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Abstract

Planning and execution are two important parts of the problem-solving process. Based on

related research, it is expected that planning speed and execution speed are positively cor-

related because of underlying individual differences in general mental speed. While there

could also be a direct negative dependency of execution time on planning time, given the

hypothesis that an investment in planning contributes to more efficient execution. The posi-

tive correlation and negative dependency are not contradictory since the former is a relation-

ship across individuals (at the latent variable level) and the latter is a relationship within

individuals (at the manifest variable level) after controlling for across-individual relationships.

With two linear mixed model analyses and a factor model analysis, these two different kinds

of relationships were examined using dependency analysis. The results supported the

above hypotheses. The correlation between the latent variables of planning and execution

was found to be positive and the dependency of execution time on planning time was found

to be negative in all analyses. Moreover, the negative dependency varied among items and

to some extent among persons as well. In summary, this study provides a clearer picture of

the relationship between planning and execution and suggests that analyses at different lev-

els may reveal different relationships.

Introduction

From daily routine to professional life, we encounter problems to be solved almost all the time

and everywhere. Problem solving helps us not only to eradicate issues but also to achieve suc-

cess. In psychological research, a problem is described as having three general states: an initial

state (seeing the problem), a goal state (problem solved), and an action state in between, with

steps the problem solver takes to transform the initial state into the goal state that are often not

obvious [1]. Correspondingly, problem solving involves a sequence of operations to transform

the initial state into the goal state [2]. Good problem solving requires both accurate planning

(finding the sequence of operations) and efficient execution (putting the plan into practice).

Specifically, planning involves the ability of searching for a promising solution from a problem
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space [3]. Execution requires (a) keeping the plan in mind long enough to guide the action,

and (b) actually carrying out the prescribed behavior [4]. Investigating planning and execu-

tion, and the relationship between these two will provide a better understanding of the nature

of problem solving.

Research on the problem-solving process suggests that the quality of problem solving relies

on both planning and execution. A representative of early problem-solving models is Pólya’s

[5] four-step model, which consists of (1) understanding the problem, (2) planning, (3) carry-

ing out the plan, and (4) checking the result. Afterwards, Stein [6] proposed the IDEAL model

in which problem solving was defined as a process including five steps: (1) identify the prob-

lem, (2) define and represent the problem, (3) explore possible strategies, (4) act on the strate-

gies, and (5) look back and evaluate the effects of activities. Based on a synthesis of previous

problem-solving models [6–8], Pretz, Naples, and Sternberg [9] stated that the problem-solv-

ing process was a cycle with the following stages: (1) recognize or identify the problem, (2)

define and represent the problem mentally, (3) develop a solution strategy, (4) organize the

knowledge about the problem, (5) allocate mental and physical resources for solving the prob-

lem, (6) monitor the progress toward the goal, and (7) evaluate the solution for accuracy. As

we see, no matter what model is adopted, the problem-solving process always contains plan-

ning (described as “explore possible strategies” or “develop a solution strategy” in some mod-

els) and execution (described as “carry out the plan” or “act on the strategies” in some

models).

Even though the two indispensable parts of problem solving, planning and execution, are

closely connected, there is little empirical research on the relationship between them. Fortu-

nately, some studies can be indirectly informative. Danthiir, Wilhelm, and Roberts [10] found

that the scores of cognitive tasks employed in their experiment had a general speed factor, indi-

cating that there was a general mental speed for cognitive activities. In theory, mental speed is

defined as the ability of carrying out mental processes to solve a cognitive problem at variable

rates or increments of time [11]. Planning is a well-known cognitive ability [12], and execution

is also a cognitive ability to keep the plan in mind while one is acting. Therefore, we expect the

corresponding latent variables of planning speed and execution speed to be positively corre-

lated due to individual differences in general mental speed. In other words, if one has higher

general mental speed compared with others, the individual is expected to have both higher

planning speed and higher execution speed.

On the other hand, planning is defined as the process of searching for a solution as efficient

as possible among many alternatives [3, 13]. Therefore, given a certain person and a certain

problem, it is reasonable to assume that more time spent on planning for the problem contrib-

utes to more efficient strategies to solve the problem and allows the execution to be subse-

quently faster. Accordingly, we expect planning time to have a negative effect on execution

time after controlling for the positively correlated latent variables of planning and execution.

