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ABSTRACT
Aims/Introduction: The involvement of glucose-dependent insulinotropic polypeptide
(GIP) on inflammation was explored in atherosclerosis and adipose tissue. Periodontal dis-
ease is a chronic inflammatory disease, and is considered one of the diabetic complica-
tions. In the present study, to examine the effect of GIP on periodontitis, we induced
experimental periodontitis in glucose-dependent insulinotropic polypeptide receptor-
knockout mice (GIPRKO). We also investigated the anti-inflammatory effect of GIP in a cul-
ture system.
Materials and Methods: Experimental periodontitis was induced by ligature wire in
GIPRKO and C57BL/C mice. Two weeks after the ligature, immunohistological evaluation
and inflammatory messenger ribonucleic acid expression in the gingiva was examined. To
elucidate the role of GIP in inflammation, the effects of GIP on lipopolysaccharide-induced
gene expressions in THP-1 cells were evaluated.
Results: Periodontitis increased inflammatory cell infiltration, macrophage accumulation
and tumor necrosis factor-a and nitric oxide synthase gene expressions in the gingiva.
Periodontitis in GIPRKO showed a marked increase of inflammatory cells in the gingivo-
mucosal tissue. Mac-1-positive macrophages and the inflammatory gene expressions were
significantly increased in periodontitis in GIPRKO compared with C57BL/C mice periodonti-
tis. Immunohistochemical staining confirmed that GIP receptors were expressed in residual
and infiltrated Mac-1-positive macrophages. The in vitro study showed that GIP suppressed
lipopolysaccharide-induced tumor necrosis factor-a and nitric oxide synthase gene expres-
sion in a dose-dependent manner. Furthermore, the inhibitory effect of GIP on
lipopolysaccharide-induced inflammatory gene expressions was at least partially through
cyclic adenosine monophosphate/protein kinase A pathway.
Conclusions: These results suggest the beneficial effects of GIP on periodontal disease.
In diabetic patients, GIP is expected to have a direct anti-inflammatory effect on periodon-
titis in addition to its glucose-lowering effect.

INTRODUCTION
Periodontal disease is a chronic inflammatory disease, and the
periodontium is destroyed by existing bacterial infection in the
periodontal pocket. The periodontopathic bacteria, which is
Gram-negative anaerobic bacterium that possesses lipopolysac-

charide (LPS), aggravates the inflammatory reaction in the peri-
odontal tissue and finally results in resorption of the alveolar
bone.
Because of its high morbidity and severity in diabetic

patients, periodontal disease is considered to be one of the dia-
betic complications1. Hyperinflammatory response in diabetes
is one of the candidates in the aggravation of periodontitis2.
Furthermore, emerging epidemiological studies showed the bidi-Received 28 August 2015; revised 5 November 2015; accepted 9 November 2015
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rectional relationship between diabetes and periodontal disease3.
In both type 1 and type 2 diabetic patients, periodontal disease
has a higher incidence and severity compared with healthy sub-
jects4,5, and poor glycemic control aggravates periodontal dis-
ease6. In contrast, the existence of severe periodontitis increases
the development of diabetes7–9. A meta-analysis suggested the
possibility that the treatment of periodontitis might improve
blood glucose control10,11. It was also reported that Pima Indi-
ans with severe periodontitis had a higher risk of death of dia-
betic nephropathy and ischemic heart disease12. The chronic
inflammation of periodontal disease might be involved in the
development of diabetes and diabetic complications.
The incretins, glucagon-like polypeptide-1 (GLP-1) and glu-

cose-dependent insulinotropic polypeptide (GIP; also called gas-
tric inhibitory polypeptide), are secreted during intake of a
meal by the gastrointestinal tract, and stimulate pancreas b-cells
to secrete insulin secretion. There are many investigations about
the extrapancreatic effects of incretins13. As the receptor expres-
sion patterns are different between GLP-1 and GIP, it is
believed that GLP-1 and GIP have distinct effects in organs14.
Glucose-dependent insulinotropic polypeptide is secreted

