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Abstract
Background: Polydactyly is a common congenital malformation characterized 
by the presence of supernumerary fingers or toes. In this case study, we sought 
to identify the causative pathogenic factor in a family from a northern region of 
China affected by non-syndromic postaxial polydactyly (PAP).
Methods: After recruiting a three-generation family with PAP, whole-exome se-
quencing was performed to identify the causative variant. In silico analysis and 
Sanger sequencing were used to validate the variant.
Results: We identified a novel heterozygous frameshift variant 
(NM_000168.6:c.4540delG, p.Asp1514Thrfs*5) in the transcriptional activator 
(TA1) domain of the GLI3 gene.
Conclusion: The novel frameshift variant identified in this study further con-
firms the relationship between non-syndromic PAP and GLI3 and extends the 
previously established mutational and phenotypic spectra of GLI3.
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1   |   INTRODUCTION

Polydactyly is a class of congenital limb malformations 
that is most frequently observed at birth (Farrugia & 
Calleja-Agius,  2016) and can be classified into several 
types based on the position and morphology of the su-
pernumerary digit(s) (Temtamy & McKusick,  1978). 
Among these, postaxial polydactyly (PAP; MIM# 
174200) is characterized by additional digit(s) on the 
ulnar or fibular side of the extremities, whereas those 
with meso-axial polydactyly have additional fingers 
in the central part of the hand and preaxial polydac-
tyly is characterized by digit(s) on the radial or tibial 
side of the extremities (Umair et al.,  2018). Moreover, 
preaxial polydactyly can occur concurrently with other 
types of malformations, as described in Greig cephalon-
polysyndactyly syndrome (GCPS; MIM 175700) and 
Pallister–Hall syndrome (PHS; MIM 146510) (Ito 
et al., 2018). PAP can be further sub-divided into postax-
ial polydactyly type A (PAPA) and postaxial polydactyly 
type B (PAPB) based on developmental status, the for-
mer of which is characterized by a well-formed redun-
dant digit, whereas the latter manifests only as a minor 
protuberance (Malik,  2014). It has previously been es-
tablished that polydactyly is primarily inherited in an 
autosomal dominant pattern, and that human polydac-
tyly is associated with the GLI family zinc-finger 3 pro-
tein (GLI3; MIM*165240) (Al-Qattan et al., 2017; Umair 
et al., 2019; Verma & El-Harouni, 2015). The GLI3 gene 
has been demonstrated to be one of the three GLI zinc-
finger transcription factors that mediate the SHH-GLI3 
pathway, and has been identified as playing an import-
ant role during embryogenesis, particularly with respect 
to formation of the neural tube, craniofacial structure, 
and limbs (Motoyama, 2006).

In this study, we examined a family with non-syndromic 
PAP caused by a novel variant (NM_000168.6:c.4540delG) 
of the GLI3 gene based on a screening whole-exome 
variants.

2   |   MATERIALS AND METHODS

2.1  |  Ethical compliance and sample 
characterization

For the purposes of this study, we recruited individuals 
from three generations of a Chinese family in Harbin, 
Heilongjiang Province, certain members of which are af-
fected by polydactyly. Blood samples were collected from 
the three family members (designated II-1, II-2, and III-
1), among whom, two are affected (II-2 and III-1) and 
the third unaffected (II-1). The diagnosis of congenital 

non-syndromic PAP in the family was confirmed by 
clinical and X-ray examinations. A pedigree diagram was 
drawn based on standard procedures and detailed in-
terviews with family members. The study was approved 
by the Institutional Research Board of Harbin Medical 
University and all participating individuals provided their 
informed consent and gave permission for the publication 
of data and photographs.

2.2  |  Whole-exome sequencing

To identify the pathogeny, whole-exome sequenc-
ing (WES), was performed commercially by Novogene 
Technology Limited-liability Company (Beijing, China), 
using genomic DNA extracted from peripheral blood of 
the proband (III-1).

