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Abstract: With the widespread application of wireless sensor networks (WSNs), WSN virtualization
technology has received extensive attention. A key challenge in WSN virtualization is the survivable
virtual network embedding (SVNE) problem which efficiently maps a virtual network on a WSN
accounting for possible substrate failures. Aiming at the lack of survivability research towards
physical sensor node failure in the virtualized sensor network, the SVNE problem is mathematically
modeled as a mixed integer programming problem considering resource constraints. A heuristic
algorithm—node reliability-aware backup survivable embedding algorithm (NCS)—is further put
forward to solve this problem. Firstly, a node reliability-aware embedding method is presented for
initial embedding. The resource reliability of underlying physical sensor nodes is evaluated and the
nodes with higher reliability are selected as mapping nodes. Secondly, a fault recovery mechanism
based on resource reservation is proposed. The critical virtual sensor nodes are recognized and their
embedded physical sensor nodes are further backed up. When the virtual sensor network (VSN)
fails caused by the failure physical node, the operation of the VSN is restored by backup switching.
Finally, the experimental results show that the strategy put forward in this paper can effectively
guarantee the survivability of the VSN, reduce the failure penalty caused by the physical sensor
nodes failure, and improve the long-term operating income of infrastructure provider.

Keywords: wireless sensor network; network virtualization; survivable virtual network embedding;
node reliability; resource reservation

1. Introduction

Nowadays, Wireless Sensor Network (WSN) has been widely used in monitoring,
controlling, tracking and other fields based on its sensing, computing and communication
capabilities [1]. In order to help realize the utilization potentiality of the Internet of Things
(IoT), the WSN virtualization architecture is emerging to overcome the inefficiencies of
proprietary, single-purpose, single-user WSNs [2,3]. Driven by the developing needs of
the IoT, the 5G mMTC scenario should deploy a huge number of sensors [4–6], while the
traditional WSN in the public area is generally laid separately by each user for his specific
task, which is unavailable for other users even if the state of WSN is idle. Some other
sensing nodes need to be deployed when the user performs other types of sensing tasks,
which leads to the high cost and low reuse rate. By virtualizing the physical node resources,
such as sensing resources and processing capabilities, and link resources of WSN like
wireless channel resources, the existing WSN can be regarded as a shared multi-user
perception infrastructure, enabling them to configure multiple coexistence virtual sensor
network (VSN) on demand [7].
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Through node-level and network-level virtualization, the virtualized WSN decouples
the service role of traditional WSN into a wireless sensor network infrastructure provider
(WSNInP) and virtual sensor network service provider (VSNSP), where WSNInP is respon-
sible for deploying, managing and maintaining WSN [8]. VSNSP leases sensing resources
from WSNInP, assigns sensing tasks to physical nodes and provides users with on-demand
services. VSNSP coordinates and collaborates with multiple VSNs in an overlapping way.
Each VSN represents an application with a different performance level defined by users in
the application layer, which effectively alleviates the problems of low resource utilization
and poor task execution flexibility in the current WSN [9,10].

One of the key technologies of WSN virtualization is virtual network embedding
(VNE), which effectively maps VSN to the underlying physical network. The essence
of VNE is the process of allocating a physical WSN network resources to VSN. Through
virtualization technology, VSNs achieves effective and reasonable sharing of underlying
physical network resources, which increases the revenue of WSNInP. The optimal VNE
problem has been proven to be NP-hard [11] issue. Many researchers have proposed several
heuristic algorithms. Most of them focus on the request acceptance rate, the underlying
resource utilization and theaverage revenue, without considering the survivability of
the embedded virtual network [12]. In actual situations, physical sensor nodes may
malfunction or deteriorate due to human or non-human factors. Due to the characteristics
of resource sharing in network virtualization, multiple VSNs share the same underlying
physical infrastructure, thus the breakdown of one physical node will make the VSNs
whose virtual nodes mapped to it invalid, resulting in affecting related sensing services.
WSNInP must bear the compensation specified in the service level agreement (SLA) due
to the failure of the VSN, which will cause huge economic and reputation losses to the
WSNInP. Hence, it is a vital issue that how to efficiently and reasonably embed the VSN
and provide a robust and uninterrupted network service.

To guarantee the survivability of VSN, sufficient physical nodes and link resources
should be reserved for each VSN during instantiation. Once a physical node fails, the failed
virtual node and link can be quickly remapped to the standby physical resources to ensure
the normal operation of the VSN. However, the reservation for each VSN will greatly
reduce the utilization rate of WSNInP physical infrastructure. Considering the limited
sensing range and resources of sensor nodes, the resource sharing method in cellular
networks is unsuitable for virtualized sensor networks [13]. Thus, how to perform backup
resource allocation for VSN to balance the effectiveness and the reliability of VSN when
performing survivable embedding is crucial.

The existing work about WSN virtualization hardly considers the survivability guaran-
tee of a virtualized sensor network. The problem of multiple virtual network failures caused
by a single physical node failure has not been effectively resolved. Therefore, based on
the above research deficiencies, this paper puts forwards a survivability-enhanced virtual
network embedding strategy in a virtualized wireless sensor network. Compared with the
existing work [12], which only considers a single link failure, this paper further considers
the failure of multiple VSNs caused by a single physical node failure, and effectively solves
this problem. Aiming at the failure of a single physical node, the SVNE problem is modeled
as a mixed-integer programming problem based on the characteristics of WSN virtualiza-
tion in this paper. A heuristic algorithm NCS is proposed. The main contributions of this
paper are summarized as follows:

(1) A survivable virtual network embedding model is established. Considering the
resource consumption of nodes and links during the initial mapping and failover,
the problem is transformed into the problem of minimizing link consumption to
maximize the WSNInP’s long-term revenue.

