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Potassium represents one of the most crucial minerals in infant formula that supports

healthy growth and development of infants. Here, a novel strategy for the real-time

quantification of potassium in infant formula samples is introduced. Using laser-induced

breakdown spectroscopy (LIBS) in a data-driven approach, a modified random frog

algorithm (MRFA) is adopted in a higher-density discrete wavelet transform (HDWT)

domain for the selection of the most important features related to potassium, which

is named as DD-LIBS. In DD-LIBS, the HDWT oversamples the LIBS signals in both

time and frequency domains by a factor of two, enhancing the spectral expandability

in an approximately shift-invariant way. The MRFA is thus capable of isolating the

features of potassium with experience accumulated from the collected LIBS data.

Such pretreatment combined with a partial least squared (PLS) model can significantly

suppress the uncontrolled shift and broadening effects on multivariate calibration,

improving the capability of LIBS for accurate quantification of potassium. The present

work demonstrates the feasibility of DD-LIBS for the quantification of potassium content

of 90 commercial infant formula samples. A satisfactory result illustrates DD-LIBS as a

feasible tool for real-time analysis of potassium content with little sample preparation. This

strategy may be well extended to other element detection in the presence of uncontrolled

interference.

Keywords: laser-induced breakdown spectroscopy, higher density wavelet transform, modified random frog

algorithm, infant formula, potassium

INTRODUCTION

Infant formula, as a breast-milk substitute, plays a significant role since it is the sole source
of nutrition for some infants (Deckelbaum et al., 2004; Meucci et al., 2010; Codex, 2015;
AOAC International, 2016). The international standard for infant formula set by Codex
Alimentarius Commission (CAC) has a strict requirement of the essential composition and
nutrition content (Codex, 2015). Meanwhile, all infant formulas marketed must also meet local
standards, which are based on the national physique and health level (The Ministry of Health
People’s Republic of China, 2010b). As an essential cation in intracellular fluid, potassium is one

Abbreviations: LIBS, Laser-induced breakdown spectroscopy; RFA, random frog algorithm; MRFA, modified random frog

algorithm; HDWT, higher density wavelet transform; PLS, partial least square.
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of the most important minerals to support healthy growth and
development of infants, because potassium is critically involved
with acid-based balance function, osmotic pressure regulation,
nerve impulse conduction, muscle construction and Na+/K+

ATPase (Soetan et al., 2010). An incorrect intake of potassium
can also cause diseases (such as hyperkalemia and hypokalemia),
which therefore turns the correct control of potassium content of
infant formula into a superior importance for both international
and local standards (Deckelbaum et al., 2004; Koletzko et al.,
2005; The Ministry of Health People’s Republic of China, 2010b;
Codex, 2015).

To determine the potassium content, the current standard
analytical methods are mostly based on atomic absorption
spectrophotometry (AAS) (The Ministry of Health People’s
Republic of China, 2010a), inductively coupled plasma atomic
emission spectrometry (ICP-AES) (The Ministry of Health
People’s Republic of China, 2010a; ISO, 2018a) and inductively
coupled plasma mass spectrometry (ICP-MS) (ISO, 2018b), etc.
These methods require a laborious and time-consuming sample
processing procedure, together with strictly controlled laboratory
environment and large sample volume (Panne et al., 2001;
Awan et al., 2013; Matsumoto et al., 2016). However, the huge
consumption of infant formula at a level of million tons greatly
challenges the efficiency of current analytical methods (Tan et al.,
2017), and leads to the necessity to develop an efficient and simple
method for quantifying the potassium content in infant formula.

Laser-induced breakdown spectroscopy (LIBS), an optical
emission spectroscopy technique, presents a potential solution
to this challenge (Aragón and Aguilera, 2008). In LIBS, a high-
power density laser pulse is focused on a target material in less
than a nanosecond, during which a high-temperature plasma is
generated by vaporizing a small portion of the target (Zheng
et al., 2014). As a result, the radiant characteristics of elements
are emitted by the excited atomic, ionic, andmolecular fragments
produced by the plasma (Harmon et al., 2006; Bousquet et al.,
2007). Hence, LIBS offers a strong capability to rapidly detect the
element contents in many type of samples (Panne et al., 2001;
Bousquet et al., 2007; Hussain and Gondal, 2008; Eseller et al.,
2010), with little sample preparation (Hahn and Omenetto, 2010;
Hou et al., 2016).