The combination of a positive relation and a negative relation between planning and execu-

tion is possible and not contradictory because the two relations concern different aspects of

the data. Based on individual differences in general mental speed, individual problem solvers

who are fast (or slow) on planning may also be fast (or slow) on execution. This is a positive

correlation between the latent variables of planning speed and execution speed to be found

across individuals. To examine such relations between constructs based on their latent vari-

ables is usually a research interest in the domain of measurement. However, despite the ten-

dency to concentrate on the latent variable level, it is possible that apart from the association

between the latent variables, there may also be a direct negative dependency of execution time

on planning time (i.e., more planning time may facilitate execution) within the same problem-

solving task for a given person.
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A number of studies with dependency analysis provide a potential approach to test the

above assumption [14–17]. In a dependency analysis, instead of focusing only on the relations

at the latent variable level and assuming no residual dependency at the manifest variable level,

researchers also estimate remaining relations among manifest variables which are called condi-

tional dependency (i.e., the dependency between manifest variables conditional on the rela-

tions between latent variables). It has been shown in those studies that the relations between

manifest variables may not always be fully explained by latent variables, and there may exist

additional dependency information in the data which is not captured by the latent variables.

Dependency analysis can be used for a simultaneous investigation of the relations between

planning and execution at the latent variable level and at the manifest variable level. Our

hypothesis is that the two types of relations have opposite signs: a positive correlation between

the latent variables of planning speed and execution speed and a negative conditional depen-

dency of execution time on planning time.

The aim of this study is to use dependency analysis to fill the gaps in the literature regarding

the relationship between the two essential components of problem-solving: planning and exe-

cution. We recorded the respective times spent on planning and execution during the prob-

lem-solving process in a game-based assessment that allows us to separate these two

components. In this way, the relationship between planning and execution can be investigated.

Method

Measures

A game-based assessment tool was adopted to measure planning time and execution time.

This assessment tool was developed by Li, Zhang, Du, Zhu, and Li [13] from a Japanese puzzle

game—Sokoban. There are 10 tasks in the assessment. A task is shown in Fig 1 as an example.

Every task of the Sokoban game consists of a pusher, a small set of boxes, and the same number

of target locations. Players are instructed to manipulate the pusher to push all the boxes into

the target locations. The pusher cannot push two or more boxes at the same time. Pulling

boxes is not allowed.

In the assessment, the first move in every task was redesigned to be a crucial move, so that

there is only one correct first move and any other move results in failure. For example, in Fig

1, if the pusher moves the most nearby box toward the right first, the player will encounter an

impasse (note that it is not allowed to push two or more boxes or to pull boxes). The only cor-

rect first move is to push the top-right box downwards. In the instructions, participants were

told that their move could not be taken back and that they were advised to plan before the first

move to avoid an impasse. The time from the beginning of a task to the first move was

recorded as planning time, and the time from the first move to the completion of each task

was recorded as execution time. There was no time limit for these tasks.

Participants

The participants were 266 college students (65 males, 201 females) from a Chinese university.

Their ages ranged between 18 and 31 (mean = 20.70, SD = 1.56). The pass rates of the 10 tasks

ranged from 80% to 96% per task. Out of the 266 participants, 11 passed five or fewer tasks, 11

passed six tasks, 15 passed seven tasks, 40 passed eight tasks, and 70 passed nine tasks.

Only the data for the 119 participants who completed all 10 tasks successfully will be

focused on in the current study (43 males, 76 females). Their ages ranged between 18 and 27

(mean = 20.70, SD = 1.48). The reason for focusing on successful trials is that there was no exe-

cution time available in the case of failure because one was stuck after an incorrect move.
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To check the effect of the reduced sample size (from 266 to 119) due to non-completion of

tasks, we also conducted all the analyses in this study for participants who completed fewer

tasks: either at least the same nine (N = 133), the same eight (N = 142), the same seven

(N = 153), the same six (N = 165), or the same five tasks (N = 177). The results were consistent

with those for the 119 participants who completed all tasks. Therefore, the results shown in

this study can be generalized to the larger set of participants who did not complete all tasks.

Ethics statement

This study was approved by the ethics board of Faculty of Psychology in Beijing Normal Uni-

versity and was in accordance with the ethical principles and guidelines recommended by the

American Psychological Association. The written forms of consent were obtained from all

individual participants included in the study and the data were analyzed anonymously.

Methods of analysis

Before analyzing the data, a Kolmogorov-Smirnov normality test was first conducted [18]. For

planning time, D = 0.21, p< 2.20�10−16, and for execution time, D = 0.17, p<2.20�10−16, indi-

cating that the distributions of both planning time and execution time were not normal.