(2) A novel node reliability-aware virtual sensor network embedding method is proposed.
The resource reliability of physical sensor nodes is evaluated according to node failure
rate and congestion degree. Then the one with higher reliability is selected to embed a
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virtual node to improve the acceptance rate of VSNR and reduce the failure probability
of physical nodes that perform VSN tasks.

(3) A failure recovery strategy combining the protection mechanism and recovery mech-
anism is proposed to improve the VSN failure recovery rate. Resource backup is
performed for the critical virtual sensor nodes. When a failure occurs, the affected
VSN will be restored with the least spare resources to guarantee the survivability of
the VSN and increase the long-term operating profit of the WSNInP.

The remainder of this paper is organized as follows. The related research works are
introduced in Section 2. Section 3 presents the system model and SVNE problem statement.
The embedding strategy NCS is described in Section 4. Then, the experimental results
and analysis are given in Section 5. Finally, Section 6 concludes the paper and discusses
future work.

2. Related Work
2.1. WSN Virtualization

In recent years, with the developments of the IoT, virtualization in WSN has re-
ceived widespread attention. Some potential measures have been taken for improving
the flexibility and scalability of WSN deployment and the investment return rate of WS-
NInP. Literature [9] divided virtualization technologies into two categories, node-level and
network-level. Node-level virtualization is to abstract a single sensor node to overcome
the application’s platform dependency and code modularization problems. In this field,
virtual machine-based architectures have been proposed to achieve virtualization and
reprogrammability, such as MATE, ASVM, Melete and VMStar, which are frameworks for
building application-specific virtual machines on constrained sensor platforms. Network-
level virtualization usually includes two main building blocks, a management platform
that supports multiple applications sharing the physical WSN infrastructure, and tools or
algorithms that allocate physical resources for multiple applications. For instance, the man-
agement platforms, SenHare and UMADE, have created multiple overlay sensor networks
and allow different applications to share the same physical infrastructure.

Based on the above research, literature [14] presented a software-defined sensor net-
work virtualization architecture, which enhanced the flexibility of network re-orchestration
via virtualizing. Its framework is based on Industry 4.0 for exploring the ability of the WSN
network virtual environment to re-coordinate the node functions and the entire network
operation level. Literature [1] devised an architecture to reduce redundant deployment
of sensor networks for diverse IoT applications. The architecture contained four layers,
physical layer, virtual sensor layer, virtual sensor access layer, and application layer. It also
introduced a new software framework for WSN virtualization and defined the division of
labor between various stakeholders after the process of WSN virtualization.

Based on various virtualized WSN architectures, most of the related work focuses on
resource optimization, which is to abstract physical sensors based on application require-
ments, and improve resource utilization by executing multiple application-centered tasks
in sensors. For example, literature [15] considered both the sensor energy consumption
and resource utilization, which allowed the same physical sensor to perform multiple tasks
in the WSN virtualization environment. Literature [16] modeled and analyzed the joint
problem of multi-task control admission and physical resource allocation in virtual WSN.
A software-defined WSN prototype was proposed in [17] to centrally control the routing in
the dynamic network to improve energy efficiency.

2.2. Virtual Network Survivable Embedding

Currently, there are two main survivability guarantee mechanisms, protection mech-
anism and recovery mechanism. The protection mechanism further contains two kinds
of methods, the active protection method and the passive protection method. The active
one means pre-allocating spare underlying network resources for the virtual network.
When mapping the virtual network, the working resources and the spare resources are
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simultaneously mapped. Literature [18] constructed an auxiliary protection graph to im-
prove the survivability of a single node according to the initial virtual network request.
The passive protection denotes that when the underlying network node or link fails, the
backup resource reserved in advance is used to restore the virtual network service rather
than mapping work resources and backup resources at the same time. Literature [19] solved
the link failure problem by constructing a set of backup paths for each link. Literature [20]
jointly optimized the spare capacity allocation and virtual network embedding in the
virtual network, so that the bandwidth capacity was guaranteed when there were multiple
substrate link failures. However, when the network normally runs, it is undoubtedly a
huge waste to provide redundant resources backup for the virtual link, and the utilization
of the underlying physical resources will be greatly reduced. At the same time, the success
rate of subsequent VSN mapping and the long-term benefit of WSNInP will be affected.

The recovery mechanism does not provide backup resources for the virtual network.
After a node or link fails, the virtual nodes and links affected by the failure are migrated,
and the node and link resource are redistributed to restore virtual network services. Litera-
ture [21] proposed a remapping method based on coordination game theory and described
the initial virtual network mapping and subsequent fault recovery remapping as two
staggered coordination games, so as to achieve the optimal Nash equilibrium between in-
frastructure providers and network service providers during fault recovery. Literature [22]
identified the main cut sets from the sub-networks of the virtual network after removing
the faulty node and then adopted the ant colony algorithm to select nodes and links to
search for the best embedding of the virtual network. However, the recovery mechanism
shows a lower recovery success rate when the underlying free resources are less.

2.3. Survivable Embedding in a Virtulized Sensor Network

A key way to solve the WSN fault problem is to use a redundancy mechanism to
eliminate the impact of the fault. Literature [23] proposed the concept of fault tolerance,
which guaranteed the fault tolerance capability of the WSN by ensuring that there were at
least k disjoint paths between any two nodes in the network. Literature [24] realized the
fault tolerance towards WSN via using node redundancy, which denoted that before node
failure occurs, redundant nodes could be found in the network topology through adopting
the attribute matching principle. After the node failed, the redundant node replaced the
failed node and took over the sensing task. However, the research on the survivability of
VSN towards the WSN virtualization is scarce. Literature [12] presented a fault-tolerance
framework oriented to heterogeneous networks and adopted a genetic algorithm to carry
out post-fault recovery for WSN links, modeling fault tolerance and communication delay
as two conflicting objectives in an optimization problem. However, it performs a low
success rate of link recovery when the underlying resource is saturated, and cannot recover
the link failure caused by the source sensor node failure.

