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Background: The lymphatic system is involved in metastasis in pancreatic cancer progression. In cancer staging,
lymphatic spread has been used to assess the invasiveness of tumor cells. However, from the endothelium's per-
spective, the analysis downplays the peri-lesional activities of lymphatic vessels. This unintended bias is largely
due to the lack of 3-dimensional (3-D) tissue information to depict the lesionmicrostructure and vasculature in a
global and integrated fashion.
Methods:We targeted the pancreas as the model organ to investigate lymphatic vessel remodeling in cancer le-
sion progression. Transparent pancreases were prepared by tissue clearing to facilitate deep-tissue, tile-scanning
microscopy for 3-D lymphatic network imaging.
Findings: In human pancreatic ductal adenocarcinoma, we identify the close association between the pancreatic
intraepithelial neoplasia (PanIN) lesions and the lymphatic network. In mouse models of PanIN (elastase-CreER;
LSL-KrasG12D and elastase-CreER;LSL-KrasG12D;p53+/−), the 3-D image data reveal the peri-lesional
lymphangiogenesis, endothelial invagination, formation of the bridge/valve-like luminal tubules, vasodilation,
and luminal invasion. In the orthotopic mouse model of pancreatic cancer, we identify the localized, graft-
induced lymphangiogenesis and the peri- and intra-tumoral lymphatic vessel invasion.
Interpretation: The integrated view of duct lesions and vascular remodeling suggests an active role, rather than a
passive target, of lymphatic vessels in the metastasis of pancreatic cancer. Our 3-D image data provide insights
into the pancreatic cancer microenvironment and establish the technical and morphological foundation for sys-
tematic detection and 3-D analysis of lymphatic vessel invasion.
Fund: Taiwan Academia Sinica (AS-107-TP-L15 and AS-105-TP-B15), Ministry of Science and Technology (MOST
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1. Introduction

The lymphatic drainage of pancreas is achieved by an intricate net-
work of lymphatic vessels and nodes to collect the interstitial fluids
for water maintenance and immune surveillance [1,2]. When diseases
such as pancreatitis or neoplasm occur, the lymphatic system plays an
essential role in host defenses in response to inflammation and malig-
nant transformation. Clinically, the association of lymphatics with pan-
creatic duct lesion progression is demonstrated by the lymph node
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Lymph nodemetastasis has been clinically used in pancreatic can-
cer staging. However, in pathology, characterization of the lym-
phatic association with the precancerous/cancerous lesions
remains a challenging task due to the lack of imaging tools to visu-
alize the lymphatic vessels in a 3-D space continuum with high
definition.

Added value of this study

Taking full advantage of the recent breakthrough in 3-D histology
with tissue clearing, in this study we prepare transparent
pancreases to characterize the lymphatic vessel remodeling and in-
vasion in cancer progression. Using the human pancreases, we
present the map of lymphatic vasculature and the associated mi-
crostructural and lymphatic network remodeling in pancreatic duc-
tal adenocarcinoma (PDAC). In mice, we use the PDAC model to
illustrate the duct lesion-lymphatic network association at its
early stage, which otherwise cannot be revealed in the clinical con-
dition. Importantly, at the advanced stage of lesion formation, we
identify the parallel events of peri-lesional lymphangiogenesis, en-
dothelial invagination, formation of the luminal tubules, vasodila-
tion, and luminal invasion. These results provide insights into the
lesion microenvironment and establish the technical and morpho-
logical foundation for systematic detection and 3-D analysis of
lymphatic vessel invasion.

Implications of all the available evidence

Our 3-D image data indicate a highly plastic and dynamic lymphatic
system in the pancreas that responds to the formation of duct le-
sions with proliferation and remodeling. The lymphangiogenesis
and remodeling suggest an active role – rather than a passive
target – of lymphatic vessels in the metastasis of pancreatic
cancer.
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metastasis in pancreatic ductal adenocarcinoma (PDAC) [3–7]. In partic-
ular, lymphatic spread has been used as a key prognostic factor to assess
the invasiveness of tumor cells [4–6]. However, from the endothelium’s
perspective, the active responses of lymphatic vessels to tissue remodel-
ing, such as injury and inflammation induced by cancer progression,
have not been thoroughly investigated due to the lack of 3-
dimensional (3-D) image data to analyze the dispersed lymphatic net-
work in space.