The Box-Cox power transformation is commonly used to provide a statistically optimal

data transformation (e.g., log and inverse), which normalizes the data distribution [19]. There-

fore, this method was applied, and the result showed that a logarithmic transformation was

Fig 1. An example of the Sokoban task.

https://doi.org/10.1371/journal.pone.0237568.g001
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appropriate. The logarithmic transformation is one of the most common ways to make data

more consistent with the statistical assumptions in psychometrics [20].

After logarithmic transformation, for execution time, D = 0.03, p = 0.07; the null hypothesis

of a normally distributed log execution time was not rejected at the significance level of 0.05.

For planning time, D = 0.04, p = 0.0004; even though the normality hypothesis was still

rejected at the significance level of 0.05, the violation of normality was largely alleviated com-

pared with the original data. Besides, the resulting distributions were very similar to the nor-

mal distribution (see Fig 2). Thus, log-transformed data were used in the following analyses.

In line with a recently proposed multiverse strategy [21], more than one approach were

used for the data analyses. In this way, we could increase the research transparency and verify

the robustness of our findings. We chose to analyze the data with two different linear mixed

model (LMM) analyses (Analyses 1 and 2) and with a factor model analysis (Analysis 3). The

data of this study and the code for all three analyses are available on https://osf.io/8pw3d/.

Analysis 1: LMM with observed planning time as a covariate. We adopted a LMM

approach to explore the relationship between planning and execution. Several models were

estimated. The first model is a LMM with correlated random intercepts of planning and execu-

tion in which the correlation is estimated across both persons and items (i.e., tasks). Note that

the correlated random intercepts across persons are equivalent to correlated latent variables of

planning and execution in a factor model. The hypothesis that planning and execution are pos-

itively correlated across individuals can be tested through the correlation between the random

person intercepts. The second model is again a LMM with correlated random intercepts but

also includes a direct effect of planning time on execution time for each pair of persons and

tasks. In this way, we can investigate whether there is conditional dependency of execution

time on planning time that cannot be captured by the relation between the random intercepts.

The first model, Model 1, contains a planning component and an execution component.

Both components have a random person intercept and a random item intercept, as shown in

Eqs 1A and 1B, with covariance matrices defined after the equations are presented:

EðlogPTpiÞ ¼ mðpÞ þ tðpÞp þ bðpÞi; ð1AÞ

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi; ð1BÞ

where E(logPTpi) is the expected value of the logarithm of the planning time for respondent p
and item i, μ(p) is the fixed intercept for planning time, τ(p)p is minus the specific planning

speed (a random person intercept) of respondent p, β(p)i is the time intensity for planning (a

random item intercept) of item i; E(logETpi) is the expected value of the logarithm of the exe-

cution time for respondent p and item i, μ(e) is the fixed intercept for execution time, τ(e)p is

minus the specific execution speed (a random person intercept) of respondent p, and β(e)i is

the time intensity for execution (a random item intercept) of item i. The distributions of the

random intercepts are bivariate normal, (τ(p)p, τ(e)p) ~ BVN(0, Sτ), (β(p)i, β(e)i) ~ BVN(0,

Sβ), allowing for a correlation between planning and execution time based on individual dif-

ferences and item differences, respectively.

The second model, Model 2, differs from Model 1 in that it includes conditional depen-

dency of execution time on planning time. The conditional dependency is a direct effect of

planning time on execution time conditional on the random intercepts of planning and execu-

tion. To further inspect the property of the dependency, we proposed three variants of Model

2 with: either a global dependency constant across persons and items (Model 2a, with Eq 1C),

or person-specific dependencies (Model 2b, with Eq 1D), or item-specific dependencies

(Model 2c, with Eq 1E). In Model 2a, the dependency is a stable direct effect of planning on
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execution. Model 2b, however, assumes that the dependency of execution on planning may be

stronger for some people than for others. Similarly, Model 2c implies that some items allow

planning to contribute more to execution (i.e., stronger dependency) than other items do. The

model equation for the planning time in Model 2 is the same as in Model 1, but for the execu-

tion time, the (logarithm of) observed planning time in the same item and of the same person

is added as a predictor. For all three variants of Model 2, an overall fixed dependency parame-

ter will be estimated, and for Models 2b and 2c, random deviations from the overall depen-

dency are allowed for persons and items, respectively. In this way, Model 2a is nested in

Models 2b and 2c, which makes model comparison easier.

