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Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may
help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the
intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to
normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV
estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of
prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based
on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent
state-of-the-artmethods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while
maintaining a reduced computational burden.

1. Introduction

Automated brain image analysis has a huge potential to objec-
tively help in the diagnosis and followupofmanyneurological
diseases. To perform such analysis tasks, one of the first image
processing operations is the delimitation of the area of
interest. For brain image analysis, this operation has received
many different names such as brain extraction, skull strip-
ping, or intracranial cavitymasking. In each case, the aim is to
isolate the brain or intracranial tissues (depending on area
definition) from the raw image.The accurate estimation of the
intracranial volume plays crucial role to obtain robust and
reliable normalized measurements of brain structures [1].

The importance of this operation is reflected by the large
number of methods proposed over the past decade [2–13].
Many of these methods are based on the modeling of brain
intensities (normally using T1 weighted images due to their

excellent contrast for brain tissues) combined with a set of
morphological operations [3, 5, 12] or atlas priors [9].

The most widely used automated methods correspond
to those that are publically available. For example, the BET
(brain extraction tool) software from the FSL image process-
ing library [2] is one of the most used techniques probably
due to its accuracy, ease of use, and low computational load.
Other techniques like 3dIntracranial [6], hybrid watershed
algorithm (HWA) [5], or brain surface extractor (BSE) [13]
have been also widely used.

Intracranial cavity extraction can also be obtained indi-
rectly as part of a full modeling of brain intensities using a
parametric model such as that done in Statistical Paramet-
ric Mapping (SPM) [14] or VBM8 (http:/dbm.neuro.uni-
jena.de/vbm/) software packages.

Over the last decade, methods have been proposed to
automatically measure the intracranial cavity volume (ICV)
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by using nonlinear registration atlas-based approaches [15,
16].

More recent works of special interest for the brain
extraction problem are methods like MAPS [10] and BEaST
[11]. Bothmethods rely on the application of amultiatlas label
fusion strategy. MAPS uses multiple nonlinear registrations
followed by a voxel-wise label fusion while BEaST uses a
single linear registration in combinationwith nonlocal patch-
based label fusion. Both techniques scored well on the LONI
segmentation validation engine (SVE) [17] comparison for
brain extraction (see http://sve.bmap.ucla.edu/archive/)
although MAPS has a much larger computational load
compared to BEaST.

In this paper we present an extension of the BEaST
methodology where we aim to improve the accuracy while
reducing the computational load. The main contributions of
the proposed method are threefold: first, the use of a new
pipeline for the multiatlas library construction for improved
normalization between template library subjects; second, the
use of a new bilateral patch similarity measure to better
estimate pattern similarities; and finally, a blockwise labeling
approach that enables significant savings in computational
cost and imposing at the same time a regularization con-
straint that increases the method’s accuracy.

2. Materials and Methods

Since the method proposed in this paper is based on the use
of a library of prelabeled cases to perform the segmentation
process, we will first describe the template library construc-
tion and then present the proposed method.

2.1. Template Library Construction

2.1.1. Library Dataset Description. A library of manually
labeled templates was constructed using subjects from differ-
ent publically available datasets. To include as large age range
as possible, different datasets nearly covering the entire
human lifespan were considered. MRI data from the follow-
ing databases were used.

(i) Normal Adults Dataset. Thirty normal subjects (age range:
24–75 years) were randomly selected from the open access
IXI dataset (http://www.brain-development.org/). This
dataset contains images from nearly 600 healthy subjects
from several hospitals in London (UK). Both 1.5 T (7 cases)
and 3 T (23 cases) images were included in this dataset. 3 T
images were acquired on a Philips Intera 3 T scanner (TR =
9.6ms, TE = 4.6ms, flip angle = 8∘, slice thickness = 1.2mm,
volume size = 256 × 256 × 150, voxel dimensions = 0.94 ×
0.94 × 1.2mm3). 1.5 T images were acquired on a Philips
Gyroscan 1.5 T scanner (TR = 9.8ms, TE = 4.6ms, flip angle =
8∘, slice thickness = 1.2mm, volume size = 256 × 256 × 150,
voxel dimensions = 0.94 × 0.94 × 1.2mm3).