from K-cells of the small intestine, and exerts its effects through
a specific receptor, the GIP receptor (GIPR)14,15. In pancreatic
b-cells, GIP binds to GIPR and increases intracellular cyclic
adenosine monophosphate (cAMP), which leads to insulin
secretion. In addition to pancreatic cells, GIPR is expressed in
many other organs, such as the nervous system, eyes, adipose
tissue and bone, as well as immune cells13,16. Glucose-depen-
dent insulinotropic polypeptide increases fat deposition in adi-
pose tissue and promotes bone formation in bone17,18. The
effects of GIP on inflammation are controversial. The adminis-
tration of long-acting GIP analog reduced adipose tissue
inflammation and circulating inflammatory cells19. Glucose-

dependent insulinotropic polypeptide also suppresses atheroscle-
rosis by inhibiting macrophage infiltration, suggesting an anti-
inflammatory effect of GIP16,20. In contrast, GIP increased
inflammatory cytokine expressions in GIPR-overexpressing adi-
pocytes21.
The aim of the present study was to investigate whether GIP

ameliorates periodontitis using GIPR knockout mice
(GIPRKO), and to elucidate the mechanisms. We thus induced
experimental periodontitis in GIPRKO and wild-type mice
(WT). Furthermore, to explore the role of GIP in inflammatory
monocytes/macrophages, we investigated the effects of GIP on
the lipopolysaccharide (LPS)-stimulated inflammatory response
in a human monocyte/macrophage cell line, THP-1 cells.

MATERIALS AND METHODS
Animals
The generation of GIPRKO was previously described22. Male
C57BL/C mice (WT) were obtained from Chubu Kagakushizai
(Nagoya, Japan). All mice were housed in individual cages
under controlled temperature (24 – 1.0°C), on a 12-h light/
dark cycle and given standard laboratory mouse chow with
water ad libitum. The Institutional Animal Care and Use Com-
mittees of Aichi Gakuin University approved all experimental
protocols (AGUD 190).

Induction of ligature-induced experimental periodontitis
In half of the male WT and GIPRKO aged 8-weeks-old, a liga-
ture wire (0.10 mm�; Nilaco, Tokyo, Japan) was placed on the
second molar tooth (M2) between the left maxillary section to
clog the plaque, which subsequently induced experimental peri-
odontitis (Figure 1a)23. Mice without any ligation were used as
the control mice. Two weeks after the ligature, the following
assessments were carried out.

Ligature wire

WT

(a) (b)

GIPRKO

Control Periodontitis

Figure 1 | Histological evaluation of gingiva. (a) Periodontitis was induced by a ligature wire placed on the second molar tooth (M2) between the
left section maxillary to clog the plaque, which subsequently induced experimental periodontitis. (b) Frozen sections of the periodontal tissues
between the teeth were subjected to evaluation of the inflammatory cell infiltration by hematoxylin–eosin staining. Scale bar, 50 μm. GIPRKO,
glucose-dependent insulinotropic polypeptide receptor-knockout mice; WT, wild-type mice.
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Measurements of plasma insulin and GIP levels
After 12-h fasting, blood samples were taken from the vein. For
the GIP measurements, a dipeptidyl peptidase-4 (DPP-4) inhibi-
tor (Millipore, Billerica, MA, USA) was immediately added to the
blood samples. Plasma insulin levels were measured by using an
enzyme-linked immunosorbent assay kit (Morinaga, Yokohama,
Japan), and total GIP levels were measured by using an enzyme-
linked immunosorbent assay kit (Yanaihara Institute Inc.,
Shizuoka, Japan) according to the manufacturer’s instructions.

Tissue collection
Two weeks after the ligation, WT and GIPRKO were killed
with an overdose of pentobarbital (150 mg/kg). The maxillary
were excised and separated from the surrounding tissues. For
messenger ribonucleic acid (mRNA) analyses, a gingival tissue
strip from between the teeth of the M2 was excised and
immersed in RNAlater RNA stabilization reagent (Qiagen,
Hilden, Germany) and kept at -80°C until use. For immuno-
histological study, maxillary bones with the attached gingival
tissue were fixed in 4% paraformaldehyde.