Pathophysiologically, pancreatic duct lesion progression is a process
of epithelial transformation, ranging from the formation of low-grade
pancreatic intraepithelial neoplasia (PanIN) lesions to metastatic ade-
nocarcinoma [8]. This process is often associated with inflammation
(pancreatitis) and oncogenic Kras mutation, causing potential acinar-
to-ductal metaplasia and unregulated epithelial proliferation, which in
turn remodels the pancreatic microenvironment [9–13]. Particularly,
the epithelial overgrowth leads to acinar atrophy and excessive stromal
deposition in the pancreas [14–16].

The major stromal components of pancreatic duct lesions are the
stellate cells (or myofibroblast-like cells), nerves (including glial cells),
and microvessels (blood vessels/pericytes and lymphatic vessels)
[14–18]. In cancer progression, the stellate cells create a desmoplastic
environment, which hosts and supports the malignant epithelium and
the neurovascular tissues; the latter in turn becomes potential
targets for tumor invasion, leading tometastasis. Immunohistochemical
analysis of the pancreatic cancer microenvironment reveals an overex-
pression of the lymphangiogenic growth factor VEGF-C and -D [19].
The overexpression indicates a favorable condition for lymphang-
iogenesis and lymphatic spread, which have been observed in other
gastrointestinal tumors, such as the gastric and colorectal carcinomas
[20–23].

To examine the lymphatic network in pancreatic duct lesion
progression, in this study we prepare transparent pancreases via tissue
clearing [18,24,25] for 3-dimensional (3-D) lymphatic network
imaging. Importantly, in both human andmouse pancreaseswe identify
the close association between the PanIN lesions and lymphatic network.
Using the transgenic models of PanIN, we demonstrate that the
lesion-lymphatic vessel association occurs at the early stage of
lesion formation, which is magnified in pancreatitis with marked
lymphangiogenesis and endothelial remodeling. Using the syngeneic
mouse model of orthotopic cancer cell injection, we identify the local-
ized lymphangiogenesis with tumor-vessel association. In both the
transgenic and orthotopic models, our 3-D image data reveal lymphatic
vessel invasion with high definition. Qualitative and quantitative analy-
ses of the different phases and aspects of lymphatic vessel remodeling
and invasion are presented and discussed in this report.

2. Materials and methods

2.1. Human pancreatic specimens

Collection and use of human tissues were approved by the Institu-
tional Review Board of National Taiwan University Hospital. Normal
human pancreases were obtained from the cadaveric donors. Speci-
mens from three donors with normal HbA1c, amylase, and lipase levels
were used to establish the pancreatic lymphatic network. Pancreatic
specimens with PanIN lesions were obtained from pancreatectomy for
treatment of PDAC. Immediately after the operation, the dissected spec-
imens were perfused with 1000 ml of saline through the splenic artery,
which was cannulated with a Fr. 21-peripheral venous catheter, to re-
move the residual blood. Afterward, the tissueswere fixed in 4% formal-
dehyde for 2 days and then washed in saline for 4 days at 4 °C [25].
Specimens were later sectioned to 350 μm in thickness by vibratome
and transferred to 0.1% paraformaldehyde for preservation at 4 °C. Spec-
imens from three PDAC patients (sex/age (years)/staging: male/77/
T1N0, male/52/T2N0, and male/67/T3N0) were used to identify the
peri-lesional lymphatic network.

