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Improving the diagnosis of thyroid 
cancer by machine learning 
and clinical data
Nan Miles Xi1, Lin Wang2 & Chuanjia Yang3*

Thyroid cancer is a common endocrine carcinoma that occurs in the thyroid gland. Much effort has 
been invested in improving its diagnosis, and thyroidectomy remains the primary treatment method. 
A successful operation without unnecessary side injuries relies on an accurate preoperative diagnosis. 
Current human assessment of thyroid nodule malignancy is prone to errors and may not guarantee 
an accurate preoperative diagnosis. This study proposed a machine learning framework to predict 
thyroid nodule malignancy based on our collected novel clinical dataset. The ten-fold cross-validation, 
bootstrap analysis, and permutation predictor importance were applied to estimate and interpret 
the model performance under uncertainty. The comparison between model prediction and expert 
assessment shows the advantage of our framework over human judgment in predicting thyroid nodule 
malignancy. Our method is accurate, interpretable, and thus useable as additional evidence in the 
preoperative diagnosis of thyroid cancer.

Thyroid cancer is the most frequent endocrine malignancy and represents about 2.5% of all new cancer cases 
in the United  States1. According to NIH’s Surveillance, Epidemiology, and End Results Program (SEER), the 
occurrence of thyroid cancer has increased by 5.5% annually from 2005 to  20152. In the United States, the annual 
incidence rate stood at 14.1 per 100,000 between 2014 and 2018. The annual death rate is 0.5 per 100,000 between 
2015 and 2019. The American Cancer Society estimated that there would be 43,800 new cases and 2,230 deaths 
caused by thyroid cancer in  20223. Among thyroid cancers, 96% originate from follicular cells, and of these, 99% 
are differentiated thyroid cancer (DTC)4. The treatment methods for DTCs, especially papillary thyroid cancer 
(PTC), mainly include surgery, TSH suppressive therapy with levothyroxine, and radioactive iodine remnant 
 ablation5. While individualized treatment depends on the nature of the lesion, surgical operation remains the 
primary tool at  present6. One focus of the surgical operation is to distinguish between benign and malignant 
thyroid nodules. An accurate preoperative diagnosis is conducive to a smooth operation, avoids unnecessary 
side injuries, and reduces the risk of post-operative  recurrence7. It also helps the selection of comprehensive 
post-surgery treatment to extend the survival period. Therefore, it is crucial to make accurate diagnoses and 
predictions based on thyroid ultrasound, blood tests, and other basic clinical information.

To date, the diagnosis of malignant nodules largely relies on the clinical experience of surgeons and 
 radiologists8. In many cases, human judgment is time-consuming and prone to error. Accurate and explainable 
predictive models are urgently needed to assist medical decisions and reduce labor work. Previous studies have 
built statistical models to predict the occurrence of malignant nodules based on various  datasets9–12. Those 
models mainly utilized descriptive statistics or logistic regression, which ignored the complex, nonlinear rela-
tionship among clinical and demographical variables. Other machine learning-based models only provided the 
point estimation of the model performance without considering the uncertainty in the model  prediction13. More 
seriously, no study has compared the diagnostic accuracy between model prediction and expert assessment. The 
lack of such comparisons makes it difficult to evaluate the advantage of using predictive models to assist the 
diagnosis of malignant nodules.

In this paper, we proposed a comprehensive machine learning framework to predict nodule malignancy 
accurately. We collected a novel clinical dataset containing 724 patients with 1232 nodules. We trained six 
cutting-edge machine learning models on this dataset and estimated their unbiased prediction performance by 
ten-fold cross-validation. The uncertainty of model performance was further quantified by bootstrap analysis. 
We identified the important variables through the analysis of normalized permutation predictor importance. 
Finally, we compared the model performance to expert assessment and demonstrated the advantage of the 
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machine learning model over human judgment. The workflow of this study is summarized in Fig. 1. In general, 
the proposed machine learning models exhibited high prediction accuracy and diverse capacity to identify benign 
or malignant nodules. The result is consistent under both point estimation and model uncertainty analysis. Many 
of the identified important variables confirm similar findings in previous studies. The best-performed models 
outperformed the expert assessment by a large margin on the same dataset, which indicates the benefits of using 
machine learning models to improve the preoperative diagnosis of nodule malignancy.