Quantitative polymerase chain reaction for mRNA expressions
Total RNA was extracted from samples of gingiva or THP-1 cells
using RNeasy (Qiagen) and complementary deoxyribonucleic
acid was synthesized from 500 ng of RNA using ReverTra Ace
(Toyobo, Osaka, Japan) according to the manufacturer’s instruc-
tions. Primers for mouse tumor necrosis factor-a (TNF-a;
Mm00443258_m1), mouse inducible nitric oxide synthase (iNOS;
also known as Nos2; Mm00440502_m1), mouse interleukin-1a
(IL-1a; Mm99999060_m1), mouse interleukin-1b (IL-1b;
Mm01336189_m1), mouse b-actin (4352341E-1112017) and
human b-actin (4326315E-19112022) were purchased from Taq-
Man Gene Expression Assays (Applied Biosystems, Foster City,
CA, USA). The primer sequences (Nippon Gene Material Co.
Ltd., Toyama, Japan) were as follows: human TNF-a (sense pri-
mer: 50-CACCTAGAAATTGACACAAG-30, antisense primer:
50-AGTGCAAACATAAATAGAGG-30, probe: 50-ACC1TAG
GCCTTCCTCTCTCCA-30), human iNOS (sense primer: 50-GG
ATGACCTTCAGTATCAC-30, antisense primer: 50-CAGAGAT
TCTGGAGACTTC-30, probe: 50-TCAGCAAGCAGCAG AATG
AGTCC-30). The following protocol was used: 1 min at 95°C,
1 min at 52°C and 30 s at 72°C, and it was repeated for a total of
40 cycles. Relative quantity was calculated by the DDCT method
using b-actin as the endogenous control24. All reactions were run
on an ABI7000 platform (Applied Biosystems).

Histological analysis
Maxillary bones with gingiva were fixed in 4% paraformalde-
hyde solution for 24 h, washed in tap water and immersed in a
specific immersing solution containing liquid nitrogen and
isopentane. After this procedure, frozen non-deossified sections
were made according to the Kawamoto method25. For hema-
toxylin–eosin staining and immunohistological staining with
primary antibody, the second molars were cut serially into

5-lm thick sections, with the sections mounted using adhesive
film (Cryofilm type I; Leica Microsystems, Osaka, Japan) and
mounting medium (SCMM-R2; Leica Microsystems)26.

Immunohistochemical staining
Immunohistochemical analysis was carried out using anti-Mac-
1 polyclonal antibody (1:1,000; Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA) and anti-GIPR antibody (1:1,000;
Abcam Plc, Cambridge, UK). This was followed by incubation
with the secondary antibodies labeled with Alexa Fluor 488,
594 or Texas Red (Molecular Probes Inc., Eugene, OR, USA)
and with 40,6-diamidino-2-phenylindole (Sigma-Aldrich, St.
Louis, MO, USA) for 1 h at room temperature. Slides were
investigated with a FU-200 confocal system (Olympus, Tokyo,
Japan) and Leica AF6000LX (Leica Microsystems, Wetzlar, Ger-
many) inverted microscope. The numbers of Mac-1-immuno-
positive cells were counted, and the cell density was calculated
as the cell count divided by the total area.

Cell culture
Human monocyte/macrophage cell line, THP-1 cells, were pur-
chased from American Type Culture Collection (Manassas, VA,
USA). THP-1 cells were cultured in RPMI 1640 (Invitrogen
Life Technologies, Paisley, UK) supplemented with 10% fetal
bovine serum (Life Technologies Corp., Carlsbad, CA, USA),
50 IU/mL penicillin and 50 IU/mL streptomycin (Invitrogen
Life Technologies) under standard conditions (humidified
atmosphere of 5% CO2 at 37°C).