Therefore, this paper proposes a novel VSN survivability embedding architecture and
heuristic algorithm. The node reliability is firstly assessed and then suitable nodes with
higher reliability are chosen for reliable mapping. Furthermore, according to the degree of
nodes in the VSN, the criticality for each virtual sensor node is evaluated, and resource
reserved is performed for critical virtual sensor node. When a physical sensor node fails,
the critical virtual sensor node is switched to the backup node, or find a feasible migration
node in the remaining network for the normal virtual sensor node.

3. System Model and Problem Formulation
3.1. Network Model

As shown in Figure 1, the virtualized WSN consists of three layers, the infrastruc-
ture layer, the virtualization layer and the application layer. In the infrastructure layer,
the physical network of WSN includes a sensor control server and a group of heterogeneous
sensor nodes regulated by WSNInP. Each node is integrated with multiple types of sensors,
such as temperature sensors, humidity sensors, and infrared sensors, etc. [25]. Each sensor
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is responsible for the specific sensing task of the corresponding target group in its sensing
area. To facilitate the theoretical analysis, the physical network of WSN is represented
by an undirected graph GS = (NS, LS), where NSand LS represent the set of physical
nodes and the set of links between physical nodes in the WSN, respectively. The traffic
volume in the WSN is first transmitted to the APs served as sink nodes and then to the
controller, which controls and manages the real-time task resource allocation. For each
physical node ns

i ∈ NS, the attribute category Rs = {c(ns
i ), m(ns

i ), loc(ns
i ), E(ns

i )} denotes
the global network resources, where c(ns

i ), m(ns
i ), loc(ns

i ), and E(ns
i ) respectively mean the

computing capacity, the storage capacity, the geographic location, and the energy of the
physical sensor node. Meanwhile, for any link ls

ij ∈ LS, the link capacity between a pair of
nodes (ns

i , ns
j ) is b(ls

ij).

Similarly, the VSN is also described by an undirected graph GV = (NV , LV), where NV

and LV represent the set of virtual sensor nodes and virtual links in the VSN, respectively.
ω = {ω1, ω2, · · · , ωn} denotes a group of real-time tasks accommodated over VSNs,
in which each request corresponds to different services with differentiated resource require-
ments. The attribute item RV = {c(nv

i ), m(nv
i ), loc(nv

i )} defines the resources required by
the virtual sensor request, where c(nv

i ), c(nv
i ) and loc(nv

i ) demonstrates the computing
capacity, the storage capacity, and the sensing position required by the virtual node, re-
spectively. For any virtual link lv ∈ LV , the link capacity between a pair of virtual nodes
(nv

i , nv
j ) is b(lv

ij).
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Figure 1. Virtualized wireless sensor network (WSN) survivable embedding model diagram.

3.2. Physical Network Failure

In general, it is assumed that VSN embedding occurs under the normal operation of
the underlying physical sensor network [9]. However, it is inevitable that the underlying
physical sensor network will occasionally fail due to the situation of running out of energy,
wireless channel interruption, hardware damage, embedded operating system or appli-
cation software crash, and so on. Compared with the link failure, it is more complicated
to ensure the survivability of the VSN in the case of node failure. Leveraging on such
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premises, safeguarding the survivability of the VSN requires not only the backup node
but also the allocation of additional resources for the required links. Therefore, this paper
considers VSN survivability embedding for physical sensor node faults.

When the physical sensor node ns
i fails, both the virtual sensor node hosted on the

node and the virtual link containing ns
i will fail. The former is called virtual node failure

and the latter is called virtual link failure. The processing method of virtual link failure is
similar to that of a physical link failure, which can be solved by utilizing SVNE methods [12].
Thus, we focus on studying the survivable embedding method for the first failure scenario.

From the perspective of the time domain, the WSN physical node faults can be divided
into transient faults and permanent faults. Transient faults refer to a type of faults that will
automatically recover and have a short duration after the fault occurs, such as accidental
reset of nodes caused by electromagnetic interference. While permanent faults are defined
as a type of failure that is irrecoverable after the fault occurs, such as running out of energy,
hardware damage, etc. We assume that node failure is a single failure model, which means
that only one failure occurs in the physical WSN network at the same time. The physical
network node failure is described from two dimensions, the failure happen time and the
mean recovery time. The failure happen time follows Poisson distribution and the mean
recovery time follows a geometric distribution. The physical sensor node failure is modeled
as a series of single node failures, denoting F1, · · · , Fn in chronological order. For node
failure Fi, s(Fi) and e(Fi) represent its occurrence time and end time, respectively. When a
node fails instantaneously, s(Fi) < e(Fi), which means Fi will last for a certain time. When a
node fails permanently, e(Fi) = ∞.

The distributed fault detection mechanism is currently the mainstream direction of
WSN fault detection research [17]. Fault detection of sensor nodes is performed locally by
each sensor node instead of being handled centrally by the controller. When the sensor node
fault is detected, new tasks will no longer be scheduled to the known failed sensor node.