Data collection and preprocessing
The present study was approved by the Medical Research Ethics Committee of China Medical University. Meth-
ods performed in the study were in accordance with the Declaration of Helsinki and relevant guidelines. The 
informed consent was obtained from all subjects involved. The dataset used in this study was collected from 
724 patients who were admitted to Shengjing Hospital of China Median University between 2010 and 2012. All 
patients underwent thyroidectomy, and their nodule malignancy, demographic information, ultrasound features, 
and blood test results were recorded in the dataset. We observed one or multiple nodules located in each patient 
in three areas, i.e., left lobe, right lobe, and isthmus. If the patient had multiple nodules in one area, we kept the 
largest one in the dataset. After removing missing values, there are 1232 nodules and 19 variables in the dataset. 
The descriptive statistics of those nodules and variables are described in Table 1.

The average age of patients is 46.61, with a range of 13–82. There are 200 male-patient-affiliated nodules 
(16.23%) and 1032 female-patient-affiliated nodules (83.77%). We recorded five thyroid function tests, includ-
ing free triiodothyronine (FT3), free thyroxine (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase 
antibodies (TPO), and thyroglobulin antibodies (TgAb). All thyroids are categorized into even (89.12%) and 
uneven (10.88%) based on their echogenicity. There are 11 variables that describe the characteristics of nodules 
obtained from ultrasound: (1) size is defined as the maximum between the length and width of each nodule; 
(2) location is either the left lobe, right lobe, or isthmus for each nodule; (3) multifocality indicates if there are 
multiple nodules identified in one location; (4) shape describes the nodule’s regularity; (5) margin characterizes 
if the nodule has a clear or unclear margin; (6) calcification suggests the existence of nodule calcification; (7) 
echogenicity describes the nodule’s ability to bounce echoes in ultrasound; (8) blood flow is defined as normal 
or enriched for each nodule; (9) nodule’s composition is categorized into cystic, mixed, or solid; (10) laterality 
demonstrates if the nodule has counterparts in other locations of the same patient; (11) malignancy is determined 
by examining the nodule specimen after thyroidectomy.

Figure 1.  The workflow diagram of this study. First, the clinical information of 724 patients and their 1232 
nodules were collected and preprocessed from medical records. Second, six cutting-edge machine learning 
models were trained on the dataset. Third, the model prediction performance was measured by five metrics 
under ten-fold cross-validation. Forth, the model uncertainty and important variables were further analyzed 
by bootstrap and permutation predictor importance. Finally, the model prediction was compared with expert 
assessment.
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Table 1.  The characteristics of patients, blood tests, thyroids, and nodules in the dataset used in this study.

Patient characteristics Value Percentage

Age (years)

Mean ± SD 46.61 ± 12.44

Range 13 – 82

Gender

Male 200 16.23

Female 1032 83.77

Test (Median ± IQR)

FT3 4.35 ± 0.82

FT4 14.51 ± 2.56

TSH 1.46 ± 1.63

TPO 0.63 ± 5.37

TgAb 2.69 ± 11.88

Thyroid characteristics

Echogenicity

Even 1098 89.12

Uneven 134 10.88

Nodule characteristics

Size (Mean ± SD, cm) 1.73 ± 1.31

Location

Right 584 47.40

Left 548 44.48

Isthmus 100 8.22

Multifocality

Unifocal 664 53.90

Multifocal 568 46.10

Shape

Regular 977 79.30

Irregular 255 20.70

Margin

Clear 406 32.95

Unclear 826 67.05

Calcification

Absent 740 60.06

Present 492 39.94

Echogenicity

None 16 1.30

Isoechoic 15 1.21

Medium-echogenic 144 11.69

Hyperechogenic 7 0.57

Hypoechogenic 1050 85.23

Blood flow

Normal 786 63.80

Enriched 446 36.20

Composition

Cystic 30 2.44

Mixed 97 7.87

Solid 1105 89.69

Laterality

Unilateral 286 23.21

Multilateral 946 76.79

Malignancy

Benign 413 33.52

Malignant 819 66.48
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Methods
We utilized gradient boosting machine (GBM)14, logistic regression, linear discriminant analysis (LDA)15, sup-
port vector machine (SVM) with radial or linear  kernel16, and random  forest17 to train six machine learning 
models to predict the nodule malignancy based on the dataset described in the last section. The malignancy 
was treated as the response in the predictive models, and the other 18 variables were predictors. We conducted 
ten-fold cross-validation to obtain an unbiased estimation of prediction  accuracy18. First, we randomly split the 
patients into ten groups. Second, one patient group was selected, and its affiliated nodules were used to gener-
ate the test set. Nodules of the other nine patient groups were treated as the training set. Third, we trained the 
machine learning models on the training set and then predicted the nodule malignancy in the test set. Finally, we 
performed the same process until every patient group and their affiliated nodules were predicted by the machine 
learning models. We repeated the ten-fold cross-validation by ten times to reduce the variability introduced by 
random splitting. Figure 2 shows the pseudocode of model training, predicting, and ten-fold cross-validation.