2.2. Genetically engineered and syngeneic mouse models of pancreatic
cancer

Normal pancreases and pancreases with PanIN lesions were har-
vested from the 14-week-old wild-type C57BL/6 (B6) mice (control),
elastase-CreER;LSL-KrasG12D mice (or EK mice; elastase-CreER × LSL-
KrasG12D mice) [18], and elastase-CreER;LSL-KrasG12D;p53+/− mice (or
EKP mice; EK × B6.129S2-Trp53tm1Tyj/J mice, Jackson Laboratory; stock
number: 002101; this mouse line develops liver metastasis at the ad-
vanced stage). To examine the early-stage duct lesion formation, the
EK mice were injected with tamoxifen at age 6 weeks (Sigma, St.
Louis, MO, USA; 2 mg/injection, three injections in 1 week to induce
Cre-mediated recombination) and then allowed for duct lesion develop-
ment for the next 7weeks. To examine the advanced duct lesion forma-
tion, the EK and EKPmice were injected with tamoxifen at age 6 weeks
and followed by 3-week cerulein treatment (starting at age 7 weeks;
Sigma, 0.25 mg/kg body weight, six injections per week) and 4-week
tissue regrowth to induce large-scale development of PanIN lesions.
B6 mice with 3-week cerulein treatment and 4-week tissue regrowth
were used as the control. Overall, six normal and cerulein-treated B6
mice, six EK mice with early-stage duct lesions, and seven EK and EKP
mice with advanced lesion formation were used to generate the repre-
sentative images.
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Fig. 1. Human pancreatic lymphatic network in health and around PanIN lesions. (a, b) 2-D tissue map and 3-D projection of pancreatic lymphatic network. Tile scanning and image
stitching were used to generate the map. Lymphatic vessels (magenta, D2-40+) reside at the peri-lobular space (arrows) and inside the parenchyma in association with the ducts and
islets (oval, a). Neuroendocrine marker PGP9.5 staining (blue/cyan) reveals the neurolymphatic association and the endocrine islets. Islets are used as the landmarks (labeled with
numbers) to correlate the pancreatic microstructure and lymphatic network in a and b (b focuses at the center of a, projection depth: 350 μm). Asterisks in b denote the intra-
pancreatic ganglia [25]. Green: nuclear staining. (c, d) PanIN-lymphatic network association in surgical biopsy acquired from PDAC treatment. c: high-grade PanIN in tumor bulk
(male/age, 67 years/T3N0). d: low-grade PanIN 5 cm distal to the tumor bulk. In c, 2-D image (inset i and ii) and 3-D projection (inset iii) identify the lymphatic network around the
high-grade PanIN lesion. Blue: islets (glucagon staining). In d, white arrows (inset i) indicate the lymphatic vessels in the stroma. Blue arrows in inset ii specify the cell bodies of
endothelium, confirming the thin-walled lymphatic vessels. Yellow arrows in c and d indicate the areas with aggregation of nuclear signals (inflammation), which appears to be
associated with the lymphatic network. Note that acinar atrophy and mixed-grade PanINs are commonly found in the lobules distal to the tumor bulk. Supplementary Fig. S1 (male/
age, 52 years/T2N0) shows a second example of the distal PanIN-lymphatic network association.
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To establish the syngeneicmousemodel of pancreatic tumor, we de-
veloped a PDAC cell line (clone Pan18) from the pancreatic tumors in
the EKPmice (inducedwith tamoxifen and cerulein injections described
above). In the process, the EKP tumors were dissected and treated with
the digestion solution (10 mM HEPES, 1 mg/ml collagenase P, 1 U/ml
Dispase, and 2.5 mM CaCl2) to disassociate the tumor cells. The cells
were then seeded in low density and cultured in DMEM with 4.5 g/L
glucose, 100 U/ml penicillin and streptomycin, and 10% fetal bovine
serum to monitor their growth. Clone Pan18 was later picked, pre-
served, and magnified on the basis of its aggressive proliferation. Next,
the Pan18 cells were labeled via transduction with the lentivirus
carrying the IRES-based dual expression cassette of luciferase (for
in vivo monitoring/confirmation) and EGFP (for cell tracing) and then
purified three times with the FACSAria II cell sorter (BD Biosciences,
San Jose, CA, USA) to select the EGFP+ cells. Finally, to engraft the
tumor cells, ~1 × 103 EGFP+ Pan18 cells in Matrigel (40 μl; BD Biosci-
ences) were injected to the B6 mouse pancreas (6–8 weeks of age)
through an abdominal incision (control: injection of Matrigel only).
Once the Matrigel solidified, the incision was closed with 0.1 mm (5/
0) Safil absorbable surgical suture (B. Braun Medical, Barcelona,
Spain). The development of the pancreatic tumors was monitored
using the Xenogen IVIS Spectrum System (Caliper, Waltham, MA,
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Fig. 2. Mouse pancreatic lymphatic system. (a, b) Tissue map of wild-type B6 mouse pancreas labeled with lymphatic marker Lyve1. White: Lyve1. Red: blood vessels. Green: nuclear
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USA) for 1month before killing the animals for examination. Six Pan18-
injected and four control mice were examined with 3-D histology to
characterize the tumor cell-induced lymphangiogenesis and lymphatic
vessel invasion.

Mouse pancreatic blood vessels were labeled with cardiac perfusion
of the lectin-Alexa Fluor 488 conjugate (Invitrogen, Carlsbad, CA, USA)
followed by 4% paraformaldehyde perfusion fixation [26]. Afterward,
the pancreas was harvested and post-fixed in 4% paraformaldehyde so-
lution for 40min at 15 °C. Vibratome sections of thefixed pancreaswere
then prepared and the sections were transferred to 0.1% paraformalde-
hyde for preservation at 4 °C. The Institutional Animal Care and Use
Committees at the Academia Sinica and the National Tsing Hua Univer-
sity approved all procedures with mice.
2.3. Tissue immunolabeling