As explained above, the equation for planning time (1a) is the same for all models (Model

1, Models 2a, 2b, and 2c), while for execution time in Model 2, one of the following three

replaces Eq 1B of Model 1:

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ o logPTpi; ð1CÞ

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ o logPTpi þ op logPTpi; ð1DÞ

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ o logPTpi þ oi logPTpi; ð1EÞ

where ω is the overall fixed dependency of the logarithm of execution time on the logarithm of

planning time, ωp is a person-specific deviation from the overall dependency, and ωi is an

item-specific deviation from the overall dependency. The specific deviations ωp and ωi are ran-

dom and normally distributed with a mean of zero and a variance of σω(p)
2 and σω(i)

2, respec-

tively. In the same way as for Model 1, the distributions of the random intercepts are bivariate

normal, (τ(p)p, τ(e)p) ~ BVN(0, Sτ), (β(p)i, β(e)i) ~ BVN(0, Sβ).

The person-specific dependencies and the item-specific dependencies are modeled as inde-

pendent of the random intercepts. However, we have also estimated models with correlations

between the random dependencies and the random intercepts since the correlations between

item-specific dependencies and item intercepts were examined in previous studies [15,16].

The likelihood ratio test found no significant difference between the models with and without

the correlations between the item-specific dependencies and the random item intercepts of

planning and execution. A possible reason for the non-significant result was that the correla-

tions were based on only ten pairs of item-specific dependencies and random item intercepts.

To investigate the correlations across items, we may need a larger number of items. For the

correlations between the person-specific dependencies and the random person intercepts of

planning and execution, we encountered estimation problems in the form of a degenerate

solution. This degenerate solution was most likely due to a very small estimated variance of the

person-specific dependencies, which led to unreliable correlations between the person-specific

Fig 2. Distributions of logarithm of execution time and logarithm of planning time.

https://doi.org/10.1371/journal.pone.0237568.g002
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dependencies and the random person intercepts. To investigate the correlations across per-

sons, a substantial variance of the person-specific dependencies may be needed. Given the

above reasons, we decided to work with the models without the correlations between the ran-

dom dependencies and the random intercepts.

To test for the presence of conditional dependency, Model 1, the no dependency model

(ND model) as defined by Eqs 1A and 1B, was compared with the three variants of Model 2 (a,

b, c), where (a) is the general dependency model (GD model) defined by Eqs 1A and 1C, (b) is

the person-specific dependency model (PSD model) defined by Eqs 1A and 1D, and (c) is the

item-specific dependency model (ISD model) defined by Eqs 1A and 1E. In addition, the GD

model was compared with the PSD and ISD models to further explore possible person and

item differences of the conditional dependency. Fig 3 gives a graphical presentation of the

models without and with the conditional dependency of the observed execution time on the

observed planning time. All these models were estimated with the lme4 package in R [22].

Analysis 2: LMM with residual planning time as a covariate. In the dependency models

of Analysis 1, the observed planning time was used as a covariate to predict the observed exe-

cution time, while in Analysis 2, the residual planning time (the concept of residual planning

time will be explained later) replaced the observed planning time based on the following rea-

soning. In all models thus far (Models 1 and 2), the observed planning time consists of three

random components: a random person intercept (representing the planning latent variable), a

random item intercept (representing the item time intensity for planning), and an error term

(estimated as the residual). The random person intercept and the random item intercept take

care of planning time differences across persons and across items, which are the main effects

of persons and items. The residual planning time is the difference between the observed plan-

ning time and the expected planning time given respondent p and item i and based on Eq 1A.

The residual reflects variation that is neither due to a person’s average planning time nor to an

item’s average time intensity of planning. Instead, the residual reflects extra variation across

pairs of respondent p and item i. In other words, the residual planning time is the planning

time corrected for individual differences and item differences. The effect of the residual plan-

ning time on the execution time demonstrates whether some extra planning pays off to allow

faster execution, independent of the values of the random intercepts. Therefore, in Analysis 2,

we focused exclusively on the residual planning time as a predictor for the execution time. The

dependency is the effect of the residual planning time on the execution time. By correcting for

the random intercepts (i.e., individual differences and item differences), the residual planning

time is supposed to have an effect on the execution time purely at the manifest variable level.