(ii) Alzheimer’s Disease (AD) Dataset. Nine patients with
Alzheimer’s disease (age range = 75–80 years, MMSE = 23.7 ±
3.5, CDR = 1.1 ± 0.4) scanned using a 1.5 T General Elec-
tric Signa HDx MRI scanner (General Electric, Milwaukee,

WI) were randomly selected. This dataset consisted of high
resolution T1-weighted sagittal 3D MP-RAGE images (TR =
8.6ms, TE = 3.8ms, TI = 1000ms, flip angle = 8∘, slice thick-
ness = 1.2mm, matrix size = 256 × 256, voxel dimensions =
0.938 × 0.938 × 1.2mm3). These images were downloaded
from the brain segmentation testing protocol [18] website
(https://sites.google.com/site/brainseg/) while they belong
originally to the open access OASIS dataset (http://www
.oasis-brains.org/).

(iii) Pediatric Dataset. Ten infant datasets were also down-
loaded from the brain segmentation testing protocol [18]
website (https://sites.google.com/site/brainseg/). These data
were originally collected by Gousias et al. [19] and are also
available at http://www.brain-development.org/ (this dataset
is property of the Imperial College of Science Technology &
Medicine and has been used after accepting the license
agreement). The selected 10 cases are from the full sample of
32 two-year-old infants born prematurely (age = 24.8 ± 2.4
months). Sagittal T1 weighted volumes were acquired from
each subject (1.0 T Phillips HPQ scanner, TR = 23ms, TE =
6ms, slice thickness = 1.6mm, matrix size = 256 × 256, voxel
dimensions = 1.04 × 1.04 × 1.6mm3 resliced to isotropic
1.04mm3).

Downloaded images from the different websites consisted
of raw images with no preprocessing and no intracranial
cavity masks were supplied with these data. To generate the
template library, all 49 selected T1-weighted images were
preprocessed as follows.

2.1.2. Denoising and Inhomogeneity Correction. All images in
the database were denoised using the spatially adaptive non-
local means (SANLM) filter [20] to enhance the image qual-
ity. The SANLM filter can deal with spatially varying noise
levels across the image without the need of explicitly estimat-
ing the local noise level which makes it ideal to process data
with either stationary or spatially varying noise (as in the case
of parallel imaging) in a fully automatic manner. To further
improve the image quality, an inhomogeneity correction step
was applied using the N4 method [21]. The N4 method is
an incremental improvement of the N3 method [22] that has
been implemented in the ITK toolbox [23] and has proven to
be more efficient and robust.

2.1.3. MNI Space Registration. In order to perform the seg-
mentation process, templates and the subject to be segmented
have to be placed in the same stereotactic space. Therefore, a
spatial normalization based on a linear registration to the
Montreal Neurological Institute (MNI 152) space was per-
formed using ANTS software [24]. The resulting images in
theMNI space have a size of 181 × 217 × 181 voxels with 1mm3
voxel resolution.

2.1.4. Intensity Normalization. As the proposed method is
based on the estimation of image similarities using intensity-
derivedmeasures, every image in the librarymust be intensity
normalized in order to make the intensity distributions
comparable among them. We use a tissue-derived approach
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to force mean intensities of white matter (WM), grey matter
(GM), and cerebrospinal fluid (CSF) to be as similar as
possible across subjects of the library in a similar manner
as done by Lötjönen et al. [25]. For this purpose, mean
values of CSF, GM, and WM tissues were estimated using
the trimmed mean segmentation (TMS) method [26] which
robustly estimates the mean values of the different tissues by
excluding partial volume voxels from the estimation jointly
with the use of an unbiased robust mean estimator. Such
estimation was performed using only voxels within the stan-
dard brain mask area of MNI 152 template to minimize the
inclusion of external tissues. Finally, a piecewise linear inten-
sity mapping [25, 27] was applied ensuring that WM had
an average intensity of 250, GM of 150, and CSF of 50 (see
Figure 1).

2.1.5.Manual Labeling. As commented previously, there is no
standard definition of what should be included in brain or
intracranial masks (it all depends on what you are looking
for). In BEaST, the mask definition included the following
tissues:

(i) all cerebral and cerebellar white matters,
(ii) all cerebral and cerebellar gray matters,
(iii) CSF in ventricles (lateral, 3rd, and 4th) and the

cerebellar cistern,
(iv) CSF in deep sulci and along the surface of the brain

and brain stem,
(v) the brainstem (pons, medulla),
(vi) internal brain blood vessels.

In the present work we extended that definition by including
all external CSF (thus covering total CSF of IC) and therefore
selecting most of the intracranial cavity volume. We have not
included other intracranial tissues in our mask definition
such as dura, exterior blood vessels, or veins because they are
normally of no interest for brain analysis. This mask defini-
tion has been traditionally used to estimate the total intracra-
nial volume (TIV) in many methods such RBM [28], SPM8,
or VBM8methods to normalize brain tissue volumes [29, 30]
as it is expected to be nearly constant in each subject during
the adult lifespan.