Following Illumina paired-end protocols, the extracted 
genomic DNA was fragmented to an average size of 180–
280 bp and used to generate DNA libraries. Exome capture 
was performed using an Agilent SureSelect Human All 
ExonV6 Kit (Agilent Technologies, Santa Clara, CA, USA) 
according to the manufacturer's instructions. Sequencing 
of the genomic DNA using the Illumina Novaseq 6000 plat-
form (Illumina Inc., San Diego, CA, USA) was performed 
commercially by Novogene Bioinformatics Technology 
Co., Ltd (Beijing, China) to generate 150-bp paired-end 
reads with a minimum coverage of 10× for ~99% of the 
genome (mean coverage of 100×). Having sequenced the 
DNA, basecall file conversion and demultiplexing were 
performed using bcl2fastq software (Illumina). The re-
sulting FASTQ data were subjected to in-house quality 
control to remove low-quality reads, and were thereafter 
aligned to the reference human genome (hs37d5) using 
the Burrows-Wheeler Aligner (BWA) (Li & Durbin, 2009). 
Duplicate reads were marked using Sambamba tools 
(Tarasov et al.,  2015). Annotation was performed using 
ANNOVAR (2017June8) (Wang et al., 2010). Annotations 
included minor allele frequencies from public control data 
sets, as well as deleteriousness and conservation scores, 
thereby enabling further filtering and assessment of the 
likely pathogenicity of variants.

2.3  |  In silico analysis: Filtration and 
prioritization

WES was used to screen susceptibility variants in the 
family proband, with the following criteria being used 
to identify pathogenic variants: (1) a focus on genes as-
sociated with polydactyly that have been reported in the 
OMIM, HGMD, ClinVar, MalaCards, and PubMed da-
tabases; (2) priority accorded to heterozygous variants 
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given the predominant genetic tendency shown in the 
pedigree; (3) a variant minor allele frequency (MAF) 
of less than 0.1%; and (4) a pathogenic prediction. 
The accession numbers of different versions of the 
GLI3 reference sequence are as follows: NG_008434.1; 
NM_000168.6, and NP_000159.3.

2.4  |  Genomic DNA extraction and 
exome sequencing

Samples of peripheral blood were obtained from the three 
assessed family members (II-1, II-2, and III-1) and placed in 
qualified negative-pressure vacuum EDTA anticoagulant 
tubes. Genomic DNA was extracted using a QIAamp DNA 
Blood Mini Kit (Qiagen, #69506, Dusseldorf, Germany) 
according to standard methods. The sequence of the GLI3 
gene was downloaded from the Ensembl Genome Browser 
(http://grch37.ensem​bl.org/Homo_sapie​ns/Info/Index), 
and specific primers used to amplify the identified vari-
ant (forward: 5′-AAGCTGGTTCATTCTCTATTTCA-3′, 
reverse: 5′-GATTTCCGTTGGTTGCAGTCTTTT-3′) were 
designed using PrimerSelect. Amplifications were per-
formed using 40-μl reaction mixtures, containing 2 μl 
of template DNA, 2 μl each of the forward and reverse 
primers, 14 μl of DNA-free water, and 20 μl of GO Taq 
DNA polymerase (Promega, China). The PCR cycling 
conditions were as follows: pre-denaturation at 95°C for 
3 min; followed by 30 cycles of denaturation at 95°C for 
30 s, annealing at 60.6°C for 30 s, and extension at 72°C 
for 30 s; with a final elongation at 72°C for 10 min. The 
PCR products were detected by agarose gel electropho-
resis, and were then subjected to direct DNA sequencing 
using an Applied Biosystems 3730XL Genetic Analyzer 
(Foster City, USA) according to the manufacturer's in-
structions. To identify the genotype of each allele, the al-
leles were isolated in different clones using a pEASY-T1 
Simple Cloning Kit (TransGen, China).