The development of lasers, optics and charge-coupled array
detectors has driven a critical revolution in the sensitivity of
LIBS, making it a “future superstar” analytical method (Hou
et al., 2016). However, the complex process of laser-sample and
plasma-particle interactions may distort LIBS peaks (Hahn and
Omenetto, 2012). The spectral interference presented in the LIBS
signals often leads to an unresolved, broadened and often shifted
center of gravity that introduces wavelength shift of spectral
peaks (Cremers and Radziemski, 2013), which compromises
the LIBS calibration performance. Alternatively, a calibration-
free LIBS (CF-LIBS) based on strict theoretical assumptions
of laser induced plasma may estimate analyte concentrations
correctly. However, CF-LIBS data are severely affected by the self-
absorption effect and estimation of plasma temperature (Sun and
Yu, 2009), which is challenging for pharmaceutical applications.
To improve calibration results, the higher-density discrete
wavelet (HDWT) signal processing method with shift-invariant

capability becomes a good candidate (Selesnick, 2006). With
HDWT, aminor wavelength shift in the raw spectra will not cause
a significant variance of the HDWT coefficients at different scales
(Qin et al., 2010), which guarantees the reliability of the future
calibration models with the HDWT coefficients.

The unique feature of HDWT is that it processes the spectral
data in an approximately shift-invariant way, while oversampling
the spectral signals in both time and frequency domains by a
factor of two, as opposed to the shift-variant downsampling in
the conventional discrete wavelet transform (DWT) (Selesnick,
2006). It allows to generate triple wavelet coefficients and thus
enables to isolate the localized LIBS spectral features more
accurately and robustly (Han et al., 2017). After being processed
by HDWT, the LIBS spectral bands of potassium can be well
extracted by specific HDWT coefficients, which can be optimized
by the feature selection methods (Yun et al., 2013). Since the
underlying mechanism of LIBS signals is too complex to be
interpreted directly, the observed LIBS data themselves must
drive variable selection to optimize multivariate calibration
(Parab et al., 2009).

Several feature selection procedures have been developed,
including random frog algorithm (RFA) (Li et al., 2012),
competitive adaptive reweighted sampling (CARS) (Li
et al., 2009), uninformative variable elimination (UVE) and
its derivation (Cai et al., 2008; Moros et al., 2008), and
randomization tests (Kennedy and Cade, 1996) etc. Among
above-mentioned procedures, RFA presents a unique advantage
in processing high dimensional spectral data without any
prior knowledge that matches the demand of data-driven well.
However, the RFA tends to generate a semi-random result that
may not correlate accurately with targeted chemicals. In this
case, a modified random frog algorithm (MRFA) is adopted by
the multiple resampling strategy, in which the RFA has executed
hundreds of times to select variables with the highest probability.
Therefore, the MRFA is expected to improve the reliability of the
LIBS models.

In this work, a data-driven strategy is proposed to isolate
the spectral features of potassium with experience accumulated
from the observed LIBS data. This strategy aims to estimate
the relationship between LIBS spectral datasets and potassium
concentrations from the existing input-output data (Gani et al.,
2009), which is named as data-driven LIBS (DD-LIBS). In
DD-LIBS, the MRFA was adopted in the HDWT domains
instead of raw LIBS spectra to avoid spectral interference. A
calibration model was then constructed with the selected HDWT
coefficients. The DD-LIBS strategy was validated by using 90
commercial infant formula samples.

MATERIALS AND METHODS

Sample Resource and Preparation
Samples of 90 commercially available infant formulas were
purchased from the local market, which includes 24 mainstream
brands in China. The potassium content was measured by
flame atomic absorption spectrometry according to the Chinese
national test standard method GB5009.91-2017. To reduce
the effects of particle size on LIBS signals, solid infant
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formula samples were pressed into compact pellets by using a
hydraulic press machine under 30 MPa pressure. The measurable
characteristics of diameter, thickness, andmass of the pellets were
20mm, 10mm, and 4 g, respectively.

Laser-Induced Breakdown Spectrometry
System
In this study, an Ocean Optics LIBS 2500-7 spectrometer
system was equipped with CFR Nd. YAG Laser source (LIBS-
LAS200MJ, Big Sky Laser Technologies). The laser was operated
at a fundamental wavelength of 1,064 nm, and the pulse energy
utilized in this experiment was 50 mJ. The pulse duration was 9.5
ns, and the pulse repetition rate was 10Hz. The LIBS 2500-7 has
seven channels to provide a broad spectral wavelength range from
200 to 880 nm, covering the emission spectra of all elements. Each
channel is equipped with a 2048-element linear CCD array to
present a high optical resolution of 0.1 nm (FWHM). The frame
rate was 10Hz. The integration time was 2.1ms, and it could
be changed in a free-run mode to match sample properties. The
trigger delay was from −121 to +135 µs in 500 ns steps. The
delay time was set at 0.83 µs, which was determined through
optimizing the signal-background ratio (SBR) and characteristic
spectral intensity.