The fixed human andmouse specimenswere immersed in 2% Triton
X-100 solution for 2 h at 15 °C for permeabilization before
immunolabeling. Eight different primary antibodies were used to
immunolabel the tissues following the protocol outlined below. For
human tissue labeling, the antibodies used were mouse anti-
podoplanin (clone D2-40, lymphatic endothelial marker; 916602,
BioLegend, SanDiego, CA, USA) [27,28], rabbit anti-PGP9.5 (neuroendo-
crinemarker; 2932–1, Epitomics, Burlingame, CA, USA) [25], rabbit anti-
glucagon (2810–1, Epitomics), and rabbit anti-α-SMA (stellate cell
marker; ab5694, Abcam, Cambridge, MA, USA). For mouse tissue label-
ing, the antibodies used were rabbit anti-lymphatic vessel endothelial
hyaluronan receptor 1 (Lyve1, lymphatic vessel endothelial marker;
Lyve1 staining also labels a subpopulation of macrophages; ab14917,
Abcam), rat-anti-substance P (sensory nerve marker, MAB356,
Millipore, Billerica, MA, USA), rabbit anti-Ki-67 (cell proliferation
marker; ab15580, Abcam), and mouse anti-nestin (cancer stem cell
marker, MAB353, Millipore) [29] antibodies. Before applying the anti-
body, the tissue was rinsed in phosphate-buffered saline (PBS). This
was followed by a blocking step, incubating the tissue with the blocking
buffer (2% Triton X-100, 10% normal goat serum, and 0.02% sodium
azide in PBS). The primary antibody was then diluted in the dilution
buffer (1:100, 0.25% Triton X-100, 1% normal goat serum, and 0.02% so-
dium azide in PBS) to replace the blocking buffer and incubated for
1 day at 15 °C. Negative controls were prepared by omitting the primary
antibody in the buffer.

Alexa Fluor 647 conjugated goat anti-rabbit secondary antibodywas
used in combination with Alexa Fluor 546 conjugated goat anti-mouse
or anti-rat secondary antibody (1:200, Invitrogen) to reveal the immu-
nostained structures. Propidium iodide or SYTO16 (Invitrogen) staining
was performed at room temperature for 1 h to reveal the nuclei. The la-
beled specimens were then immersed in the tissue clearing solution
(RapiClear 1.52 solution, SunJin Lab, Hsinchu, Taiwan) before being im-
aged via confocal microscopy.

2.4. Deep-tissue confocal microscopy

Imaging of the tissue structure was performed with Zeiss LSM 510
Meta or LSM 800 confocal microscope (Carl Zeiss, Jena, Germany)
equipped with 10× Fluar lenses and 25× LD Plan-Apochromat lenses
(working distance: 570 μm) under a tile-scan mode with automatic
image stitching. The laser-scanning process was operated under the
multi-track scanningmode to acquire signals, including the transmitted
light signals. The Alexa Fluor 647-labeled structures were excited at
633 nm and the fluorescence was collected by the 650–710-nm band-
pass filter. The propidium iodide-labeled nuclei and Alexa Fluor 546-
labeled structures were excited at 543 nm and the signals were col-
lected by the 560–615-nm band-pass filter. The SYTO 16-labeled nuclei
and lectin-Alexa Fluor 488-labeled blood vessels were excited at
488 nm and the fluorescence was collected by the 500–550-nm band-
pass filter. Fluorescence signals infigures are pseudo-colored. After con-
focal imaging, the specimens were further processed with saline wash-
ing (removal of clearing reagent) and H&E histology to confirm the
PanIN structure (e.g., Fig. 1c) if necessary.

2.5. Image projection and analysis

The Avizo 6.2 image reconstruction software (VSG, Burlington, MA,
USA), Zen software (Carl Zeiss), and LSM 510 software (Carl Zeiss)
were used for projection, signal segmentation, noise reduction, and
analysis of the confocal images. Signal segmentation for quantification
of the tissue network (or cell) density is illustrated in Juang et al. [30].
Briefly, feature extraction and image segmentation for calculation of
the lymphatic vessel densitywere performed by the Label Field function
of Avizo to collect the voxels of the area of interest (parenchyma, lesion,
or peri-lobular space; the last one is within 500 μm off the edges of lob-
ules, excluding the intra-lobular signals) and the associated Lyve1+

lymphatic vessels. Voxels of the vessels were divided by those of the
area of interest ×100% to estimate the lymphatic vessel density. Quanti-
tation of the Lyve1+macrophage density follows the same approach ex-
cept that the cell numbers instead of the voxels were used in the
numerator, and the voxels of the lesion, peri-lesional parenchyma
(within 500 μm of the lesion), or normal parenchyma were used in
the denominator. The same immunolabeling, imaging, and quantitation
processes were conducted on the comparable pancreatic middle sec-
tions to characterize the tissue densities on the same basis.