3   |   RESULTS

3.1  |  Clinical presentation

PAP was observed in affected individuals, as shown 
in the three-generation pedigree of the assessed fam-
ily (Figure 1). Details of each of the family members are 
listed in Table 1. The proband (III-1) is affected by con-
genital non-syndromic polydactyly, for whom anomalous 
development was shown by radiographic examinations, 
and is characterized by a well-developed redundant digit 
on the right hand and bilateral feet. The left hand is also 
distinguished by an additional undeveloped nubbin. The 

proband's mother (II-2) was born with congenital PAP 
of the bilateral hands and feet, and the proband's mater-
nal grandfather (I-3) was also found to have congenital 
polydactyly.

3.2  |  Identification of the 
causative variant

To screen for and identify pathogenic variants, we per-
formed whole-exome sequencing of a sample of periph-
eral blood collected from the proband (III-1). Details of 
the genes relevant to the present study were sourced from 
the OMIM, HGMD, ClinVar, MalaCards, and NCBI da-
tabases, a list of which is presented in Table S1. In addi-
tion, by way of confirming pathogenicity, the MAF and 
predictions should meet the specified selection crite-
ria, the associated filtering process of which is shown in 
Figure 2. This screening accordingly enabled us to iden-
tify a novel causative variant in the sequence of GLI3 exon 
15 (designated NM_000168.6:c.4540delG, NP_000159.3:p.
Asp1514Thrfs*5), located in a highly conserved transcrip-
tional activation (TA1) domain. This variant was not de-
tected in any of the following databases: ExAC browser 
(http://exac.broad​insti​tute.org/), 1000 Genomes (http://
brows​er.1000g​enomes.org), Exome Sequencing Project 
(https://evs.gs.washi​ngton.edu/EVS/), ClinVar (http://
www.ncbi.nlm.nih.gov/clinvar), and HGMD (http://
www.hgmd.org). Moreover, we failed to detect the vari-
ant in any of the genome sequences obtained for 180 
unaffected individuals (controls), who were a random 
sample of 1884 disease-free subjects examined in the 
Novo-Zhonghua project. This variant located in a highly 
conserved transcriptional activation (TA1) domain and 
the conservatism was also identified in the UCSC browser 

F I G U R E  1   The pedigree of three generation of the Chinese 
family assessed in this study. Squares and circles represent males 
and females, respectively, and filled and unfilled symbols indicate 
affected and unaffected individuals, respectively. The proband is 
denoted by an arrow. An asterisk indicates that a peripheral blood 
sample collected from the individual is available

http://grch37.ensembl.org/Homo_sapiens/Info/Index
http://exac.broadinstitute.org/
http://browser.1000genomes.org
http://browser.1000genomes.org
https://evs.gs.washington.edu/EVS/
http://www.ncbi.nlm.nih.gov/clinvar
http://www.ncbi.nlm.nih.gov/clinvar
http://www.hgmd.org
http://www.hgmd.org
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(http://genome.ucsc.edu/) and GeneCards (http://www.
genec​ards.org/) databases. In addition, prediction re-
sults obtained using Mutation Taster (http://www.mutat​
ionta​ster.org/) supports the identification of the variant, 
and predictions obtained using VarSome (https://varso​
me.com/) indicate that the identified variant is pathogenic 
with PVS1, PM2, and PP3.

Consistently, the results of Sanger sequencing indicated 
that the identified GLI3 variant is correlated with disease 
phenotypes in all family members (Figure 3). Having thus 
identified the putative causal variant, we subsequently li-
gated the purified PCR products to a linearized T vector, as 
shown in Figure 4. Sequencing revealed both patients (II-
2, III-1) to be heterozygotes with respect to the variant. In 

contrast, the proband's father (II-1) is an unaffected indi-
vidual and carries a normal sequence. Thus, these obser-
vations provide evidence to indicate that the transmission 
of the disease is characterized by an autosomal dominant 
inheritance pattern and is consistent with individuals in 
the pedigree harboring heterozygous alleles.

3.3  |  ACMG evaluation

To assess the pathogenicity of the GLI3 variant, we followed 
the standards and guidelines of the American College 
of Medical Genetics (ACMG) (Richards et al., 2015). On 
the basis of Varsome results, loss-of-function is a known 

Individual Sex

Clinical features

Left hand Right hand Left food Right food

I-1 M PAP PAP PAP PAP

I-2 F . . .