Experimental Procedure
For each LIBS analysis, the pellets were put on the sample stage,
and 10 different spots of one pellet were evenly selected for LIBS
measurement, which reduces the effects of inhomogeneity and
surface variations on LIBS signals. Each spot was ablated with
10 laser pulses. As a result, total 100 LIBS spectra were collected
and averaged into a single LIBS spectrum, which improves the
stability of LIBS experiments.

Calibration Approach
Samples were randomly divided into two sets, i.e., a 65-sample
set was used to build a calibration model and a 25-sample set was
used to validate the calibration model.

Normalization Methods
In order to use LIBS in a timely manner, minimal sample
pretreatment is preferred. Thus, in LIBS measurement,
normalization is performed to compensate for physical
variations and sample matrix differences. In this work, five
normalization methods, such as average, normalization by
norm, spectral area, spectral height, and carbon emission lines
(Abdel-Salam et al., 2013; Castro and Pereirafilho, 2016; dos
Santos Augusto et al., 2017), were compared.

Data Analysis Through Data-Driven LIBS
The LIBS spectra are affected bymatrix effect and other unknown
interference, resulting in broadened and shifted LIBS peaks. DD-
LIBS is thus proposed to reduce the effect of peak broadening and
shift on multivariate calibration. To correct shifted and expanded
spectral peaks, HDWT was applied by implementing the three
channel filter banks to conduct an oversampling operation for
generating nearly shift-invariant wavelet coefficients.

FIGURE 1 | Flowchart of modified random frog algorithm (MRFA), where X is

the HDWT coefficients of calibration set, Y is the reference values of calibration

samples, A is the number of PLS factors, N is the number of MRFA runs, P is

the sum of the selected probability of each variable.

After the HDWT calculation, the raw LIBS spectra were
decomposed into localized components labeled by a scale,
facilitating the feature selection methods to isolate the spectral
bands related to potassium. Then, the MRFA was performed by
using the bagging strategy, assigning 70% samples to a training
subset and 30% samples to a validation set. The procedure was
repeated for 1,000 times to generate 1,000 different selection
probabilities of each HDWT coefficient for accumulation. The
flowchart of MRFA is shown in Figure 1.

In this work, only the HDWT coefficient with the highest
probability was selected for further calibration because it
provided valuable robustness against the uncontrolled and
unknown spectral interference, and the feature selection result
can be easily validated by the reference LIBS spectra of potassium.

As mentioned above, DD-LIBS was established by integrating
HDWT,MRFA and PLS together. TheHDWT codes were written
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in Matlab 2013a based on the Selesnick’s theory (Selesnick, 2006).
The programs of PLS and RFA were available in the libPLS
toolbox for Matlab (Li et al., 2014), and the MRFA was modified
from RFA in Matlab 2013a.

Evaluation Parameters
The root mean square error of cross-validation (RMSECV) was
used to determine the HDWT parameters, and the coefficient
of determination (R2) was used to evaluate the calibration
performance of the developed models (Chu, 2011):

RMSECV =

√

∑m
i=1 (yi,actual − yi,predicted)

2

m− 1
(1)

R2 = 1−

∑n
i=1 (yi,actual − yi,predicted)

2

∑n
i=1 (yi,actual − yi,actual)

2
(2)

Where yi,actual is the reference value of the potassium
concentration of sample i, yi,predicted represents the predicted
value of sample i, m is the number of calibration samples, and
ȳi,actual represents the average reference concentration of all
samples. When we obtain a RMSECV from the prediction set,
we refer it as a RMSEP. The evaluation criterion is very simple:
the smaller the value of RMSEP is, the stronger the prediction
capability of the model is.

The limit of detection (LOD) was calculated by using the
following equation (ICH Guideline, 2005):

LOD =
3.3× SDblank

s
(3)

Where SDblank is the standard deviation of the baseline near
peaks, and s is the slope of the calibration curve.