3.3. SVNE Problem Formulation

It is a vital step of WSN virtualization to efficiently embed VSNs onto the substrate
WSN. The mapping process is divided into two stages, node mapping and link mapping.
In the first stage, node mapping is implemented to find appropriate physical sensor nodes
for the sensing task requested by VSNR to embed virtual sensor nodes. In the second stage,
link mapping is carried out on the basis of the first stage. Feasible communication paths
are constructed for the physical nodes that have already been embedded onto the virtual
node. In addition, it is also important to ensure that the resource constraints of the VSNR
on the physical sensor node and link request must be met.

However, if the VSN mapping is only considered from the perspective of computing
and sensing resource constraints, once a physical sensor node with a higher failure rate is
selected, the survivability of all VSNs mapped on it will be affected. Hence, when selecting
physical sensor nodes, under the resource constraints of VSNR, nodes with high reliability
should be given high mapping priority, which reduces the probability of service interrup-
tion caused by physical sensor node failure in VSN. In addition, in order to guarantee the
survivability of the VSN, a backup node is set up to deal with the failure of the underlying
physical sensor node that occurs during the mission. When the physical sensor node fails,
the VSNSP can quickly switch to the backup node to maintain the normal operation of the
VSN. Therefore, the SVNE problem can be modeled as follows:

The binary variable rij ∈ {0, 1} denotes the mapping relationship between the virtual
sensor node nv

i and the physical sensor node ns
j . If the virtual sensor node nv

i is mapped
to the physical sensor node ns

j , rij = 1. Otherwise rij = 0. Similarly, the binary variable
fij→mn ∈ {0, 1} represents the mapping relationship between the virtual link lv

ij and the
physical link ls

mn. When the virtual network is mapped, the storage and computing
resources of the virtual sensor nodes are fixed, while the resource consumption of virtual
links may vary greatly due to the prominent differences in physical paths. Therefore,
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one challenging issue for performing VSN mapping and remapping lies in how to minimize
link resource consumption.

min ∑
ls
mn∈LS

∑
lv
ij∈LV

fij→mn × (b(lv
ij)) + ∑

ls
ab∈LS

∑
lv
ij∈LV

fij→ab × (b(lv
ij)) (1)

∑
nv

i ∈NV

rij = 1, ∀ns
j ∈ NS (2)

∑
ns

j∈NS

rij = 1, ∀nv
i ∈ NV (3)

rij × c(nv
i ) ≤ Rc(ns

j ), ∀nv
i ∈ NV , ∀ns

j ∈ NS (4)

rij ×m(nv
i ) ≤ Rm(ns

j ), ∀nv
i ∈ NV , ∀ns

j ∈ NS (5)

fij→mn × b(lv
ij) ≤ Rb(ls

uv), ∀lv
ij ∈ LV , ls

uv ∈ LS (6)

∑
ns

m∈A(x)
( fij→xm + fij→mx) = 0, ∀i, j ∈ NV (7)

fij→yn(Rb(ls
yn)− Rb′(ls

yn)) = riyb(lv
ij), ∀i, j ∈ NV (8)

In Equation (1) the ∑
ls
mn∈LS

∑
lv
ij∈LV

fij→mn × (b(lv
ij)) is the resource consumption of the

initial reliable mapping, and the ∑
ls
ab∈LS

∑
lv
ij∈LV

fij→ab × (b(lv
ij)) is the resource consumption of

the link remapping during failure recovery. Equations (2)–(8) are embedding constraints.
Equations (2) and (3) are the independence constraints demonstrating that each virtual
sensor node of VSNR is mapped into an independent physical sensor node in a one-to-one
manner. Equation (2) ensures that the same physical node can only accommodate one
virtual sensor node in the same VSNR, and Equation (3) ensures that a virtual sensor
node is mapped onto only one physical sensor node. Equation (4) is the node computing
capacity constraint of VSN mapping. When the virtual sensor node is initially mapped or
remapped, the computing resource demand of the virtual sensor node cannot be greater
than Rc(ns

j ), which denotes the remaining computing resource of the physical sensor node.
Similarly, Equations (5) and (6) are the storage capacity constraint and link transmission
capacity constraint of the VSN, respectively. Equation (7) indicates that the physical link
connected to the faulty physical sensor node ns

x does not participate in the remapping
process. A(x) represents the set of adjacent nodes with the fault physical sensor node ns

x.
Equation (8) indicates that if nv

i is remapped to ns
y, the output traffic of the node ns

y is equal
to the data transmission request of the link lv

ij, which is the starting point of the physical
link hosting the virtual link lv

ij. Rb(ls
yn) and Rb′(ls

yn) are the remaining link resources of the
node ns

y before and after remapping, respectively.

3.4. Performance Metrics

This paper proposes an online VSN embedding algorithm with the constraints of the
physical WSN to maximize the long-term average revenue of WSNInP while guaranteeing
high-quality services and providing users with stable services. Therefore, this paper intro-
duces the request acceptance rate, failure recovery rate and WSNInP long-term revenue of
VSNR embedding as the evaluation index of VSNR embedding.
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A. Virtual sensor network request acceptance rate

VSNR acceptance rate is defined as the ratio of the number of VSNR accepted to the
total number of VSNR arrived during the time τ.

η = lim
τ→∞

n1(τ)

n2(τ)
, (9)

where n1(τ) denotes the number of VSNRs accepted during the time τ, and n1(τ) is the
number of VSNRs arrived during the time τ.
B. Recovery rate of virtual sensor network

The VSN recovery rate refers to the ratio of the number of VSNs recovered successfully
to the total number of VSNs caused by fail physical sensor nodes.