Effect of GIP on LPS-induced TNF-a and iNOS mRNA
expressions in THP-1 cells
Cells were seeded in six-well plates. Preconfluent cells were
starved without serum for 24 h. Glucose-dependent insulinotro-
pic polypeptide (GIP1–42; PEPTIDE, Osaka, Japan) was added
at the concentration of 10-7–10-9 mol/L 30 min before LPS
(Sigma-Aldrich; 100 ng/mL) administration. Four hours after
LPS stimulation, cells were washed with phosphate buffer saline
and total RNA was extracted using RNeasy (Qiagen).
To investigate the GIP signaling pathway, cells were incu-

bated with 5 lmol/L of cis-N-(2-phenylcyclopentyl)-azacyclotri-
dec-1-en-2-amine (MDL-12330A; Sigma-Aldrich), a specific
adenylate cyclase inhibitor, 10 lmol/L of protein kinase inhibi-
tor 14–22 (PKI[14–22]) amide or H-89 (Sigma-Aldrich), a
cAMP-dependent protein kinase A (PKA) inhibitor or
10 lmol/L of 8-pCPT-20-O-Me-cAMP (Sigma-Aldrich), a selec-
tive activator against Epac, 30 min before adding GIP27.

Statistical analyses
Data are expressed as means – standard error of the mean.
Datasets were assessed by analysis of variance (one-way ANOVA)
followed by the Bonferroni correction for multiple comparisons.
Statistical tests were carried out with SPSS (IBM SPSS Statistics
for Windows; Armonk, NY, USA). The differences were con-
sidered to be significant when P < 0.05.
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RESULTS
Characteristics and hormonal levels in WT and GIPRKO mice
with or without periodontitis
Bodyweights, fasting blood glucose, and the levels of
insulin and GIP were measured 2 weeks after the induction

of periodontitis. As shown in Table 1, all parameters, except
white blood cell count, were not significantly changed between
WT and GIPRKO with or without periodontitis (Table 1),
indicating that the existence of periodontitis did not affect
fasting blood glucose, insulin levels or GIP levels in either
WT or GIPRKO. In contrast, periodontitis significantly
increased the number of white blood cells in GIPRKO. When
compared with WT periodontitis and GIPRKO periodontitis,
there were no significant differences in bodyweights, blood
glucose, insulin/GIP levels and the number of white blood
cells.

Inflammatory cell infiltration was increased by periodontitis in
GIPRKO
Histological evaluation showed that the inflammatory cell infil-
tration increased on the periodontitis side in WT and GIPRKO
(Figure 1b). In particular, periodontitis in GIPRKO showed a
marked increase of inflammatory cells in the gingival connec-
tive tissue.
Macrophages in the gingival connective tissue were evalu-

ated by staining with Mac-1 antibody, a macrophage marker.
As shown in Figure 2a,b, there were only a few Mac-1-posi-
tive macrophages in the periodontal tissue of the WT con-
trols (25.0 – 7.3/mm2). Macrophages were significantly
increased by 6.4-fold in the vicinity of the wire in WT peri-

Table 1 | Bodyweights, blood glucose, hormone levels and white
blood cells in wild-type and glucose-dependent insulinotropic
polypeptide receptor-knockout mice

Variable WT control WT
periodontitis

GIPRKO
control

GIPRKO
periodontitis

Bodyweight
(g)

21.1 – 1.9 20.7 – 2.8 21.7 – 2.5 23.1 – 2.0

Blood
glucose
(mmol/L)

3.6 – 0.3 3.3 – 0.1 3.2 – 0.3 3.4 – 0.3

WBC (/lL) 5,100 – 750 6,180 – 520 4,700 – 520 6,770 – 470*
GIP (pmol/L) 38.1 – 1.5 40.1 – 1.9 39.5 – 1.9 40.3 – 2.0
Insulin
(pmol/L)

49.7 – 11.8 47.3 – 8.6 42.5 – 5.2 46.1 – 7.6

Values are given as mean – standard error of the mean (n = 9).
*P < 0.05. GIP, glucose-dependent insulinotropic polypeptide; GIPRKO,
glucose-dependent insulinotropic polypeptide receptor-knockout mice;
WBC, white blood cells; WT, wild-type mice.