Different from Analysis 1, we worked with two steps here. First, the residual planning times

were determined based on a model for only the planning time, following Eq 1A. Next, in the

second step, we focused on models for only the execution time, using the residual planning

time from the first step as a predictor. The model for planning time is the same as in Models 1

and 2 and is formulated in Eq 1A. Based on that model, the residual planning time (called RES
in the equations) was calculated as follows:

RESpi ¼ logPTpi � EðlogPTpiÞ; ð2AÞ

where logPTpi is the logarithm of the observed planning time for respondent p and item i, and

E(logPTpi) is the expected value of log PTpi obtained from the model as defined in Eq 1A and

based on the maximum a posteriori method (as used in the ranef function in lme4 R package

[22]). After obtaining the residual planning time, the models for execution time were formu-

lated as follows:
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No dependency (ND):

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi; ð2BÞ

Fig 3. Path diagrams for the models in Analysis 1. Model 1 is the model without conditional dependency (the ND model).

Model 2 has three variants of the direct effect arrows from observed planning time to observed execution time. Either the direct

effect is constant (the GD model), or it varies across persons (the PSD model), or it varies across items (the ISD model).

https://doi.org/10.1371/journal.pone.0237568.g003
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General dependency (GD):

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ oRESpi; ð2CÞ

Person-specific dependency (PSD):

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ oRESpi þ opRESpi; ð2DÞ

Item-specific dependency (ISD):

EðlogETpiÞ ¼ mðeÞ þ tðeÞp þ bðeÞi þ oRESpi þ oiRESpi; ð2EÞ

where the meaning of the notations is the same as in Eqs 1B to 1E and Eq 2A. However, unlike

for the previous models, there are no bivariate distributions for planning and execution

because in the second step of the analysis, only the execution time is modeled. Instead, we have

τ(e)p ~ N(0, στ2) and β(e)i ~ N(0, σβ2). Based on the same reasoning as for Analysis 1, we have

not estimated the correlations of the person-specific dependencies and the random person

intercepts. Also, in a similar way as for Analysis 1, the model allowing for correlations between

the item-specific dependencies and the random item intercepts was not supported by a likeli-

hood ratio test as it was not significantly better than the model without the correlations. The

models without and with dependencies of the observed execution time on the residual plan-

ning time are graphically presented in Fig 4. All models for the two steps were estimated with

the lme4 package in R [22].

Analysis 3: Factor model analysis of the relationship between planning and execution.

In this analysis, the relationship between planning and execution was investigated with two

factor models for the logarithm of planning time and the logarithm of execution time (see Fig

5). The first model is a correlated two-factor model in which all ten planning times load on one

factor (factor P1) and all ten execution times load on the other factor (factor E1). In the second

model, the residual correlation between observed planning time and observed execution time

(i.e., between the log of these times) is added per item. The factor models were estimated with

the R package lavaan that is extensively used for confirmatory factor analysis [23].

The residual correlations in the second factor model and the item-specific dependencies in

previous analyses are different ways to capture the item-wise variation of the conditional

dependency. Therefore, we correlated the estimated residual correlations from the second fac-

tor model with the item-specific dependencies from the ISD model in Analyses 1 and 2 to

investigate whether they could correspond. High correlations between dependencies as esti-

mated from different models would be an indication that the item-wise dependencies are a

robust result and not artifacts from the analysis approach.

Results

Results of Analysis 1

The descriptive statistics are shown in Table 1. There is substantial variation of the planning

time and execution time across participants. The modeling results are as follows. In Model 1

and in the three versions of Model 2, positive correlations were found between random person

intercepts of planning and execution, indicating that the latent variables of planning and exe-

cution are positively correlated (Table 2). In other words, participants who use more time to

plan will also use more time to execute compared to others (note that this is a correlation

based on overall inter-individual differences), which is consistent with the hypothesis regard-

ing general mental speed for planning and execution.

PLOS ONE The complex relationship between planning and execution

PLOS ONE | https://doi.org/10.1371/journal.pone.0237568 August 14, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0237568


For all models, positive correlations between random item intercepts of planning and exe-

cution have also been found, which means that planning and execution are positively corre-

lated across items. It is reasonable to assume that participants would spend more (or less) time

on both planning and execution if they deal with an item with a longer (or shorter) route com-

pared with other items, which brings about positive correlations between planning and execu-

tion across items. Accordingly, we would expect the route length of items to be positively

correlated with both the logarithm of planning time and the logarithm of execution time. Fol-

lowing is a simple analysis to check this assumption. By using the average number of steps per

item as the indicator of the route length of the item, we have found that the correlation

between the route length and the logarithm of planning time is 0.59, and the correlation

between the route length and the logarithm of execution time is 0.97. Furthermore, after

Fig 4. Path diagrams for the models in Analysis 2. The model for planning time is shown on top. Model 1 for execution time

is the model without conditional dependency (the ND model). For Model 2 there are three variants: either the effect of the

residual planning time is constant (the GD model), or it varies across persons (the PSD model), or it varies across items (the

ISD model).

https://doi.org/10.1371/journal.pone.0237568.g004
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adding the route length as a covariate into the ND, GD, PSD, and ISD models, the correlations

of planning and execution across items were reduced to -0.37, -0.09, -0.09, and 0.10,

Fig 5. Factor models of the relationship between planning and execution.

https://doi.org/10.1371/journal.pone.0237568.g005
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respectively, which suggests that the positive correlation between planning and execution

across items may stem from the route length.