2.6. Statistical analysis

The quantitative values are presented as means ± SD or with the
distribution of data points. Statistical differences were determined by
the unpaired Student's t-test. Differences between groups were consid-
ered statistically significant when P b .05.

3. Results

3.1. Human pancreatic lymphatic network in health and around PanIN
lesions

The pancreas consists of the endocrine islets and the exocrine acini
and ductal network to control and participate in the body's metabolic
and digestive activities. From the map of human pancreas (Fig. 1a, b),
we see both the endocrine and exocrine tissues and the infiltrated adi-
pocytes contact with the podoplanin (D2-40) -labeled lymphatic
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network [27]. The association underscores the surveillance feature of
lymphatics. Note that we used tissue clearing to prepare transparent
human pancreases for penetrative 3-D imaging [24,25]. The transparent
specimens allowedus touse both the transmitted light andfluorescence
signals to identify and confirm the pancreatic microstructure and tissue
networks (ducts, nerves, and vasculature) in space.

Importantly, in addition to the normal pancreas, this 3-D imaging
approach can be used to examine the human pancreatic cancer speci-
mens with high definition. Fig. 1c shows the map of a human PDAC tis-
sue acquired from pancreatectomy. Deposits of high-grade PanIN
lesions are detected in the tumor bulk with tissue scanning. In the
map, patches of nuclear signals highlight the inflammatory areas,
which are associated with the PanIN lesions. A side-by-side comparison
of theH&E andfluorescencemicrographs identifies the close association
between the high-grade PanINs and the lymphatic network (insets of
Fig. 1c and Supplementary Video S1). In addition, in the diseased pan-
creas distal to the tumor bulk (Fig. 1d and Supplementary Fig. S1), the
lesion (low grade) -lymphatic vessel association is also seen in the lob-
ule with apparent acinar atrophy (vs. Fig. 1a; n = 3 surgical biopsies).

Although the human PDAC analysis provides direct evidence of
the lesion-lymphatic network association, it does not allow us to trace
the development of the association, which requires examination of the
PanIN lesions at their early stage (i.e., when the pancreas appears to
be normal) as well as the advanced stage. In the next six sections we
systematically analyze themouse PanIN and PDACmodels to character-
ize the lymphatic vessel remodeling and invasion in pancreatic duct
lesion progression.
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3.2. Mouse pancreatic lymphatic system detected by 3-D histology

Similar to the human pancreatic lymphatic system [2], the mouse
pancreatic lymph nodes reside in the peri-lobular space and around
the artery (Fig. 2a, Area 1). In mice, the lymph nodes and lymphatic
vessels are visualized with Lyve1 (lymphatic vessel endothelial
hyaluronan receptor 1) staining of the lymphatic endothelium
[31–33] (note that Lyve1 also labels a subpopulation of F4/80+ macro-
phages, Supplementary Fig. S2 [34,35]). Morphologically, outside the
lymph node, the Lyve1+ endothelium forms a torturous network
which follows the artery and arteriole in extension (Fig. 2a, inset, and
b). Inside the lymph node, the Lyve1+ endothelium lines the floors
of the medullary and subcapsular sinuses (Fig. 2c; positive control of
Lyve1 staining) [36]. Interesting, although the endothelial lining
of the lymph node has been known, its extension across the subcapsu-
lar space has not been reported (Fig. 2c, insets, and d). This unique
bridge structure is only seen inside the lymph node in normal mice
but appears outside the lymph node in lymphangiogenesis, which
will be discussed later.

Zooming out from the lymph node, Fig. 2e presents the high-
definition image of an inter-lobular lymphatic vessel, which resides
at the central location among the pancreatic lobules. This image
shows the contact of lymphatic endothelium with all of the pancreatic
major structures, including the endocrine islets, exocrine acini and
ducts, and blood vessels (arterioles and venules). The association is
comparable to that of the lymphatic network in the human pancreas
(Fig. 1a).
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3.3. Lymphangiogenesis and macrophage accumulation in early-stage duct
lesion formation

Oncogenic Krasmutation often occurs in human PDAC [9,37]. Exper-
imentally we used elastase-CreER;LSL-KrasG12D mice (EK mice) to in-
duce acinar oncogenic Kras expression, which causes acinar-to-ductal
metaplasia and spontaneous induction of PanIN lesions (PanIN-1/2) to
mimic the human condition [13,18]. Fig. 3a shows a gross view of the
EK mouse pancreas at the early stage of duct lesion formation. At this
stage, the majority of parenchyma (~98%) is anatomically normal [18].
However, scattered PanIN lesions appear at the edges of parenchyma,
such as in Area 1 and 2 in Fig. 3a, which are enlarged in Fig. 3b–d and
e–g for examination.