We compared the model prediction with the true nodule malignancy to evaluate the model performance. 
For each model, we calculated the accuracy, area under the receiver operating characteristic (AUROC), sensi-
tivity, specificity, and precision. The accuracy is the proportion of correct predictions among all nodules in the 
dataset. The AUROC measures the overall diagnostic ability of a binary predictive model as its discrimination 
threshold is  varied19. The sensitivity represents the proportion of malignant nodules that are correctly predicted 
as malignant. The specificity represents the proportion of benign nodules that are correctly predicted as benign. 
The precision is defined as the proportion of true malignant nodules among those predicted as malignant. These 
five measurements together provide a comprehensive summary of the diagnostic capacity of predictive models. 
We implemented the model training and evaluation by the R programming  language20.

Figure 2.  The pseudocode of model training, predicting, and ten-fold cross-validation. The ten-fold cross-
validation was repeated ten times to reduce the variability introduced by random splitting.
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Results
Overall model performance. Table 2 summarizes the accuracy, AUROC, sensitivity, specificity, and pre-
cision of six machine learning models calculated under ten-fold cross-validation. All the measurements are 
averaged across ten repetitions described in the Methods section. Among all models, random forest achieves the 
highest prediction accuracy (0.7931) and AUROC (0.8541), which indicates a solid overall capacity to differenti-
ate between benign and malignant nodules. The GBM model outperforms others in terms of sensitivity (0.8750). 
The high sensitivity of the GBM model shows its strongness in finding malignant nodules. On the other hand, 
logistic regression has advantages in specificity (0.6806) and precision (0.8384). Unlike the GBM model, logistic 
regression is more capable of identifying benign nodules. Also, the high precision of logistic regression means 
that among its predicted malignant nodules, a large proportion is truly malignant. Overall, machine learning 
models exhibit mixed performance in predicting nodule malignancy. There is no single model dominating oth-
ers on all five measurements. We can choose different models according to the specific requirement in diagnos-
ing malignant nodules.

Model uncertainty measurement. The five measurements in Table 2 are point estimations of the model 
performance. To further understand the uncertainty of the model prediction, we conducted a bootstrap to con-
struct the empirical distributions of the five model performance  measurements18. In each step of the ten-fold 
cross-validation, we resampled with replacement from the original training set to generate a bootstrap training 
set. Then we trained machine learning models on this bootstrap training set and evaluated its prediction per-
formance on the test set. We repeated this resampling 1000 times and followed the previous model training and 
evaluation process to obtain the empirical distributions of prediction accuracy, AUROC, sensitivity, specificity, 
and precision.

Figure 3 and Table 3 compare those five empirical distributions and their summary statistics. The six machine 
learning models show a similar asymptotical performance ranking compared with their point estimation in 
Table 2. The SVM with linear kernel has the highest median prediction accuracy, followed by random forest 
and SVM with radials kernel. The random forest and GBM outperform other models on AUROC, and the GBM 
also shows advantages in terms of sensitivity. The logistic regression is the best-performed model measured by 
precision and specificity. Although the two SVM models perform relatively well in general, they introduce low 
accuracy in all five measurements, as reflected by the small outliers in Fig. 3. The performance difference among 
the six models is relatively small on the accuracy and AUROC, the two general accuracy measurements. How-
ever, the gaps are more significant if measured by precision, sensitivity, and precision, indicating diverse model 
behavior in the differentiation of malignant and benign nodules.

Variable importance analysis. We conducted a variable importance analysis to examine the impact of 
nodule characteristics on the model performance. We utilized the permutation predictor importance to measure 
the contribution of each variable to the model  prediction17. The permutation predictor importance of one vari-
able is defined as the decrease of the AUROC when that variable’s value is randomly shuffled. Since the random 
shuffling breaks the relationship between the variables (characteristics of patients and nodules) and response 
(nodule malignancy), any decrease in AUROC indicates the model’s dependency on that shuffled variable. Using 
permutation predictor importance has three advantages. First, its calculation does not rely on the specific model 
form. Second, the predictive model only needs to be trained once. Third, the random shuffling can be repeated 
multiple times to reduce the variability in the calculation.