Interestingly, when we focus on the conditional dependency, the fixed dependency parame-

ter ω, which is also the mean of the person-specific and item-specific dependencies, is negative

(see fixed dependency estimate in Table 2). The fixed dependency is the mean direct effect of

planning on execution average over persons and items and is conditional on the random inter-

cepts (i.e., independent of differences between persons and between items). The negative

dependency implies that in general, spending more time on planning is associated with less

time for the execution, after controlling for individual differences and item differences. As

shown in Table 3, all three dependency models have better (i.e., smaller) goodness-of-fit indi-

ces (AIC and BIC) compared to the ND model without dependency. In line with the good-

ness-of-fit indices, the likelihood ratio test shows that the dependency models fit the data

significantly better than the ND model does. It should be noticed that in the PSD and ISD

models, the dependency is a random effect (either across persons or across items) and have a

positive variance while the ND model implies no dependency and, thus, a zero dependency

variance. This means that the ND model constrains the value of the dependency variance to

the boundary of its parameter space, as the variance cannot be negative. According to Pinheiro

and Bates [24] and Bates [25], in the likelihood ratio test, a bounded random effect variance

violates the asymptotic chi-square reference distribution of the null hypothesis and makes the

p-value “conservative”. In other words, the p-value is larger than it is supposed to be. In our

model comparison, the likelihood ratio test shows significant differences between the depen-

dency models and the ND model, even with conservative p-values when the PSD and ISD

models are involved. Therefore, the hypothesis that the execution time has a negative condi-

tional dependency on the planning time is supported by the results.

The estimated standard deviations of the random dependencies as shown in Table 2 reflect

that compared with the item-specific dependency, the variation of the person-specific depen-

dency is very small. Whether the conditional dependency varies across persons and items can

be formally tested by comparing the PSD and ISD models with the GD model based on good-

ness-of-fit indices and the likelihood ratio test. As Table 3 shows, the ISD model has both

Table 1. Planning time and execution time for each item (sec).

Planning time Execution time Planning time Execution time

M SD M SD M SD M SD

Item1 23.02 26.89 31.17 23.42 Item6 22.78 34.88 13.26 8.79

Item2 21.70 18.50 9.15 7.70 Item7 25.38 23.43 22.40 11.33

Item3 15.41 11.34 12.21 11.28 Item8 21.10 27.64 22.51 17.26

Item4 19.36 18.22 13.76 9.86 Item9 24.76 25.96 30.30 22.00

Item5 19.88 23.13 19.14 9.36 Item10 35.58 42.25 29.13 20.53

https://doi.org/10.1371/journal.pone.0237568.t001

Table 2. Correlations and dependencies of planning and execution (Analysis 1).

ND model GD model PSD model ISD model

Correlation across persons 0.35 0.51 0.51 0.51

across items 0.36 0.40 0.40 0.53

Fixed dependency estimate - -0.09 -0.09 -0.09

SE - 0.02 0.02 0.04

t value - -4.06 -4.04 -2.49

Random dependency SD - - 0.02 0.09

https://doi.org/10.1371/journal.pone.0237568.t002
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smaller AIC and smaller BIC compared to the GD model. Besides, the likelihood ratio test

indicates that the ISD model fits the data significantly better than the GD model even with a

conservative p-value due to the bounded dependency variance. Accordingly, the model com-

parison supports that the dependency varies across items. The result is different for the test of

the person-specific dependency. The AIC and BIC of the PSD model are slightly worse than

those of the GD model. The likelihood ratio test shows no significant difference between the

PSD model and the GD model. However, caution should be exercised here as the test is conser-

vative because of the bounded dependency variance. Bates [25 p. 44] stated that “in the worst-

case scenario the chi-square-based p-value will be twice as large as it should be”. The p-value of

the likelihood ratio test for the PSD and GD models is 0.14, and even in the worst-case sce-

nario, an effective p-value of 0.07 would still be larger than the significance level 0.05. There-

fore, the null hypothesis of fixed dependency across persons cannot be rejected. Based on this

result and the goodness-of-fit indices, there is no support for the person-specific dependency.