Specifically, the 2-D images and 3-D projections of the early-stage
duct lesions identify the formation of peri-lesional lymphatic vessels
(Fig. 3b, c, and Supplementary Fig. S3), which is confirmed by the paired
Prox1 and Lyve1 staining (Supplementary Fig. S4), and the accumula-
tion of Lyve1+ macrophages around the lesion (Fig. 3d, g). Quantitation
of the Lyve1+ signals shows 61% (P b .05) and 263% (P b .01) increases in
the density of Lyve1+ macrophages in the peri-lesional parenchyma
and the lesion area, respectively, and a 218% (P b .05) increase in lym-
phatic vessel density of the influenced area, suggesting an ongoing in-
flammatory response around the lesion (Fig. 3h, i).

3.4. Lymphangiogenesis, endothelial invagination, and vessel invasion in
large-scale duct lesion formation

Wenext used 3weeks of cerulein injections to create repetitive pan-
creatic injuries (pancreatitis) and followed with 4 weeks of tissue
regrowth to induce aggressive epithelial proliferation and large-scale
duct lesion formation [18]. Fig. 4a–d presents the remodeling of the
pancreatic microstructure and lymphatic network in this condition.
Morphologically, the tissue injury and epithelial overgrowth lead to ac-
inar atrophy and lesion/stromal adhesion to the surrounding organs,
such as the intestine (Fig. 4d). This tissue remodeling is accompanied
withmarked lymphangiogenesis, in which the Lyve1+ endothelium oc-
cupies the peri-lobular space and extends along the interface between
the lesion and the attached tissues, such as the lymph node (Area 1 in
Fig. 4a; enlarged in Fig. 4b, c and Supplementary Video S2) and the in-
testinal serosa (Area 2 in Fig. 4a; enlarged in Fig. 4d). These drastic
changes, however, are not seen in the wild-type B6 mice which went
through the same process of 3-week cerulein pancreatitis and 4-week
tissue regrowth (Supplementary Fig. S5). The B6 pancreas regenerates
without apparent microstructural and lymphatic network remodeling,
confirming that the genetic predisposition in the EK mice is essential
for the large-scale duct lesion formation and the associated
lymphangiogenesis.

Furthermore, when the large-scale duct lesion formation is induced
under the background of p53 mutation (elastase-CreER;LSL-KrasG12D;
p53+/−, the EKP mice) [38], we identify the lymphatic luminal invasion
in five of the seven examined animals (Fig. 4e–i). Histologically, the
lymphatic luminal invasion has the following two features: (i) it occurs
at the peri-lobular spaces with lymphangiogenesis (Fig. 4e, f, and Sup-
plementary Fig. S6), and (ii) it is associated with invagination of the
Lyve1+ endothelium (Fig. 4f, g, and Supplementary Fig. S7).

Quantitation of the Lyve1+ signals shows that the density of the
pancreatic lymphatic vessels in the EK and EKP mice increases 5.5-fold
(P b .01) and 4.9-fold (P b .01) against the wild-type B6 mice,
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respectively. However, there is no statistical difference between the EK
and EKPmice in the level of lymphangiogenesis (Fig. 4h), indicating that
the increased incidence of the luminal invasion in the EKP mice
compared with the EK mice (Fig. 4i) is likely due to the behavioral
changes of the lesion and/or stromal cells, rather than the probability
of contacts between the lesions and lymphatic vessels.
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3.5. Formation of luminal bridge/valve-like tubules in lymphangiogenesis