RESULTS AND DISCUSSION

LIBS Spectrum of Infant Formula
In this work, a typical full spectrum and regional potassium
peaks of an infant formula are presented in Figure 2A. The
LIBS spectrum of infant formula has sharp characteristic peaks
with different intensities, and each peak uniquely corresponds
to a specific element. According to the Atomic Spectra Database
(ASD) of National Institute of Standards and Technology
(NIST), the peaks located at 766.57 and 769.95 nm were selected
for quantifying the potassium content in infant formula. As
shown in Figure 2B, the spectra of five representative samples
with different potassium concentrations were illustrated from
0.415/100 g to 0.815/100 g. It was clear that the intensity of the
potassium peaks related to its concentrations accordingly but
not linearly, because the potassium peaks were affected by both
potassium concentrations and physical parameters (such as laser
energy fluctuation and effects related to the sample texture and
density). Unfortunately, the contribution of any interference to
LIBS was unclear, and DD-LIBS was thus developed to perform
the quantitative analysis of potassium by using the existing input-
output LIBS data.

FIGURE 2 | (A) A typical LIBS spectrum of infant formula and partially

enlarged emission lines of potassium, (B) Regional potassium peaks of five

samples with different concentrations.

Selection of Normalization Method
Five normalization methods were compared by calculating the
RMSEP of each PLS calibration model. The RMSEPs of these
five normalization methods including average, normalization
by norm, spectral area, spectral height, and carbon emission
lines, were 0.056, 0.065, 0.076, 0.059, and 0.096, respectively.
It is clear that the average normalization strategy was most
suitable with the lowest RSMEP value and was subsequently
applied in this work. After data normalization, the calibration
performance of the univariate, PLS and DD-LIBS models was
then compared to facilitate the understanding of the LIBS
quantification.

Univariate Analysis
The univariate analysis represents the most conventional
modeling strategy, in which the analyte’s concentration and the
peak intensity or the peak area are set as x and y, respectively
(El Haddad et al., 2014). In this work, two calibration curves
were made with two potassium peaks as shown in Figures 3A,B.
Figure 3C demonstrates another calibration curve using the
areas of these two peaks. The LOD obtained from the first
peak of potassium was 37 ppm. As shown in Figures 3A,B,
the R2 of both peak height curves are pretty low, which
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FIGURE 3 | A univariate calibration curve based on (A) the intensity of the first

peak at 766.57 nm, (B) the intensity of the second peak at 769.95 nm and (C)

the areas of two peaks at 766.57 and 769.95 nm.

means that the correlation is poor (El Haddad et al., 2014).
The R2 of area (C) is also not satisfactory for quantification
even it is slightly higher than the two peaks above-mentioned.
The reason is that the univariate analysis is compromised
by both matrix effect and sample complexity (Hou et al.,
2016; Sanghapi et al., 2016). It is therefore expected that the
multivariate analysis could improve the calibration performance
through latent projection instead of univariate regression,
and PLS was chosen as it is mostly adopted in multivariate
calibration.

FIGURE 4 | Prediction results of the PLS model with the raw LIBS spectra.

PLS Calibration
The spectral features of potassium were assigned from 751.90 to
774.86 nm, which contains 512 variables. To evaluate prediction
capability of the PLS model, R2 and RMSEP were calculated.
Figure 4 demonstrates that the prediction results of the PLS
model exceed those of univariate analysis. However, the
prediction performance could be further improved through the
suppression of the uncontrolled spectra shift and broadening.

DD-LIBS Strategy
In DD-LIBS, the HDWT aims to suppress the effects of
peak shift and broadening on multivariate calibration through
the oversampling and shift-invariant operation. With the
combination of MRFA, DD-LIBS is expected to isolate the
spectral features related to the potassium accurately.

Determination of HDWT Parameters
The performance of HDWT depends on wavelet filters and
decomposition scales, which should be optimized before
calibration. In HDWT, four wavelet filters with different
vanishing moments are available (Selesnick, 2006). Theoretically,
the wavelet filter with higher vanishing moment shrinks the peak
more efficiently than that with lower vanishing moment (Han
et al., 2017). Here, the “bi4” wavelet filter with four vanishing
moments was selected, since it possesses the highest vanishing
moment in the current HDWT filter bank (Selesnick, 2006). By
using the “bi4” filter, the spectral resolution would be expanded
by a factor of three, which significantly improved the spectral
expandability in an approximately shift-invariant way.

The decomposition scale is also critical in HDWT, so it
was optimized by the minimum RMSECV criterion. Figure 5
indicates the relationship between the scale and RMSECV using
the leave-one-out cross-validation of the calibration set. As a
result, the scale four was selected for the HDWT calculation.
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FIGURE 5 | RMSECV of the calibration set with different HDWT

decomposition scale parameters.