For each variable, we averaged its permutation predictor importance across all six models. Then we normal-
ized each average by their maximum among all variables to obtain the final normalized permutation predictor 
importance. Figure 4 shows the top ten variables ranked by their normalized permutation predictor importance. 
Calcification has the most substantial impact on the prediction of nodule malignancy, followed by laterality, 
blood flow, and location. The composition and size have similar predictor importance, less than half of the top 
variable calcification. The shape of nodules is the last-tier important variable, with only 20% importance as the 
calcification. Other variables have significantly less impact on the model performance.

In addition to identifying the important variables, we further explored how they would impact the prediction 
of nodule malignancy. Figure 5 shows the percentage of malignant nodules corresponding to each value of the 
top-six important variables. A large percentage (close to 100%) indicates that the specific value of that variable 
is an indicator of malignant nodules. A small percentage (close to 0%) indicates that the specific value of the 

Table 2.  The model prediction performance measured by five measurements. Each measurement was 
calculated under ten-fold cross-validation and then averaged across ten repetitions. The highest values among 
the six models are underscored.

Model Accuracy AUROC Sensitivity Specificity Precision

GBM 0.7741 0.8497 0.8750 0.5741 0.8029

Logistic 0.7834 0.8422 0.8352 0.6806 0.8384

LDA 0.7790 0.8394 0.8452 0.6477 0.8263

SVM (Radial) 0.7688 0.8237 0.8435 0.6206 0.8149

SVM (Linear) 0.7661 0.8200 0.8322 0.6349 0.8186

Random Forest 0.7931 0.8541 0.8629 0.6547 0.8321
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Figure 3.  The empirical distributions of model performance constructed by bootstrap. Five performance 
measurements of six models were calculated on 1000 bootstrap samples.

Table 3.  The summary statistics of model performance calculated by bootstrap. The empirical 95% confidence 
intervals and means of five measurements were calculated for each model. The highest mean values among the 
six models are underscored.

Model Measurement Accuracy AUROC Sensitivity Specificity Precision

GBM
95% CI (0.7605, 0.7833) (0.8359, 0.8469) (0.8569, 0.8901) (0.5327, 0.6029) (0.7892, 0.8126)

Mean 0.7722 0.8432 0.8753 0.5678 0.8007

Logistic
95% CI (0.7646, 0.7881) (0.8238, 0.8398) (0.8205, 0.8535) (0.6223, 0.6901) (0.8149, 0.8417)

Mean 0.7770 0.8323 0.8370 0.6579 0.8292

LDA
95% CI (0.7634, 0.7857) (0.8219, 0.8375) (0.8296, 0.8670) (0.5906, 0.6659) (0.8055, 0.8328)

Mean 0.7737 0.8308 0.8473 0.6280 0.8188

SVM (radial)
95% CI (0.7240, 0.7930) (0.7711, 0.8470) (0.7851, 0.8718) (0.5956, 0.6489) (0.7944, 0.8292)

Mean 0.7798 0.8378 0.8560 0.6288 0.8205

SVM (linear)
95% CI (0.7224, 0.7898) (0.7694, 0.8439) (0.7790, 0.8608) (0.6077, 0.6586) (0.7975, 0.8323)

Mean 0.7779 0.8343 0.8466 0.6417 0.8240

Random forest
95% CI (0.7670, 0.7930) (0.8363, 0.8523) (0.8449, 0.8743) (0.5860, 0.6538) (0.8060, 0.8310)

Mean 0.7801 0.8443 0.8605 0.6208 0.8182
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variable is an indicator of benign nodules. A close-to-50% percentage shows no strong indication of the nodule 
malignancy. We find that calcification, unilateral, enriched blood flow, left- or right-located, solid composition, 
and larger size (greater than 0.8 cm) are strong indicators of malignant nodules. On the other hand, a cystic 
nodule located at the isthmus is more likely benign. It should be mentioned that Figs. 4 and 5 emphasize the 
marginal effects of variables on the model prediction. The non-top important variables may also impact the 
model performance through interactions with other variables.