II-1 M . . .

II-2 F PAP PAP PAP PAP

III-1 F PAPB PAPA PAPA PAPA

Note: Unaffected parts are denoted by dots.
Abbreviations: PAPA, postaxial polydactyly type A; PAPB, postaxial polydactyly type B.

T A B L E  1   Characteristics of different 
members of the family screened in this 
study

F I G U R E  2   Clinical features of the proband. The proband was diagnosed with postaxial polydactyly type A in the right hand and 
bilateral feet, and postaxial polydactyly type B of left hand, as determined by x-ray examination

http://genome.ucsc.edu/
http://www.genecards.org/
http://www.genecards.org/
http://www.mutationtaster.org/
http://www.mutationtaster.org/
https://varsome.com/
https://varsome.com/
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mechanism of the disease and a frameshift variant was 
identified as PVS1. The truncated variant (PM4) was lo-
cated in a mutational hot spot (PM1) and absent from con-
trols (PM2). Members of the family co-segregated (PP1) in 
an autosomal dominant pattern, which is consistent with 
PAP (PP4). In addition, the variant's deleterious effect is 
supported by computational evidence (PP3). Accordingly, 
there was strong evidence to indicate that the variant ful-
filled the criteria of “pathogenic,” with the very strong 
and three moderate (PM1, PM2, and PM4) and supportive 
(PP1, PP3, and PP4) evidence.

4   |   DISCUSSION

In this study, we identified a novel frameshift variant 
of GLI3 in a family affected by PAP. This variant co-
segregated with a polydactyly phenotype in an autoso-
mal dominant manner. The proband of the family is 

characterized by PAPA in the right hand and bilateral 
feet, and PAPB in left hand, and the proband's mother 
similarly suffers from polydactyly. On the basis of WES 
screening of the proband, we identified a novel variant of 
the GLI3 gene (NM_000168.6:c.4540delG, NP_000159.3:p.
Asp1514Thrfs*5).

F I G U R E  3   A flow diagram showing the process of causative 
variant identification

F I G U R E  4   Sequencing analysis of GLI3 (5′-3′). (a) A 
frameshift variant (c.4540delG) in the affected individuals (II-2, 
III-1) is indicated by highlights. The family member without 
polydactyly (II-1) does not carry this variant. (b) Sequencing 
analysis of the variant verified by T linear vector. The variant in 
patients II-2 and III-1 manifests as a heterozygote. The unaffected 
member (II-1) was confirmed to be homozygous for this locus, 
consistent with the NG_008434.1 reference sequence



6 of 8  |      WANG et al.

It has previously been established that GLI3 plays a 
dual role in the process of normal limb bud expression. 
The phosphorylated full-length form of GLI3 (GLI3A) 
activates the Sonic hedgehog (SHH) signaling pathway, 
whereas C-terminally truncated GLI3 (GLI3R) acts as a 
repressor. GLI3R antagonizes HAND2, thereby promoting 
the normal polarity and expression of SHH. It has been 
found that proteasomal cleavage leads to the truncation 
of GLI3R spanning exons 13 and 14, and in vertebrates, 
a balance between activation and inhibition is essential 
for normal embryonic development and limb formation 
(Al-Qattan & Al-Motairi,  2013; Hill et al.,  2007). It has 
also been found that GLI3-deficient embryonic mice are 
characterized by abnormal limb development (Quinn 
et al., 2012; Veistinen et al., 2012). Collectively, these find-
ings indicate that GLI3 functions as a regulatory factor 
that contributes to determining the correct number and 
identity of digits during early limb development. In the 
present study, we validated the relationship between GLI3 
and the occurrence of polydactyly.