ξ= lim
τ→∞

F1(τ)

F2(τ)
, (10)

where F1(τ) is the number of VSN recovered successfully during the time τ, and F1(τ) is
the total number of invalid VSN caused by physical sensor node failure during the time τ.
C. Long-term benefits of WSNInP

In order to increase long-term operating profit, WSNInP needs to consider two key
factors when providing services: the revenue obtained by mapping the VSN and the
compensation that must be paid when the VSN becomes invalid due to a failure according
to the SLA.

In general, the benefits of WSNInP accepting VSNRs depend on the duration of the
VSN and the required underlying network resources. T(GV) describes the active time that
VSN needs to work continuously, pprice defines the unit price of the resource, B(lv

ij) denotes
the bandwidth requirement of the virtual link, C(nv

i ) represents the computing capacity
requirement of the virtual sensor node. Therefore, the revenue R(GV) of VSNSP accepting
VSNRs is defined as follows.

R(GV) = T(GV)pprice( ∑
nv

i ∈NV

C(nv
i ) + ∑

lv
ij∈LV

B(lv
ij)). (11)

WSNInP needs to consume underlying network resources to accept VSNRs. To ensure
the reliability of the mapping the backup resources will consume additional resources.
pcost is the unit cost of the resource, B(ls

mn) is the link resource of the physical link corre-
sponding to a virtual link, Cpri(ns

i ) is the leased resource required by the initial intact VSN
to provide services, and Cbackup(ns

i ) is the CPU resource of the backup node reserved for
reliability requirements. Therefore, the cost of WSNInP when accepting VSN is expressed
as follows.

C(GV) = T(GV)pcost( ∑
ns

i∈NS

Cpri(ns
i ) + ∑

ns
i∈NS

Cback(ns
i ) +

H

∑
i=1

∑
ls
ij∈LS

B(ls
ij)). (12)

When a physical sensor node fails, WSNInP considers virtual node migration by
selecting backup node resources to ensure the survivability of VSN. As shown in Figure 1,
when the physical sensor node fails, the backup node can be selected in the virtual backup
resource pool to remap and continue to provide services for users. At this time, WSNInP
only needs to consume additional backup resources instead of paying the penalty. If there
is no suitable candidate node resource or the migration of the failed node resource fails,
the VSN becomes invalid. WSNInP needs to bear the compensation p(GV) specified for
the invalid VSNi in the SLA. The compensation P(ns

i ) that WSNInP must pay, due to the
failure of the physical node ns

i , is given as follows.

P(ns
i ) = ∑

GV∈D(ns
i )

p(GV), (13)
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where D(ns
i ) is the set of invalid VSNs due to the fault physical sensor node ns

i .
Let Revenue(τ) denote the long-term operating income of WSNInP during the time τ,

which refers to the income obtained by providing services minus the compensation caused
by the invalid VSN during this period.

Revenue(τ) = ∑
GV∈M(τ)

(R(GV)− C(GV))−
H

∑
ni∈B(τ)

P(ns
i ), (14)

where M(τ) defines the set of VSN successfully mapped during the time τ, and B(τ)
represents the set of physical sensor nodes that failed during the time τ.

4. NCS Survivable Embedding Algorithm

In order to enhance the survivability of VSN, this section comprehensively considers
multiple factors that affect the reliability of physical sensor nodes and proposes NCS.
It guarantees the survivability of VSN from two perspectives. First, for node selection,
the physical sensor nodes with higher reliability are screened out to carry virtual sensor
nodes through node reliability perception. Second, from the perspective of failure recovery,
when the initial mapping is completed, a backup node is constructed for the physical
node mapped by the critical virtual sensor node of the VSN to deal with the problem of
node failure.

4.1. Node Reliability-Aware Embedding

In the virtual node mapping stage, in addition to considering whether physical sensor
node resources can meet the requirements of virtual sensor nodes, physical node reliability
should also be considered. The virtual sensor nodes are mapped onto relatively more
reliable physical nodes to further reduce the failure probability of VSN.

Node reliability can be perceived in terms of failure rate and congestion degree.
In terms of failure rate, reliability cost is an important indicator. Reliability is defined as
the probability that a real-time task will still work even if there is a hardware failure [26].
Assuming that the failure arrival rate is constant, and the Poisson distribution is used to
estimate the distribution of failure counts in any fixed time interval. The reliability cost can
be defined as Equation (15).

rc =
m

∑
j=1

n

∑
i=1

λjetij, (15)

where etij is the execution time of the task ti on the sensor node ns
j

and λs
j is the failure rate

of the node ns
j
.

The reliability of the WSN network for a set of real-time tasks can be expressed as
Equation (16).

tr = e−rc. (16)

However, based on the assumption that components have a constant failure rate,
it usually leads to an inaccurate estimate of the failure probability of physical nodes,
which means that their performances do not degrade over time. Therefore, this paper
considers the failure frequency of the node. The more historical failures the physical sensor
node has, the more unstable the performance of the node is. Importantly, the reliability of
the WSN physical sensor node is updated to Equation (17).

tr=e−rc/( f n(ns
i ) + 1), (17)

where f n(ns
i ) represents the number of historical failures of the physical sensor node ns

i .
From the perspective of congestion, if the data volume generated and received by the

node exceeds the upper limit of its forwarding data capacity, it will cause node conges-
tion, network load imbalance, and greatly increase service delay and packet loss rate [7].
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Mapping virtual sensor nodes onto physical sensor nodes with more remaining available
resources is conducive to improve the load balancing of the network and to enhance the re-
liability of VSN to a certain extent. The available resource ratio is defined as the ratio of the
available resources of the node to the total resources of the node, as shown in Equation (18).