WT
control

WT
periodontitis

GIPRKO
control

GIPRKO
periodontitis

DAPI Mac-1 Merge

350

(a)

(b)

(/mm2)

300

250

200

**

**

**

**

150

100

50

0
WT

Control Periodontitis

Ce
ll 

nu
m

be
rs

KO WT KO

Figure 2 | Macrophage accumulation in gingiva. (a) Macrophages were visualized by immunohistochemical staining with anti-Mac-1 polyclonal
antibody. Scale bar, 100 μm. (b) Quantification of Mac-1-positive macrophages in gingiva. Results are expressed as mean – standard error of the
mean (n = 6). **P < 0.01. DAPI, 40 ,6-diamidino-2-phenylindole; GIPRKO, glucose-dependent insulinotropic polypeptide receptor-knockout mice; KO,
knockout mice; WT, wild-type mice.
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odontitis (159.4 – 21.7/mm2, P < 0.05). In contrast, in the
GIPRKO, macrophages already existed on the control side of
the periodontal tissue, which increased by 4.5-fold compared
with the WT control (113.2 – 13.9/mm2, P < 0.01). The
induction of periodontitis in GIPRKO showed a marked
increase of infiltrated macrophages in the gingivomucosal tis-
sue near the wire (291.2 – 29.7/mm2, P < 0.01 vs GIPRKO
control). Macrophages in GIPRKO periodontitis showed a
1.8-fold increase compared with those in WT periodontitis
(P < 0.01).

Inflammatory mediators mRNA expressions in gingiva
Periodontitis significantly increased the inflammatory gene
expressions of TNF-a and iNOS in the gingiva of both WT
and GIPRKO (Figure 3). In the comparison between WT
periodontitis and GIPRKO periodontitis, gene expressions of
TNF-a and iNOS were significantly increased in GIPRKO by
1.6-fold and 1.6-fold, respectively (P < 0.01). IL-1a and IL-1b
gene expressions tended to be increased by the induction of
periodontitis, and periodontitis significantly increased IL-1b
gene expression in GIPRKO. However, IL-1a and IL-1b gene
expressions did not differ between WT periodontitis and
GIPRKO periodontitis.

Expressions of GIPR in gingiva
The immunohistochemical staining using anti-GIPR antibody
showed GIPR-expressing cells in the gingiva in WT mouse
(Figure 4). Glucose-dependent insulinotropic polypeptide recep-
tor-expressing cells were increased in the periodontitis gingiva,
suggesting that GIPR-expressing cells in the gingival connective
tissue are the infiltrated inflammatory cells. To confirm whether
the residual and infiltrated macrophages by periodontitis
expressed GIPR, we double-stained using anti-GIPR antibody
and anti-Mac-1antibody in the gingiva. Mac-1-positive macro-
phages expressed GIPR in the gingival connective tissue in WT
mice.

Effects of GIP on LPS-induced TNF-a and iNOS gene
expressions in THP-1 cells
TNF-a and iNOS gene expressions in THP-1 cells were signifi-
cantly increased by LPS by 3.5-fold and 3.0-fold, respectively
(P < 0.01; Figure 5). Glucose-dependent insulinotropic polypep-
tide inhibited LPS-induced TNF-a and iNOS gene expressions
in THP-1 cells in a dose-dependent manner.
To examine the mechanism of the inhibitory effects of GIP