Comparison between model prediction and expert assessment. One objective of building machine 
learning models is to assist the diagnosis of malignant thyroid nodules before surgery. To evaluate how well the 
proposed models fulfilled this objective, we performed a comparative analysis between model prediction and 
expert assessment. First, we removed the true nodule malignancy from the original dataset to create a blind 
dataset. Second, we provided the blind dataset to three surgeons specializing in thyroid cancer. The surgeons 
were then asked to assess the malignancy of all 1232 nodules in the dataset. Two of the three surgeons are from 
Shengjing Hospital of China Medical University, and one is from China – Japan Union Hospital of Jilin Uni-
versity. All three surgeons own more than ten years of clinical experience. Third, we adopted the majority vote 
among three surgeons’ judgments as the final prediction for each nodule. Finally, we compared the prediction 
results from the surgeons with the ones from the machine learning models. It is worth noting that the surgeons 
and models have the same access to the variables in Table 1. Therefore, the comparison is fair. The following text 
will refer to the three surgeons as the experts.

Table 4 compares the five prediction measurements between the expert assessment and random forest. We 
choose random forest since it has the highest prediction accuracy, AUROC, and the second-highest sensitivity, 
specificity, and precision (Table 2). Unlike the model prediction, the expert assessment does not provide the 
probability of benign or malignant. Therefore, the AUROC cannot be used in this comparison. Instead, we use 
F1 score, the harmonic mean of the precision and sensitivity, to evaluate the overall  diagnosis21. The F1 score 
measures the model’s overall capacity to identify malignant nodules. We found that the random forest outper-
formed expert assessment on the accuracy, F1 score, and sensitivity, with leading margins of 11%, 12%, and 24%, 
respectively. The measurements expert assessment shows advantages are specificity and precision, with leading 
margins of 15% and 3%, respectively.

The comparison results in Table 4 demonstrate the model’s superior predictive performance over the expert 
assessment. In summary, the random forest is (1) more accurate than the expert in general (higher accuracy); 

Figure 4.  The normalized permutation predictor importance for the top ten variables. Variables are sorted from 
high to low based on their relative importance.
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Figure 5.  The percentage of malignant nodules corresponding to each value of the top-six important variables. 
A large percentage shows that the specific value indicates malignant nodules. A small percentage shows that the 
specific value is an indicator of benign nodules. A close-to-50% percentage shows no strong indication of the 
nodule malignancy.

Table 4.  The comparison of five prediction measurements between expert assessment and random forest. The 
expert assessment is the majority vote of three surgeons’ judgments. The highest values between the experts 
and model are underscored.

Method Accuracy F1 Sensitivity Specificity Precision

Expert Assessment 0.6843 0.7231 0.6203 0.8111 0.8669

Random Forest 0.7931 0.8472 0.8629 0.6547 0.8321
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(2) more capable of finding malignant nodules from the dataset (higher sensitivity and F1 score). On the other 
hand, the experts tend to find benign nodules more efficiently (higher specificity). Even though the expert assess-
ment is slightly more accurate among predicted malignant nodules (higher precision), the higher F1 score of the 
random forest indicates its overall stronger capacity in identifying malignant nodules.

To understand the predictive behavior of the experts and random forest, we compared their confusion matri-
ces in Table 5. Among the correct predictions (diagonal elements), the random forest found more malignant 
nodules than the expert (714 vs. 508). In contrast, the experts identified more benign nodules than the random 
forest (335 vs. 272). This result echoes Table 4, where random forest shows high sensitivity (true malignant rate) 
and experts show high specificity (true benign rate). Among the wrong predictions (off-diagonal elements), the 
random forest overestimated more nodules’ malignancy than the expert (141 vs. 78). However, the experts under-
estimated more nodules’ malignancy than the random forest (311 vs. 105). This comparison implies an opposite 
predictive behavior – the experts are more conservative in predicting nodules as malignant, while the random 
forest is more aggressive in the prediction. The errors caused by aggressive prediction are less than those caused 
by conservative prediction, making the random forest more accurate than the expert assessment in general.

Discussion
In this study, we utilized machine learning methods to improve the diagnosis of malignant thyroid nodules. 
We collected a real dataset of 724 patients’ demographic and clinical information. The dataset contains 1232 
nodules from those patients with their true malignancy confirmed by thyroidectomy. Based on this dataset, we 
built six machine learning models to predict the malignancy of thyroid nodules. We used five measurements to 
provide a comprehensive evaluation of the model performance. Although no single model outperforms others 
among all measurements, the decision-tree-based nonlinear models, i.e., random forest and GBM, exhibit better 
overall diagnostic accuracy (measured by accuracy and AUROC) and the capacity to identify malignant nodules 
(measured by sensitivity). Similar model performance is observed in both point estimation and uncertainty 
measurement (Tables 2 and 3). The linear predictive model, logistic regression, is good at finding benign nodules 
(measured by specificity). Consequently, random forest and GBM are more suitable for early cancer screening, 
but at the expense of false malignant diagnosis. Interestingly, the logistic regression made the most correct 
predictions among predicted malignant nodules, which is shown by the highest precision in point estimation 
and uncertainty measurement. Thus, the logistic regression can be ensembled with random forest or GMB to 
improve the model’s diagnostic capacity.