RS(ns
i )=

Rc(ns
i )Rb(ns

i )

c(ns
i )b(n

s
i )

. (18)

During node mapping, selecting nodes with high reliability can avoid mapping nodes
onto physical sensor nodes with more failures, which will reduce the failure probability of
mapped physical sensor nodes, and guarantee the survivability of VSN. Considering the
above factors comprehensively, the node reliability is defined as Equation (19).

RD(ns
i ) = tr · RS(ns

i ). (19)

The survivable node mapping algorithm is shown in Algorithm 1. When mapping
VSNRs, we can sort the reliability of the underlying node resources in descending order.
Priority is given to selecting physical nodes with higher reliability meeting the node
constraints for critical virtual nodes. Then link mapping is performed to find a suitable path
for the communication of the embedded VSN nodes, which is described in Algorithm 2.
NCS takes advantage of the k-shortest path algorithm to perform virtual link mapping.
Among the first k shortest paths, the virtual link with high data transmission capacity
requirements in VSNR is first embedded in the physical link with the most remaining
available resources.

Algorithm 1 Node reliability-aware backup survivable embedding algorithm (NCS).

Input: physical WSN GS; VSNR GV
T

Output: The node mapping results set NODE = {ns
j , · · · , ns

k}
Initialization: Candidate node set Ns = ∅, node mapping results set NODE = ∅
for nv

i in VSNR do
if
√

loc(nv
i )-loc(ns

j ) ≤ M then

Add ns
j to Ns

end if
if Ns=∅ then

NODE = ∅
return Node embedding failed

else

for each ns
j in Ns do

if c(nv
i ) ≤ Rc(ns

j ) and m(nv
i ) ≤ Rm(ns

j ) then

Calculate RD(ns
j ) through Equation (19)

end if

end for

Choose ns
j with the highest RD(ns

j )

Add ns
j to NODE

end if
end for
return Node embedding successfully
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Algorithm 2 NCS link embedding algorithm.

Input: physical WSN GS, VSNR GV
T , node mapping results set NODE = {ns

j , · · · , ns
k}

Output: The link embedding results LINK = {ls
ab, · · · , ls

mn}
Initialization: The link embedding results LINK = ∅

for lv ∈ LV in VSNR do

Choose lv
ij with the highest b(lv

ij)

for ls ∈ LS do

if b(ls
mn) < b(lv

ij) then

LS ← LS/{ls
mn, ls

nm}
end if

end for

K-shortest path algorithm for ns
i and ns

j

Choose ls
ab with the highest b(ls

ab)

Add ls
ab to LINK

end for

return link embedding successfully

4.2. VSN Failure Recovery Based on Resource Reservation

Definition 1. In a VSN, if the connectivity of the virtual sensor node nv
i is m times as much as the

average network node degree, the node is defined as the critical virtual sensor node, and m represents
the critical node determination coefficient.

deg(nv
i ) =

m
n

n

∑
j=1

deg(nv
j ), m ≥ 1, ∀nv

i ∈ CVN, (20)

where CVN denotes the set of critical virtual sensor nodes, and deg(nv
i ) describes the

degree of the critical virtual sensor node nv
i .

When selecting appropriate backup physical sensor nodes for critical virtual sensor
nodes, in addition to meeting the basic node mapping constraints mentioned in Section 3.3,
the following three aspects should be also considered.

(1) Monitoring range constraints. The monitoring range of wireless sensor nodes is lim-
ited. In order to meet the sensing location request of the virtual sensor node, the monitoring
range of the backup physical sensor node should cover the location request.∣∣∣loc(ns

i )− loc(nv
j )
∣∣∣ ≤ R(ns

i ), (21)

where R(ns
i ) is the sensing radius of the physical sensor node ns

i .
(2) Connectivity. When a physical sensor node fails, the VSN facilities need to be

remapped to resume normal operation. These virtual sensor facilities include: (a) the
virtual sensor node carried on the physical sensor node; (b) the virtual link containing the
physical node on the mapped physical path. Therefore, in the WSN network, if a physical
sensor node ns

i is to become a backup node of another physical sensor node ns
x, ns

i must be
able to reach the other physical nodes embedded by the neighbor virtual sensor nodes of
the critical virtual sensor node carried by ns

x within a certain geographic range. Since each
hop in the routing will produce corresponding resource overhead and transmission delay,
this paper adopts the number of hops to measure the geographic range and defines the set
as (22).

H(GS, ns
j , h) = {ns

i |min(loc(ns
i ), loc(ns

j )) = h, ns
i ∈ GS\ns

x, ns
j ∈ E(nv

k)}, (22)
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where GS\ns
x represents the remaining physical network after removing the faulty node

in the WSN network. E(nv
k) denotes the physical node mapped by the neighbor virtual

node of the critical virtual sensor node. Thus H(GS, ns
j , h) is the candidate backup physical

sensor set composed of the nodes who can reach the physical sensor node ns
j in h hops.

(3) Recovery capability. The recovery capability of the backup node is measured from
the node similarity and the proportion of remaining available resources. As shown in
formula (23), the node similarity of the node ns

i to node ns
x is the ratio of the number of their

common neighbor nodes to the number of all neighbor nodes of ns
x. The more common

neighbors of ns
x and ns

i have, the more nodes connected to ns
x can be covered by ns

i as a
backup node, which can better maintain the fault tolerance of the WSN network to avoid
VSN remapping failure.

NS(ns
i ) = λs

i

∣∣H(GS, ns
i , 1) ∩ H(GS, ns

x, 1)
∣∣

|H(GS, ns
x, 1)|

, (23)

where
∣∣H(GS, ns

i , 1) ∩ H(GS, ns
x, 1)

∣∣ defines the number of the same neighbor nodes of the
failed physical sensor node and the candidate backup physical sensor node, and

∣∣H(GS, ns
x, 1)

∣∣
represents the number of neighbor nodes of the failed physical sensor node.