In addition, a supplementary analysis has been conducted to examine whether the covari-

ates, age and gender, should be included in the models. The results reveal that age does not

have a significant effect in any of the models, whereas gender does have significant main effects

on both planning and execution in that males are faster than females. However, the effect of

gender on the conditional dependency is not significant. Furthermore, the main conclusions

(including the positive correlations between the random effects of planning and execution, the

negative fixed dependency, and the comparison of the four models) remain the same after add-

ing gender as a covariate. To simplify the presentation of the results and because the covariates

do not affect the focal points of the results, we only present the results from the models without

covariates.

Results of Analysis 2

As in Analysis 1, the fixed dependency parameter ω (here it is the fixed effect of the residual

planning time on the observed execution time) is estimated to be negative (see Table 4). Both

the goodness-of-fit indices and the likelihood ratio test (see Table 5) suggest that all

Table 3. Goodness of fit of the ND, GD, PSD, and ISD models (Analysis 1).

Model AIC BIC Log-likelihood Likelihood ratio test

Compared to ND Compared to GD

ND 4221.79 4273.77 -2101.90 - -

GD 4211.35 4269.10 -2095.67 X2(1) = 12.45��� -

PSD 4213.31 4276.84 -2095.66 X2(2) = 12.48�� X2(1) = 0.03

ISD 4203.02 4266.54 -2090.51 X2(2) = 22.78��� X2(1) = 10.33��

�p<0.05

��p<0.01

���p<0.001.

https://doi.org/10.1371/journal.pone.0237568.t003

Table 4. Dependencies of planning and execution (Analysis 2).

GD model PSD model ISD model

Fixed Dependency estimate -0.09 -0.08 -0.08

SE 0.02 0.02 0.04

t value -4.75 -3.46 -2.24

Random dependency SD - 0.15 0.10

https://doi.org/10.1371/journal.pone.0237568.t004
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dependency models fit the data better than the ND model does and that the PSD and ISD

models fit the data better than the GD model does. The likelihood ratio test results are signifi-

cant even with p-values that are conservative due to boundary issues when the PSD and ISD

models are involved. The results indicate that there is a negative conditional dependency of

the execution time on the residual planning time and that the dependency varies across both

persons and items. Note that, in Analysis 1, we have not found evidence for a variation of the

dependency across persons when using the observed planning time as a predictor of the execu-

tion time. The difference between the two results may be related to the difference in the esti-

mated standard deviation of the person-specific dependency, which is very small in Analysis 1

(see Table 2) and much larger in Analysis 2 (see Table 4).

Results of Analysis 3

A confirmatory factor analysis was first conducted with the correlated two-factor model with-

out estimating conditional dependency. The results indicate that the model fails to fit the data

well, RMSEA = 0.09, CFI = 0.86, TLI = 0.84. After adding the dependency per item (i.e., includ-

ing residual correlations), the goodness of fit is clearly better, RMSEA = 0.07, CFI = 0.91,

TLI = 0.89. The likelihood ratio test comparing the two models shows that the model with the

dependencies fits the data significantly better: X2(10) = 68.34, p< 0.001. In the model with

conditional dependency, the correlation between the latent variables of planning and execu-

tion is significantly positive, which is consistent with the hypothesis that planning and execu-

tion are positively correlated at the latent variable level. Moreover, among the estimates of

item-wise residual correlations, four of the ten are significantly negative, three are negative but

not significant, and three are positive and not significant. This is in line with the earlier find-

ings of an overall negative dependency. The reason that not all item-wise dependencies are

negative can be explained by the item-specific variation of the dependency found in the previ-

ous analyses (i.e., in the ISD model). Such item-specific variation indicates that the depen-

dency varies across items, which could lead to non-negative dependencies for some items.

Finally, the correlations between the estimated residual correlations from the factor model

and the estimated item-specific dependencies from the linear mixed models in Analyses 1 and

2 are found to be 0.64 and 0.95, respectively. The high correlations provide strong support for

the robustness of the item-wise dependencies.

Discussion

Considering the imbalance between the emphasis on problem solving and the lack of research

on the relationship between the involved processes, this study focuses on two important com-

ponents within problem solving: planning and execution. Evidence from the results supports

Table 5. Goodness of fit of the ND, GD, PSD, and ISD models (Analysis 2).