In previous studies, a robust relationship between 
GLI3 and polydactyly has been reported (Malik,  2014; 
Patel et al.,  2016, 2021). The GLI3 gene comprises 15 
exons that encode a 1580-amino acid protein containing 

a zinc-finger DNA binding domain, proteolytic cleavage 
site, CBP-binding region domain, and two transactivation 
domains (TA1 and TA2) (Kalff-Suske et al.,  1999). The 
variant identified in the present study (p.Asp1514Thrfs*5) 
truncates the GLI3 protein from the TA1 domain, and 
interestingly, a large number of variants have previously 
been reported in this domain, as shown in Figure  5b. 
Several studies, particularly those focusing on syndromic 
polydactyly, have established a genotype–phenotype asso-
ciation in terms of the location of variants in a particular 
domain (Furniss et al.,  2007; Johnston et al.,  2005; Ship 
et al., 1999). Variants occurring between nucleotides 1998 
and 3481 of the GLI3 cDNA have been shown to be asso-
ciated PHS, whereas variants downstream of nucleotide 
1998 and upstream of nucleotide 3481 have been linked 
to GCPS (Johnston et al., 2010). Moreover, it has been es-
tablished that the GLI3 variants causing non-syndromic 
polydactyly are not restricted to any single-specific do-
main, although most published cases on isolated polydac-
tyly indicate that a change in protein length is required. 
Furthermore, the type of variation may be phenotypically 
related. For example, PHS is caused by frameshift and 
nonsensical variants, whereas GCPS can be associated 
with most types of variants. However, the location and 

F I G U R E  5   Analysis of the variant identified in the assessed family. (a) Analysis of GLI3 motifs revealed that the variant is located in 
the TA1 transactivation domain and that the GLI3 protein is truncated by the frameshift mutation. (b) All variants of the TA1 domain are 
shown in the graph, with the variant identified in the present study being indicated. (c) Analysis of conserved amino acid residues among 
different mammals indicated that this variant is associated with disease. (d) The predicted structure of proteins. The length of the variant 
protein is clearly altered
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type of non-syndromic PAP mutations have yet to be suf-
ficiently determined (Johnston et al., 2005). Accordingly, 
identification of a large number of non-syndromic poly-
dactyly cases caused by GLI3 mutations will be neces-
sary to further confirm the association and establish a 
genotype–phenotype relationship.

On the basis of the stringent criteria applied in the 
present study, the variant we identified can be classified 
as “pathogenic,” and its physical effects are apparent. In 
addition to in silico analysis, both upstream and down-
stream variants lead to disease. The variants associated 
with GLI3 pathogenesis are listed in Table S2. McDonald-
McGinn et al. (2010) have reported a pathogenic variant 
(c.4542-4545delCCAC) located two bases downstream 
of the variant identified in the present study, which was 
found to be associated with features such as trigono-
cephaly and metopic craniosynostosis consistent with 
GCPS, whereas the individuals screened in our research 
are affected by non-syndromic polydactyly. In this re-
gard, it is necessary to take into account variant pene-
trance. Other patients with GLI3 TA1 domain variants 
have been found to have different phenotypes, including 
polydactyly, and whereas the proband reported in the 
present study is characterized by PAPA in the left hand 
and PAPB in the right, other studies have found that pa-
tients invariably have limb deformities.

The proband we describe herein has shown that this vari-
ant can lead to different types of PAP including PAPA (right 
hand and bilateral feet) and PAPB (left hand), which are dis-
tinguished by the integrity of excrescent digit. Collectively, 
the findings of the aforementioned studies serve to highlight 
that variants of the GLI3 gene, particularly those that mod-
ify the TA1 domain, can potentially contribute to different 
types of polydactyly. In the present study, we established an 
association between this domain and PAP, although its asso-
ciation with other symptoms remain to be elucidated.

In conclusion, we identified a novel GLI3 variant, 
c.4540delG (p.Asp1514Thrfs*5), in members of a Chinese 
family with postaxial polydactyly. Our characterization 
of this novel truncated variant expands our current un-
derstanding of the phenotypic spectrum of developmen-
tal malformations, and provides a reference for gaining 
further insights into the underlying genetic mechanisms.
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