The higher the reliability of the backup node is, the lower the probability of task
interruption during the execution of the task on the backup node is. Thus, the recovery
capacity of the backup node ns

i to the failed node ns
x is expressed as (24).

RN(ns
i ) = NS(ns

i ) · RD(ns
i ). (24)

The specific process of the failure recovery phase is shown in Algorithm 3. First,
for multiple affected VSN caused by the same fault physical sensor node, VSN with high
penalty shall be restored in priority. Then, for one invalid VSN, virtual sensor nodes
are divided into critical and normal virtual sensor nodes according to the VSN topology.
Considering the detection range constraints, connectivity constraints of critical virtual
sensor nodes and the available resource constraints on physical sensor nodes, a candidate
set of backup nodes is constructed. In this set, the physical sensor node with the strongest
recovery capability is selected as the backup node. When a physical sensor node fails, fault
recovery is performed according to the type of corresponding virtual sensor node failure.
If the critical virtual sensor node is embedded in the physical node, it will immediately
switch to the reserved backup physical sensor node, otherwise, find feasible nodes in the
remaining WSN network for normal virtual sensor node’s fault recovery following the
backup node selection principle.
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Algorithm 3 Failure recovery algorithm.

Input: physical WSN GS; VSNR GV
T ; node mapping results set NODE = {ns

j , · · · , ns
k};

Fault physical sensor node ns
x

Output: Failure recovery result RM = {ns
1, · · · ns

m}
Initialization: Failure recovery result RM = ∅
if ns

x fault then
Rank invalid m VSNs in descending order by penalty

end if
for i = 1, · · · , m do

GS ← GS/{ns
x, ls

xi, ls
ix}

for nv
i in VSNi do

if nv
i is critical virtual sensor node then

Remap nv
j to ns

i through formula (24)
Add ns

i to RM
else

find feasible nodes ns
m in the remaining WSN network

Add ns
m to RM

end if
end for

end for
return the physical node failure recovery successfully

5. Analysis of Numerical Results
5.1. Parameter Setting

This paper considers the online version of VSN mapping. The VSNRs arrive randomly
following a Poisson distribution and each VSNR is processed in order of arrival time and
mapped to the underlying physical WSN network. We use matlab2016 for experiments,
and the specific parameter settings are shown in Table 1. VSNR arrives following Poisson
distribution with an arrival rate of 2 VSNRs. The duration of each VSNR follows the
exponential distribution with a mean of 40-time units. As for a VSN, the number of VSN
nodes follows the uniform distribution between 3–5, the CPU resources and storage re-
sources requested follow the uniform distribution between 10–20 units, and the virtual link
bandwidth resources follow the uniform distribution between 10–25 units. The node fault
arrival of the underlying physical sensor network is also subject to Poisson distribution,
with an average of two node faults per 100 units of time. The average repair time of the
failure is defined as a geometric distribution with a parameter of 10. The substrate WSN
network with 50 sensor nodes is generated whereby all the sensor nodes are distributed in
a 100× 100 (m2) area. The CPU resources and storage resources of physical sensor nodes
follow the uniform distribution between 40–80 units, and the physical link bandwidth
resources follow the uniform distribution between 40–80 units.
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Table 1. Parameter settings.

Parameters Value

number of physical sensor nodes 50
simulation area (m2) 100× 100

physical node CPU resources c(ns
i ) [40,80]

physical node storage resources m(ns
i ) [40,80]

physical link bandwidth b(ls
ij) [40,100]

number of VSNR virtual nodes [3,5]
VSNR virtual node CPU c(nv

i ) [10,20]
VSNR virtual stroage CPU m(nv

i ) [10,20]
VSNR virtual link bandwidth b(lv

ij) [10,25]
VSNR arrival rate 2

VSNR duration 40
failure happening rate 0.02
mean time to recovery 10

unit price of resource income pprice 40
unit price of resource cost pcost 1.5

node failure rate λi 0.01
critical node determination coefficient m 1

Since the existing VSN mapping method does not consider the physical network node
failure, it is inconvenient to directly compare it with the method proposed in this paper.
Hence, we expand the classic two-stage mapping algorithm [27] to the GNV algorithm
under the node failure environment, which serves as a benchmark comparison algorithm.
We change the backup mode on the basis of the reliability-aware embedding algorithm
proposed in this paper to compare the performance. The specific algorithm description is
shown in Table 2.

Table 2. Four embedding algorithms.

Algorithm VSN Embedding Method Node Backup Method Failure Recovery Method

NNS Node reliability- No backup Find a feasible migration node
aware node embedding

NCS Node reliability- Switch the fault critical virtual node
aware node embedding Critical node backup to backup node or search for a

feasible node for common virtual
node

NAS Node reliability- Full backup Switch the fault virtual
node selecting with node to the backup node

GNV the strongest CPU capability; No backup Find a feasible migration node
selects the shortest path

5.2. Analysis of Experimental Results

(1) VSNR acceptance rate. Figure 2 shows the comparison of the virtual sensor
network request acceptance rate of the four algorithms. It can be seen from the figure
that the VSNR acceptance rates of the four algorithms gradually decrease from 1 and tend
to be stable at 0.75, 0.65, 0.53, 0.54 over time, respectively. The decline in the acceptance
rate is due to the gradual occupation of resources as VSNRs continue to arrive. As the
VSN that has completed the sensing task leaves the network, the occupation and release of
physical resources reach a dynamic balance, making the acceptance rate reach a steady state.
Comparing the four algorithms, NNS has the highest acceptance rate because this algorithm
improves the resource allocation method and does not consider resource reservation for
failure recovery. The acceptance rate of NCS is second, owing to that, the algorithm
considers the reservation of key resources on the basis of improving the resource allocation
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method, and achieves a compromise between reliability and effectiveness. The NAS
algorithm and the GNV algorithm achieved the lowest acceptance rates due to backup
resource occupation and unreasonable mapping methods respectively.
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Figure 2. VSNR acceptance rate.