Model AIC BIC Log-likelihood Likelihood ratio test

Compared to ND Compared to GD

ND 1377.96 1398.29 -684.98 - -

GD 1357.66 1383.07 -673.83 X2(1) = 22.30��� -

PSD 1343.39 1373.88 -665.70 X2(2) = 38.57��� X2(1) = 16.27���

ISD 1347.20 1377.69 -667.60 X2(2) = 34.76��� X2(1) = 12.46���

�p<0.05

��p<0.01

���p<0.001.

https://doi.org/10.1371/journal.pone.0237568.t005
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the hypothesis that the relationship between planning and execution is complex and depends

on the levels of the variables (i.e., the latent variable level and the manifest variable level).

At the latent variable level, a positive correlation between planning speed and execution

speed has been found to be independent of the type of modeling, which provides robust evi-

dence in support of the hypothesis of general mental speed [10]. As two typical cognitive pro-

cesses, planning and execution may both rely on general mental speed and consequently

demonstrate a positive correlation between them. Analogous with the finding that mental

speed has a positive correlation with measures of intelligence [10,11,26], planning speed and

execution speed are likely to be associated with problem-solving ability, which is considered to

be involved in the game-based assessment of this study.

As for the relationship at the manifest variable level after controlling for latent variables,

estimates of the fixed dependency parameter ω in the LMM analysis and estimates of the item-

wise residual correlations in factor analysis are consistent with the negative dependency

hypothesis. This suggests that it pays off for more efficient execution to spend more time on

planning while the lack of planning results in a longer execution process, although the effect

seems to depend on the item and to some extent on the person, as will be discussed further on.

Unlike the positive correlation which represents the overall relation between planning and exe-

cution across persons and across items, this negative dependency describes the association

between planning and execution per person-and-item pair after controlling for the latent vari-

ables. In this study, we have examined the conditional dependency in three different analyses.

In the context of LMM, Analysis 1 tests the direct effect of the observed planning time on the

observed execution time at the manifest variable level, to check whether more time spent on

planning contributes to more efficient execution. Analysis 2 specifically focuses on the effect of

the residual planning time on the observed execution time. The residual planning time is the

extra time spent on planning (if the residual is positive) or the time spent less on planning (if

the residual is negative) compared with the expected time based on the time intensity of the

task and the planning speed of the respondent (i.e., the latent variable). Although both types of

the conditional dependency (one type in Analysis 1 and the other in Analysis 2) are based on

reasonable assumptions and have been inspected in previous studies [15,17], these two types

have not yet been systematically discussed and compared in the literature. It is a topic of future

studies to compare these two types of conditional dependency theoretically and in different

kinds of applications. Analysis 3 explores the conditional dependency through the residual

correlations in a factor analysis. The extremely high correlation (0.95) between the residual

correlations in Analysis 3 and the item-specific dependencies in Analysis 2 is not surprising as

they both rely on the residual planning time. Despite the differences among the three analyses,

a negative dependency is always found at the manifest variable level independent of which of

the three analyses is adopted. This negative dependency and the positive latent variable corre-

lation have opposite signs and contain different information about the data.

Furthermore, the negative dependency has been found to vary to some extent across per-

sons and more clearly across items. The person-specific dependency as found in Analysis 2

(but without clear evidence from Analysis 1) suggests that there are different types of problem

solvers. Specifically, the benefit that execution takes from planning may be larger for some

problem solvers than for others. This is perhaps because of differences in the planning quality.

With the same residual planning time for a certain item, some people may be able to produce a

better plan that helps execute an action more efficiently.

Analogously, the item-specific dependency shows that planning contributes more to execu-

tion for some items than it does for other items. A possible reason is that it is difficult to make

plans at the very first for some items so that a longer planning time will not help much. Prob-

lem properties causing these differences should be explored in the future.
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In addition, different from most latent variable model research, this study has placed much

emphasis on the direct relationship between observed variables after controlling for latent vari-

ables. Without any doubt, it is reasonable to focus primarily on latent variables in some con-

texts, such as a context where only broad interindividual differences are of interest. However,

when the relationship between two concepts is investigated in a more comprehensive and

more detailed way, one should consider all types of associations between the concepts, includ-

ing more direct effects between observed variables after controlling for latent variables. From

this more comprehensive perspective, remaining dependencies between observed variables are

no longer an imperfection of latent variable models, but a meaningful part of the total picture

with important information that cannot be found at the latent variable level. As a result, condi-

tional dependency should be given more attention in future latent variable model research,

especially when parallel data are collected regarding the same items (e.g., response times and

responses for the same items, and activations of two brain areas for the same cognitive

activities).
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