Overall, the machine models exhibit satisfactory prediction performance. The average accuracy and AUROC 
of the six models are 0.78 and 0.85, respectively. In practice, an AUROC greater than 0.8 indicates excellent 
discrimination between binary  outcomes19. One encouraging result of our study is the superior model perfor-
mance over the expert assessment. The best-performed model, random forest, beat the expert assessment by 
11% on accuracy, and 12% on F1 score, the two general measurements. One interpretation of better prediction 
by machine learning models is that they are able to capture the complex nonlinear relationships among different 
variables. Such relationships are implicitly contained in the dataset and are challenging for humans to identify. 
The models are also more aggressive in predicting nodules as malignant. As a result, the machine learning model 
is valuable for diagnosing thyroid cancer.

Our variable importance analysis identified key variables in diagnosing malignant thyroid nodules (Figs. 4 
and 5). Those variables are consistent with previous findings in clinical and modeling studies. For example, it has 
been recognized that the existence of calcification, cystic composition, and large nodule size are strong indicators 
of malignant  nodules9–13. Such consensus is confirmed in our analysis. Regarding other important variables, there 
are some debates about the role of blood flow in the diagnosis of malignant  nodules22. Our study suggests that 
the nodules with enriched blood flow are more likely to be malignant. Laterality, one of the important variables, 
was largely ignored in previous studies. We find that the unilateral nodules have a high possibility of becoming 
malignant. We suspect the potential reason is that in the ultrasound examination, if nodules are observed in 
multiple locations (left lobe, right lobe, or isthmus), only those with a high likelihood of being malignant are 
recorded. Therefore, there tend to be more unilateral malignant nodules in the dataset. The model also recognizes 
the nodule location as an important variable. However, being located at the isthmus reduces the possibility of 

Table 5.  The confusion matrices of expert assessment and random forest. The expert assessment is the 
majority vote of three surgeons’ judgments. The diagonal elements are the correct predictions. The off-diagonal 
elements are the wrong predictions.

Truth

Benign Malignant

Expert assessment

Prediction

Benign 335 311

Malignant 78 508

Random forest

Prediction

Benign 272 105

Malignant 141 714
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malignancy, which contradicts previous  literature23. More data from larger patient cohorts would be necessary 
to further investigate the true impact of nodule location.

Several topics are worth exploration in future. First, the current dataset contains 724 patients with 1232 
nodules. Although the sample size is not small, collecting more data will increase the diversity of patients and 
nodules. The model trained on a more extensive and diverse dataset would generalize better to new patients 
when deployed in real-world scenarios. Second, the ultrasound-related variables in our dataset were extracted 
by sonographers from the original ultrasonography. Such extraction may omit important features only detect-
ible in the raw images. A deep convolutional neural network, the backbone of modern artificial intelligent 
systems, can be applied to catch those features directly from the ultrasonography and would improve the model 
 performance24. Third, we can encompass novel techniques beyond traditional ultrasound and blood tests into 
the modeling process. For example, contrast-enhanced ultrasound (CEUS) and ultrasound elastography (USE) 
could potentially enhance diagnosis through better evaluation of nodule perfusion and  vascularity25. Addition-
ally, single-cell RNA-sequencing (scRNA-seq) can be applied to reveal the transcriptomes of thyroid nodules 
and identify new prognostic molecular  biomarkers26–30. The gene expression dynamic associated with nodule 
malignancy will potentially increase the model performance, similar to the progress made by scRNA-seq in other 
cancer diagnoses and precision  medicine31, 32. Finally, the machine learning framework used in this study can 
evaluate the quality of clinical data for thyroid cancer  diagnosis33. A machine learning model can be trained on 
datasets collected from different studies. A high-quality dataset is expected to contain enough information for 
models accurately predict nodule malignancy. Therefore, the model prediction accuracy will serve as a proxy 
for the data quality of different datasets.

Data availability
The data used in this study is available at Zenodo repository: https:// doi. org/ 10. 5281/ zenodo. 64654 36. The source 
code that implemented the result in this study is available at GitHub repository: https:// github. com/ xnnba 1984/ 
Thyro id- Cancer.
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