who also observed CDLDs with two Gaussian components. Taken together, these validations

emonstrated that our method can validly unravel the temporal firing properties of the human AN

bers in eCAPs. 

onclusion 

This study proposes an indirect iterative deconvolution model that provides an estimation of the

uman UR and derives the underlying neural excitation pattern that reflects the contributions from

ndividual AN fibers to human eCAPs. The observed CDLD with two Gaussian components can be

ttributed to two separate neural response components, which cannot be easily identified in the raw

CAP waveforms. 
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