FIGURE 6 | Selection probability of HDWT coefficients obtained from the

MRFA.

Feature Selection Obtained by MRFA
After the HDWT calculation, the original 512 variables
were expanded into 1,520 new variables, providing additional
flexibility to isolate the features of potassium in the presence of
uncontrolled spectral interference. In the sequence, MRFA was
adopted to select the accurate features of potassium. Figure 6
illustrates the accumulated probability of each variable after 1,000
times of MRFA calculation, and the variable with the highest
probability was selected for further multivariate calibration.

With the variables selected by MRFA, a PLS model was
built. Only one PLS factor was required for calibration, which
reveals that DD-LIBS is capable of isolating the spectral peaks
of potassium accurately. As compared to Figure 4, the R2 of
DD-LIBS is improved from 0.887 to 0.962 as shown in Figure 7.

It is also of great interest to investigate the reconstructed
spectra obtained from the selected variables, which is

FIGURE 7 | Predicted results of the DD-LIBS model.

FIGURE 8 | LIBS Spectral information obtained from (A) potassium and (B)

DD-LIBS reconstructed spectra.

fundamental to understand how DD-LIBS suppresses the
effects of uncontrolled peak shift and broadening on multivariate
calibration efficiently. The broadening and shift effect on the
LIBS spectral peaks vary from sample to sample as shown in
Figure 8A, which may impair the LIBS calibration models. As a
comparison, the DD-LIBS filtered data is illustrated in Figure 8B.
It is clear that the reconstructed signals of DD-LIBS locate at
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TABLE 1 | Prediction results for K content in infant formula.

Methods PLS factor R2 RMSEP

Univariate (1st peak) / 0.099 0.423

Univariate (2nd peak) / 0.123 0.380

Univariate (area) / 0.400 0.178

PLS 11 0.887 0.056

RFA-PLS 7 0.882 0.059

HDWT-RFA-PLS 4 0.917 0.050

DD-LIBS 1 0.962 0.036

the same positions as the highest LIBS peak of potassium, and
the intensity values at 766.48 and 766.53 nm are the same.
It reveals that DD-LIBS cleverly selected the shift-invariant
spectral features to overcome the effects of peak shift and peak
broadening on multivariate calibration. It is reasonable to
expect that DD-LIBS could provide a promising tool to measure
potassium content in infant formula accurately, no matter how
the uncontrolled interference exists.

Comparison of Different Methods
Table 1 shows the prediction results for potassium content in
infant formula obtained by different methods. It is obvious
that the univariate method presents a poor calibration result,
revealing the LIBS spectral analysis should be carefully designed.
The PLS model improves the prediction performance of
univariate method through multivariate calibration, but the
PLS factors are abnormally high. The results illustrate that
the additional PLS factors have to be adopted for estimating
unknown spectral interference, tending to generate an over-
fitting result that relies on the current data set too much. It is
unexpected that the combination of RFA and PLS produces a
worse result when compared with that of the PLS model. This
could be attributed to the effect of spectral interference, e.g.,
matrix effect, laser energy fluctuation, sample texture and density,
and noise, etc. on the feature selection in raw spectra.

The HDWT is explored to suppress the spectral interference.
The RFA selects the most important HDWT coefficients,
resulting in a better prediction precision than that of the RFA-PLS
model. As expected, DD-LIBS provides the best prediction results

with only one PLS factor, revealing that the LIBS spectral features
of potassium are isolated efficiently. As a result, only one PLS
factor is required to construct a high-quality calibration model,
thus enhancing the reliability and robustness of the LIBS spectral
analysis in the presence of uncontrolled interference.

CONCLUSION

This study presented a novel strategy, named DD-LIBS, as
an approach for real-time quantification of potassium content
in commercial infant formula samples. With the combination
of HDWT and MRFA, DD-LIBS selected the most important
feature related to the potassium accurately, independent of
spectral interference. As a result, DD-LIBS generated a high-
quality calibration model with only one PLS factor, and the

DD-LIBS reconstructed spectra were highly consistent with the
original spectral bands of potassium. These satisfactory results
suggested a broad expandability of DD-LIBS in the quantification
of any targeted element in solid samples in the presence
of uncontrolled interference. Once DD-LIBS model has been
constructed, it can cleverly predict unknown LIBS spectra as long
as these spectra are within a range of relationships learned in the
training phase.
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