To generate the template masks we followed a similar
approach as described in BEaST paper since full manual
labelingwas too time consuming and error prone as discussed
in Eskildsen et al. [11]. All template images in the library were
automatically segmented using BEaST software to have an
initial mask. Conditional mask dilation (only over CSF
voxels) was applied to include external CSF not already
included in the BEaST mask. Finally, all the images were
manually corrected by an expert on brain anatomy using the
ITK-SNAP software [31] to remove segmentation errors. In
Figure 2 we show an example of our mask definition com-
pared to BEaST definition for a patient with Alzheimer’s
disease.

To further increase the number of available priors on the
library, all the cases were flipped along the midsagittal plane
using the symmetric properties of the human brain yielding
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Figure 1: Proposed intensity normalization via a piecewise lin-
ear mapping. CSF, GM, and WM mean values are automatically
estimated using TMS method and mapped to their corresponding
normalized values (50, 150, and 250).

a total number of 98 labeled templates (original and flipped)
as done in BEaST paper [11].

Compared to BEaST template library creation, the main
differences are the use of a denoisingmethod to improve data
quality, the use of a different registration method (ANTS
instead of ANIMAL), and the application of different inten-
sity normalization method. The scheme of the template lib-
rary construction pipeline is summarized in Figure 3.

2.2. Proposed Method. While the BEaST technique was
designed to improve downstream analysis such as the assess-
ment of cortical thickness, our proposed method has exten-
ded the mask definition to include extracerebral spinal fluid
as it can be interesting to obtain normalized brain and
tissue specific volumes in many neurological diseases such as
Alzheimer or Parkinson. We will refer our proposed method
as NICE (nonlocal intracranial cavity extraction). Since the
method proposed in this paper is an evolution of the BEaST
brainmaskingmethod [11], we refer the reader to the original
paper for the detailed method overview. Here, we summarize
the NICE method and present the main improvements
introduced to increase the method performance.

2.2.1. Preprocessing. To segment a new case, it must be first
preprocessed using the proposed normalization pipeline (see
Section 2.1 and Figure 2) so that the new case is spatially
aligned with the template library and to ensure that it has the
same intensity characteristics.

2.2.2. Improved Nonlocal Means Label Fusion. In the classical
nonlocal means label fusion technique proposed by Coupé
et al. [32], for each voxel 𝑥

𝑖
from the new image to be seg-

mented the method estimates the final label by performing
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(a) (b) (c)

Figure 2: Example of mask differences between our mask definition (b) and BEaST mask (c) for an Alzheimer’s case (a). As can be noticed,
all external CSF is included in NICE mask while this is not case at the corresponding BEaST mask (example case from Oasis dataset).

Original data Filtered data MNI registered I. normalization Manual labelling

Figure 3: Template library construction pipeline.
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thus avoiding unneeded computations.
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where 𝜇 and 𝜎 are the mean and standard deviation of the
patches surrounding 𝑥

𝑖
and 𝑥

𝑠,𝑗
at location 𝑗 of the template

𝑠.

Finally, the final label 𝐿(𝑥
𝑖
) is computed as

𝐿 (𝑥
𝑖
) = {

1 V (𝑥
𝑖
) ≥ 0.5

0 V (𝑥
𝑖
) < 0.5.

(4)

In this paper, we introduce twomodifications to this strategy.
First, wemake use of the fact that all the images are registered
to a common space and therefore a locality principle can be
used, assuming that samples that are spatially closer are likely
to be more similar in their labels. However, this locality
principle is limited by residual anatomical variability and
registration errors in the template library space.Therefore, we
redefined the similarity weight to take into account not only
intensity similarity but also spatial patch proximity:
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(5)

where 𝑥
𝑖
and 𝑥

𝑗
are the coordinates of patch centers and 𝜎

𝑑

is normalization constant. We set 𝜎
𝑑
= 8mm experimentally

which curiously coincides with the typical Gaussian blurring
kernel size normally used on voxel based morphometry
(VBM) to deal with registration error and subject anatomical
variability.This approach shares some similarities to the bilat-
eral filter proposed by Tomasi and Manduchi [34] for image
denoising. We experimentally set the threshold th to 0.97
instead of 0.95 as used in BEaST (this difference can be
explained due to the use of filtered data and a different
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intensity normalization method). Also a comment about ℎ
parameter of (5) is required since it plays a major role in the
weight computation process. In [32] this value was set to
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) = 𝜆 argmin

𝑥𝑠,𝑙
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)





2
+ 𝜀, (6)

where 𝜀 is a small constant to ensure numerical stability. In
[32] 𝜆was set to 1 but we found experimentally that a value of
0.1 produced better results in the proposed method possibly
due to the improved intensity normalization.