on the LPS-induced inflammatory cytokine appearances in
THP-1 cells, THP-1 cells were pre-incubated with MDL-
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Figure 3 | Messenger ribonucleic acid expressions of inflammatory cytokines, (a) tumor necrosis factor-a (TNF-a; Tnf), (b) inducible nitric oxide
synthase (iNOS; Nos2), (c) interleukin-1a (IL-1a; Il1a) and (d) IL-1b (Il1b), in the control and the periodontitis side of gingiva in the wild-type mice
(WT) and glucose-dependent insulinotropic polypeptide receptor-knockout mice (GIPRKO). Messenger ribonucleic acid expressions were determined
by quantitative reverse transcription polymerase chain reaction. Results are expressed as mean – standard error of the mean (n = 9). *P < 0.05;
**P < 0.01.
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12330A, a specific inhibitor of cAMP, PKI(14–22) amide or H-
89, a specific inhibitor of PKA, before GIP administration and
then stimulated by LPS. As shown in Figure 6a, both MDL-
12330A and PKI(14–22) amide significantly neutralized the
inhibitory effects of GIP on LPS-induced TNF-a and iNOS
gene expressions in THP-1 cells. The inhibition of PKA by H-
89 also abolished the reduction of LPS-induced TNF-a and

iNOS gene expressions by GIP in THP-1 cells (Figure S1). As
there is another pathway, cAMP/Epac2 pathway in the down-
stream of GIPR, the effects of Epac2 activator 8-pCPT-20-O-
Me-cAMP on LPS-induced TNF-a and iNOS gene expressions
were investigated. As shown in Figure 6b, there were no effects
of Epac pathway activator on TNF-a and iNOS gene expres-
sions in THP-1 cells with or without LPS and GIP. These

M1 M2

GIPR Mac-1 Merge

WT
control

WT
periodontitis

GIPRKO
control

GIPRKO
periodontitis

Figure 4 | Expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in gingiva. Immunohistochemical double staining was
carried out using anti-Mac-1 polyclonal antibody and anti-GIPR antibody in gingiva. Scale bar, 100 μm. GIPRKO, glucose-dependent insulinotropic
polypeptide receptor-knockout mice; WT, wild-type mice.
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Figure 5 | Effects of glucose-dependent insulinotropic polypeptide (GIP) on lipopolysaccharide (LPS)-stimulated gene expressions of (a) tumor necrosis
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results showed that GIP suppressed the LPS-induced inflamma-
tory response at least in part through cAMP and PKA.

DISCUSSION
In the present study, we explored the inhibitory effects of GIP
on periodontitis through GIPR. In the periodontitis, residential
and infiltrated macrophages expressed GIPR. In vitro experi-
ments using THP-1 cells confirmed the suppressive effect of

GIP on LPS-induced inflammation at least partially through
cAMP and PKA pathways.
We induced experimental periodontitis by wire ligation

around a tooth23. This ligature-induced periodontitis well mim-
ics human periodontitis28–30. After the plaque accumulation
around the placed wire, gingival and periodontal inflammation
occurred. Using this experimental periodontitis model, we
clearly showed that the deletion of GIP signal aggravated peri-
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expressions were determined by quantitative reverse transcription polymerase chain reaction. (a) Involvement of cyclic adenosine monophosphate
and protein kinase A. After 30-min pre-incubation of GIP with or without MDL-12330A, a specific inhibitor of cyclic adenosine monophosphate, or
protein kinase inhibitor 14–22 (PKI[14–22]) amide (mPKI), a specific inhibitor of protein kinase A, cells were stimulated by lipopolysaccharide (LPS)
for 4 h. (b) Involvement of Epac2. After 30 min pre-incubation of GIP with or without 8-pCPT-20-O-Me-cyclic adenosine monophosphate, a selective
activator against Epac, cells were stimulated by LPS for 4 h. Results are expressed as mean – standard error of the mean (n = 6). **P < 0.01;
***P < 0.001. MDL, cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine.
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odontitis. Experimental periodontitis in GIPRKO presented sev-
ere periodontitis with increased inflammatory cell infiltration in
the gingival connective tissue around the wire. The gene expres-
sions of gingival inflammatory cytokines, TNF-a and iNOS,
were significantly increased in the GIPRKO periodontitis com-
pared with the WT periodontitis. These results suggest the
anti-inflammation activity of GIP in periodontitis.
Periodontitis is a chronic infectious disease initiated by a