(2) Failure VSN recovery rate. Figure 3 demonstrates that the failure recovery rate of
the three algorithms proposed in this paper increases by 45%, 35% and 10% respectively
compared with the benchmark algorithm. NAS has the highest recovery rate because there
is no resource conflict between the backup resources of the full backup strategy. The reason
why NASs̀ recovery rate remains at about 0.9 but does not reach 1 is that because of the
geographical location of physical WSN nodes, some physical sensor nodes may not be able
to find suitable nodes around to back up corresponding virtual sensor nodes. The recovery
rate of NCS is stable at around 0.8, which is 0.1 lower than NAS. However, the backup
resources consumed by NCS are about 1/3–1/2 of that of NCS, which greatly reduces the
waste of physical WSN resources and improves resource utilization. For NNS and GNV
algorithms that do not backup resources, with the continuous arrival of VSNR, the idle node
resources of WSN gradually decrease, so that the failure recovery rate rapidly decreases to
about 0.55, 0.45, respectively.

(3) WSNInP long-term operating income. Figure 4a–c respectively show the long-
term revenue, long-term cost and revenue-cost ratio (R/C) of WSNInP for these four
algorithms. As shown in Figure 4a,b, the long-term revenues and expenditures of all
four algorithms increase over time. Obviously, no matter what kind of backup method is
adopted, the long-term revenue of the reliability-aware virtual sensor network embedding
algorithm proposed in this paper is much higher than the benchmark algorithm GNV.
NCS ultimately has the highest long-term benefits due to its high acceptance rate and high
failure recovery rate, while NNS earns less because of the massive fines. As for the NAS
algorithm and the GNV algorithm, both of them obtain low benefits because of the low
acceptance rate. The long-term cost trends of the four algorithms and the reasons for these
trends are the same as the long-term benefits.

The R/C is an important indicator to measure the profitability of WSNInP. The ratio
of the NCS is the most stable and relatively high among the four algorithms, indicating
that the NCS algorithm is more able to achieve long-term stable high operating income in a
fault environment than the other three algorithms.
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Figure 3. Failure virtual sensor network (VSN) recovery rate.
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(b) Long-term cost

0 2 4 6 8 10

16

17

18

19

20

21

R/
C

Time(100 time units)

 NNS
 NCS
 NAS
 GNV
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Figure 4. Wireless sensor network infrastructure provider (WSNInP) long-term operating income.
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(4) Resource utilization. As shown in Figure 5, resource utilization under four algo-
rithms is compared. Figure 5a,b are node resource utilization and link resource utilization
respectively. It is obvious that compared with the GNV benchmark algorithm, no mat-
ter what kind of backup method is adopted, the node resource utilization rate and link
resource utilization rate of the reliability-aware virtual network embedding algorithm
proposed in this paper are always higher. With the different backup methods, the resource
utilization of full backup, critical node backup and no backup algorithm are improved
gradually. The prevalent node utilization ranges are [0.21,0.35] for GNV, [0.27,0.4] for
NAS, [0.37,0.4] for NCS and [0.41,0.5] for NNS, which shows the more VSN accepted, the
more node resources are utilized. The trend with four algorithms is the same as that with
the corresponding node utilization, which shows [0.15,0.25] for GNV, [0.23,0.3] for NAS,
[0.27,0.37] for NCS and [0.32,0.45] for NNS respectively.

However, through the analysis of resource utilization rate and WSNInP long-term
returns shown in Figure 4, it can be found that although the resource utilization rate of
NNS algorithm is higher than that of NCS algorithm, the long-term revenue of the former
is gradually lower than that of the latter over time, indicating that in a faulty environment,
as the physical sensor node fails, many VSNs adopted NNS algorithm fail during the task
execution period and fail to restore due to the physical node failure, which demonstrate
that NCS algorithm can guarantee the survivability of VSN better than NNS algorithm.
Meanwhile, the NCS algorithm ensures the survivability of VSN with a higher resource
utilization rate than the benchmark algorithm, which improves the long-term operating
income of WSNInP.
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(a) Node utilization rate
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(b) Link utilization rate

Figure 5. Resource utilization.

6. Conclusions

To make the VSN embedding model satisfy the actual situation, this paper formulates
a mixed-integer programming model for the VSN embedding problem with resource
constraints, and presents a novel survivability virtual sensor network embedding strategy
NCS for WSN virtualization towards physical sensor node failures. Firstly, the VSN is
reliably embedded before the physical sensor node fails. Secondly, the critical and normal
virtual sensor node is recognized according to the degree of the virtual sensor nodes.
Then a fault recovery mechanism based on resource reservation for critical sensor nodes
is adopted when a physical sensor fails. Finally, the results of the proposed algorithm
have been compared with the benchmark algorithm, the algorithm NCS proposed in this
paper shows excellent performance. Specifically, the VSNR acceptance rate and the VSN
failure recovery rate increased by 11.27% and 35%, respectively. WSNInP’s long-term
revenue has approximately doubled, and its R/C has increased by approximately 30%.
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The node resource utilization rate and link resource utilization rate increased by 16% and
5% respectively. In addition, in our future work, how to guarantee VSN survivability
effectively in multi-node simultaneous failure scenarios will be studied.
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