In lymphangiogenesis in the EK and EKP mice, the lymphatic endo-
thelium extends from the central area of the parenchymas (Fig. 2a) to
the peri-lobular space (Fig. 4a, e), forming a tube network (Supplemen-
tary Fig. S7). Interestingly, inside the tube network, the endothelial ex-
pansion is accompanied with formation of the bridge/valve-like
structures, or tubules (with a diameter at ~5 μm), across the walls of
the Lyve1+ endothelium (Fig. 5a–e). The geometric feature of the tu-
bules resembles the Lyve1+ endothelium in the subcapsular space
(sinus) of the lymph node in the normal mice (Fig. 2c, d).
To visualize the lymph node and the nearby duct lesions in a contin-
uous fashion, Supplementary Video S3 presents the Lyve1+ tubules in
the EKP mice, which extend across the subcapsular sinus of the lymph
node and bridge the peri-lobular space of the pancreas. The detection
of the luminal tubules indicates the creation of the internal structure
(frames/valves) as well as the walls of lymphatic vessels in the marked
lymphangiogenesis in the EK and EKP pancreases. Furthermore, using
the paired Lyve1 and Ki-67 staining, we confirm that the formation of
the lymphatic luminal tubules, lymphangiogenesis, and cellular prolif-
eration are parallel events (Fig. 5e–g). The Ki-67+ cells are identified
in the lesion, stroma, and wall of lymphatic vessel.
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3.6. Lymphatic vasodilation in large-scale duct lesion formation

Among the reactive vascular responses in large-scale duct lesion for-
mation, vasodilation is a prominent feature in the PanINmicroenviron-
ment. In the EKP mice, Fig. 6a–c shows the peri-lesional association
among the inter-lobular arteriole, the peri-arteriolar lymphatic vessels,
and the sensory nerves (labeledwith substance P) [39]. In particular, the
magnified 2-D image and 3-D projection of sensory nerves identify their
contactswith the two vascular systems. The result indicates the vascular
sensoryinnervationandthelikely influenceoftheneuromodulators/neu-
rotransmitters (e.g., substance P) on themicrovessels. Quantitative anal-
ysis shows a 91% (P b .001) and 98% (P b .001) increase in the arteriolar
diameter and a 59% (P b .001) and 72% (P b .001) increase in the major
axis of the peri-arteriolar lymphatic vessels in the EK and EKPmice, re-
spectively, in the cerulein-induced large-scale duct lesion formation
(Fig. 6d). There is no significant difference in the B6 pancreatic micro-
structure and vasculature 4weeks post the cerulein treatment compared
with those of the untreated pancreas (Supplementary Fig. S5).
3.7. Lymphatic vessel invasion in syngeneic mouse model of orthotopic
cancer cell injection

To mimic the localized pancreatic lymphatic vessel invasion (vs.
generalized pancreatic remodeling in EK and EKP mice, Fig. 4), we
used the orthotopic injection of the syngeneic, EGFP+ pancreatic cancer
cells to trace their location and associationwith lymphatic vessels via 3-
D imaging. Fig. 7a shows the tumor formed locally around the pancre-
atic parenchyma and the peri-tumoral lymphangiogenesis induced by
the cancer cell injection. Specifically, in the peri-tumoral domain, clus-
ters of the invading cells were found inside the Lyve1+ lymphatic ves-
sels with few cells appearing N500 μm distal to the tumor domain
(Fig. 7a, insets), indicating an ongoing spread of cancer cells. Further-
more, Supplementary Fig. S8 presents the budding of EGFP+ cells
against the lymphatic endothelium, highlighting the vascular plasticity
and the invasive nature of injected cancer cells.

Surprisingly, using the panoramic tumor scan, we identify that the
lymphangiogenesis and lymphatic vessel invasion are not limited to
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the peri-tumoral domain. Inside the tumor, lymphangiogenesis is
clearly seen associated with the necrosis in the tumor core (Fig. 7b, c).
At the necrosis boundary (Fig. 7d), the endothelium-enclosed nuclear
fragments and cancer cells (vessel invasion, Fig. 7e) are specified with
high-definition 3-D microscopy (Supplementary Video S4). Quantita-
tively, the localized lymphangiogenesis and vessel invasion (peri- and/
or intra-tumoral) are visualized in six of six (100%) and five of the six
(83%) animals with the cancer cell injection, respectively. Overall, the
3-D image data provide novel details of the lymphatic vessel remodel-
ing and invasion, which otherwise could not be illustrated using the
standard 2-D histology.