The second modification concerns the voting scheme.
Classical nonlocal label fusion works in a voxelwise manner
which sometimes results in a lack of regularization on the
final labels. Given that we wish to segment a continuous ana-
tomical structure, some level of regularization can be used
as a constraint achieved by a blockwise vote scheme, similar
to the one used by Rousseau et al. [35] for label fusion and
derived from MRI denoising [36]. This bilateral blockwise
vote is computed as follows:
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where 𝐵(𝑥
𝑖
) is a 3D region which is labeled at the same time.

Finally, the vote for the voxel 𝑥
𝑖
is obtained in an overcom-

plete manner by averaging over all blocks containing 𝑥
𝑖
and

the label 𝐿(𝑥
𝑖
) is decided as in (4).

With overlapping blocks, it is worth noting that the
distance between adjacent block centers can be increased to
be equal or higher than 2 voxels. Therefore, we can obtain
important accelerating factors compared to the voxelwise
version of the algorithm (e.g., for a distance equal to 2 voxels
in all three directions a speedup factor of 23 = 8 can
be obtained). The described approach is used within the
multiresolution framework as described in the BEaST paper
[11].

3. Experiments

3.1. Experimental Datasets. To validate the proposedmethod,
different datasets were used. These datasets can be classified
two categories: (a) those that were used to measure the
accuracy of the different methods compared and (b) those
used to measure their reproducibility.

3.1.1. Accuracy Datasets

LOO Dataset. To measure the accuracy of the proposed
method, we used the template library dataset by using a leave-
one-out (LOO) cross validation. The characteristics of this
dataset have already been described in Section 2.1. Each of
the 49 (nonflipped) library images was processed with the
remaining images as priors (after removing the current case
and its flipped version). The resulting segmentation was
compared to the corresponding manual labels in the library.

Independent Validation Dataset. To avoid any factor associ-
ated to our ICmask definition that could bias the comparison

of the compared methods, we decided to use an independent
dataset with its correspondingmanual segmentations.There-
fore, we performed a validation using an independent dataset
available in the online SegmentationValidation Engine (SVE)
[17].The SVE IC segmentation followed rules similar to those
used here. This dataset consists of 40 T1w MRI scans and
its associated manual labels (20 males and 20 females; age
range 19–40).This high-resolution 3D Spoiled Gradient Echo
(SPGR)MRI volumewas acquired on aGE 1.5 T system as 124
contiguous 1.5mm coronal brain slices (TR range 10.0ms–
12.5ms; TE range 4.22ms–4.5ms; FOV 220mm or 200mm;
flip angle 20∘) with in-plane voxel resolution of 0.86mm (38
subjects) or 0.78mm (2 subjects).

3.1.2. Reproducibility Dataset. Although the accuracy of a
method is very important, another important feature is its
reproducibility. Indeed, the capability to detect changes
induced by the pathology in a consistent manner is a key asp-
ect. To measure the reproducibility of the different compared
methods, we used the reproducibility dataset of the brain
segmentation testing protocol website (https://sites.google
.com/site/brainseg/). This dataset consists of a test-retest
set of 20 subjects scanned twice in the same scanner and
sequence (SSS) and another set of 36 subjects scanned twice
on different scanner and different magnetic field strength
(DSDF) (1.5 and 3 Tesla).

SSS Dataset. To measure the reproducibility of the different
methods compared on the same subjects and using the same
MRI scanner, we used a subset of the OASIS (www.oasis-
brains.org) dataset consisting in 20 subjects (age = 23.4 ± 4.0
years, 8 females) who were scanned using the same pulse
sequence two times (1.5 T Siemens Vision scanner, TR =
9.7ms, TE= 4ms, TI = 20ms, flip angle = 10∘, slice thickness =
1.25mm, matrix size = 256 × 256, voxel dimensions = 1 × 1 ×
1.25mm3 resliced to 1 × 1 × 1mm3, averages = 1) [37].

DSDF Dataset. To determine the consistency of the segmen-
tations when different MRI scanners and different magnetic
field strength were used, 36 adult subjects were scanned using
two MRI scanners (1.5 T and 3.0 T General Electric Signa
HDx scanner), mean interscan interval between 1.5 T and 3 T
scanner = 6.7 ± 4.2 days) [18].