group of periodontopathic bacteria, such as Porphyromonas gin-
givalis and Aggregatobacter actinomycetemcomitans, which pos-
sess LPS31. LPS activates inflammatory cells, which secrete
inflammatory cytokines. In the present study, we have shown
that GIP inhibited LPS-stimulated inflammatory cytokine gene
expressions in THP-1 cells in a dose-dependent manner, sug-
gesting an anti-inflammatory role of GIP in bacterial infection.
The expression of GIPR was confirmed in mouse macrophages
and human monocytes, as well as THP-1 cells16,32. It is also
shown that GIP increased intracellular cAMP levels in human
monocytes, THP-1 cells and RAW264.7 cells32. We further elu-
cidated that GIP suppressed LPS-induced TNF-a and iNOS
gene expressions, at least in part through cAMP and PKA. On
the contrary, there were no effects of Epac pathway activator 8-
pCPT-20-O-Me-cAMP on LPS-induced inflammatory expres-
sions in THP-1 cells.
Glucose-dependent insulinotropic polypeptide exerted anti-

atherogenic effects by suppressing macrophage foam cell forma-
tion through GIPR, followed by cAMP activation. Glucose-depen-
dent insulinotropic polypeptide suppressed the cholesteryl ester
accumulation in exudate peritoneal macrophages, and reduced
macrophage infiltrations in the atherosclerotic lesion in
apolipoprotein E knockout mice16,20. The contribution of GIP to
adipose tissue inflammation is controversial. Glucose-dependent
insulinotropic polypeptide infusion increased inflammatory che-
mokine and cytokine gene networks, especially MCP-1, in human
subcutaneous adipose tissue from obese participants andmice adi-
pose tissue from ob/ob mice32,33. On the contrary, GIP did not
increase MCP-1 in misty mice adipocytes. Furthermore, Varol
et al.19 showed that long-acting GIP administration reduced
monocytes infiltrations and inflammatory cytokine expressions in
adipose tissue in obesitymodel mice. Glucose-dependent insulino-
tropic polypeptide increased MCP-1 transcripts in the co-culture
condition with human macrophages and adipocytes, whereas GIP
did not lead to any significant increase of MCP-1 gene expression
in the single culture with human THP-1 macrophages, primary
human macrophages or human adipocytes32. As GIP increased
inflammatory response in GIPR-overexpressing adipocytes, but
not in naive adipocytes21, the expression level of GIPR might be
crucial to determine the inflammatory response. Further study is
required to elucidate this issue.
Glucose-dependent insulinotropic polypeptide receptor-

knockout mice impaired early insulin secretion after oral glu-
cose ingestion, whereas the fasting glucose level was kept in the
normal range22. In the present study, the induction of peri-
odontitis did not affect fasting blood glucose or insulin in WT

or GIPRKO. Because we only made one site of periodontitis of
a second molar interproximal part in the whole mouth, the
effect might have been more prominent if we had induced
multi-sites periodontitis or observed for a longer duration.
Future study is required to explore this issue.
In conclusion, the induction of periodontitis in GIPRKO

showed more severe periodontitis than that in WT, accompa-
nied by increased accumulation of macrophages in the gingiva.
These results suggest the beneficial effects of GIP on periodon-
tal disease. In vitro study suggested that GIP suppressed LPS-
induced inflammatory gene expressions at least partially
through the cAMP/PKA pathway. In diabetic patients, GIP is
expected to have a direct anti-inflammatory effect on periodon-
titis in addition to its glucose-lowering effect.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Figure S1 | Involvement of PKA in the inhibitory effect of GIP on LPS-induced inflammatory gene expressions, TNF-a(TNF) and
iNOS(NOS2), in THP-1 cells. mRNA expressions were determined by quantitative RT-PCR. After 30-min pre-incubation of GIP
with or without H89, a specific inhibitor of PKA, cells were stimulated by LPS for 4 hrs. Results are expressed as mean – SEM (n
= 6). ***P < 0.001.
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