4. Discussion

To overcome the difficulty of seeing the dispersed lymphatic net-
work in space, in this research we combined panoramic and high-
definition 3-D imaging to characterize the pancreatic lymphatic net-
work in health and cancer progression. Using the human PDAC speci-
mens, we demonstrated the association between the PanIN lesion and
lymphatic network, establishing a clinically related setting for 3-D lym-
phatic network imaging (Fig. 1 and Supplementary Video S1). In
experimental PanIN and PDAC, mutations (Kras or Kras and p53) and
the cerulein-induced pancreatitis were systematically introduced to
mice to investigate the early and advanced duct lesion formation. At
the early stage (when the pancreas appeared to be normal), our 3-D im-
aging method detected the lesion-lymphatic vessel association and the
peri-lesional accumulation of Lyve1+ macrophages (Fig. 3). At the ad-
vanced stage (when duct lesions dominated the pancreas), we identi-
fied the widespread lymphangiogenesis (Fig. 4), which was
accompanied with endothelial invagination and invasion (Fig. 4e–i), lu-
minal bridge/valve-like tubule formation (Fig. 5), and vasodilation
(Fig. 6). Finally, using the syngeneic orthotopic PDAC cell injection, we
identified the localized lymphangiogenesis and vessel invasion in the
peri- and intra-tumoral regions (Fig. 7). Overall, our 3-D image data in-
dicate a highly plastic and dynamic lymphatic system that responds to
the formation of pancreatic duct lesions with proliferation and
remodeling.

Histologically, the invasive nature of pancreatic duct lesions is
shown by the peri-lesional lymphatic vessel invasion with cell clusters
(Figs. 4g, 7, and Supplementary Fig. S6; epithelial and/or stromal
cells), instead of individual cells, entering the lymphatic system. How-
ever, from the endothelium's perspective, we should not underestimate
the reactivity and plasticity of lymphatic vessels in the process. The
lymphangiogenesis (Fig. 4h), endothelial invagination (Fig. 4f, g), vaso-
dilation (Fig. 6), and abnormal lymphatic network integration between
the pancreas and intestine (Fig. 4d) also suggest an active role – rather
than a passive target – of the lymphatic vessels in themetastasis of pan-
creatic cancer.

Although the definition of lymphangiogenesis refers to the forma-
tion of lymphatic vessels (or walls), in Fig. 5 we detect the formation
of lymphatic luminal tubules in lymphangiogenesis, which extend
across the luminal space in a neoplastic microenvironment. In the nor-
mal pancreas, the Lyve1+ bridges are only seen in the subcapsular
sinus of the lymph node (Fig. 2c, d), but they appear outside the
lymphnode in large-scale duct lesion formation (Fig. 5a–e).Morpholog-
ically, the small, elongated tubule (Fig. 5c and Supplementary Video S3)
cannot be easily detectedwith the standardmicrotome-based histology
(3–5 μm in slide thickness), which explains why the structure has not
been previously reported in the lesion microenvironment. Regarding
the potential functions of the tubules, we speculate that they may:
(i) form the lymphatic valves, (ii) create passages for lymphocyte mi-
gration (e.g., from the lymph node to the surrounding pancreatic lob-
ules) (Supplementary Video S3), (iii) serve as the framework to
mechanically support the thin-walled lymphatic vessel in tissue remod-
eling, and (iv) increase the overall endothelial cell density to prepare for
further expansion of the network.

The apparent limitation of the D2-40/Lyve1immunodetection of the
lymphatic network is that we cannot determine if the lymphatic vessels
are indeed functional. The functional test, however, requires in vivo
lymphatic imaging [40,41], which is not compatible with the tissue-
clearing condition due to the unphysiological environment, such as
the high osmotic pressure, created by the clearing reagent [42].Without
tissue clearing, deep-tissue optical microscopy is limited by light scat-
tering in signal detection and thus cannot resolve the tissue structure
and network in space. Despite the limitation in in vivo application, the
technical advances in high-definition 3-D lymphatic network imaging
and its integration with H&E histology (Fig. 1c; the gold standard in pa-
thology) and neural imaging (Fig. 1b and 6) underline the resolving
power and versatility of this approach in investigating the pancreatic
tissue networks in the clinical and experimental conditions
[25,43–46]. Finally, from the perspective of cancer model development,
although neither the transgenic nor the orthotopic models can fully re-
capitulate the PanIN and PDAC progression in the human pancreas
[47–49], our 3-D detection of the peri-lesional lymphangiogenesis in
both conditions reflects the generic response of the lymphatic system
in immune surveillance against the transformed cells in the experimen-
tal conditions.



112 C.-N. Shen et al. / EBioMedicine 47 (2019) 98–113
In summary, using the human andmouse pancreases, we character-
ized the pancreatic lymphatic network in health and cancer progression.
Prior to this study, the PanIN-lymphatic network association has not
been systematically studied due to the lack of 3-D image data to present
the lesion and the lymphatic network in a global and integrated fashion.
Here, the high-definition 3-D images and videos provide novel insights
into the peri-lesional lymphatic endothelial remodeling. Our work will
build the technical and morphological foundation for future systematic
detection and 3-D analysis of lymphatic vessel invasion in the cancer
microenvironment.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.08.044.
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