3.2. Method Parameter Settings. To study the impact of the
method parameters, an exhaustive search of the optimum
values was performed using the LOOdataset using the library
segmentations as gold standard references. Each one of the
49 subjects in the library was processed using the remaining
cases of the library as priors and the resulting segmentation
was compared to the manual labeling. To measure segmen-
tation accuracy, the Dice coefficient [38] was used. Method
parameters such as patch size and search area were set as in
BEaST method while an exhaustive search for the optimal
number of templates 𝑁 used for the segmentation process
was carried out (see Figure 4).This search demonstrated that
the segmentation accuracy stabilizes around 𝑁 = [20–30]
range which is in good agreement with previous results from
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Table 1: Average DICE coefficient for the different methods compared on the different used datasets. The best results from each column are
in bold.

Method Data All (𝑁 = 49) Adults (𝑁 = 30) AD (𝑁 = 9) Infants (𝑁 = 10)

NICE
DICE 0.9911 ± 0.0020 0.9921 ± 0.0015 0.9892 ± 0.0016 0.9899 ± 0.0019
SEN 0.9907 ± 0.0036 0.9916 ± 0.0035 0.9887 ± 0.0029 0.9898 ± 0.0038
SPE 0.9971 ± 0.0012 0.9975 ± 0.0010 0.9964 ± 0.0015 0.9965 ± 0.0009

BEAST
DICE 0.9880 ± 0.0032 0.9891 ± 0.0030 0.9857 ± 0.0018 0.9866 ± 0.0034
SEN 0.9889 ± 0.0062 0.9902 ± 0.0060 0.9830 ± 0.0049 0.9900 ± 0.0050
SPE 0.9955 ± 0.0019 0.9958 ± 0.0017 0.9960 ± 0.0016 0.9940 ± 0.0019

VBM8
DICE 0.9762 ± 0.0052 0.9788 ± 0.0026 0.9690 ± 0.0064 0.9750 ± 0.0033
SEN 0.9740 ± 0.0121 0.9796 ± 0.0051 0.9587 ± 0.0132 0.9710 ± 0.0138
SPE 0.9926 ± 0.0027 0.9924 ± 0.0019 0.9931 ± 0.0033 0.9926 ± 0.0041

Table 2: NICE compared to the other two methods (𝑃 values). Significant differences (𝑃 < 0.05) are in bold.

Method Data All (𝑁 = 49) Adults (𝑁 = 30) AD (𝑁 = 9) Infants (𝑁 = 10)

BEAST
DICE 6.30 × 10−8 5.50 × 10−6 5.16 × 10−4 0.014
SEN 0.074 0.283 0.012 0.913
SPE 2.54 × 10−6 2.97 × 10−5 0.498 0.002

VBM8
DICE 1.26 × 10−33 3.97 × 10−32 3.35 × 10−7 3.29 × 10−10

SEN 4.99 × 10−15 2.60 × 10−15 1.61 × 10−5 6.18 × 10−4

SPE 2.06 × 10−18 2.73 × 10−19 0.010 0.009
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Figure 4: Evolution of segmentation accuracy in function of the
number of training subject templates used in the segmentation
process.

BEaST. We decided to use 𝑁 = 30 as default value given the
reduced computational cost of the proposed method.

Another parameter of our proposed block-based
approach is the spacing between adjacent blocks which
jointly with patch size defines the degree of overlap between
blocks.Weobserved experimentally that the optimal value for
that parameter was 2 voxels in all 3 dimensions since the
resulting accuracy was virtually the same from full overlap (1
voxel spacing) while computation time was greatly reduced.
This is in good agreement with previous results on blockwise

MRI denoising [36]. Higher block spacing resulted in worse
segmentation results.

3.3. Compared Methods. The proposed method was com-
pared with BEaST and VBM8 methods. Both BEaST and
VBM8 methods were selected because of their public acces-
sibility and because they are among the highest ranking
methods on the online Segmentation Validation Engine
website [17] (http://sve.bmap.ucla.edu/archivel/).

To ensure a fair comparison all three methods, we used
the same preprocessing pipeline with the exception of the
intensity normalization step (i.e., using ANTS registration to
ensure the same image space and the same homogenization
and filtering to ensure the same image quality). In this way,
only the labeling process was evaluated eliminating other
sources of variability.

BothNICE and BEaSTwere runwith the same number of
preselected templates (𝑁 = 30) to ensure a fair comparison.
We used release 435 of VBM8, which was the latest version at
the time of writing. To compare the segmentation results of
the different methods, several quantitativemetrics were used:
DICE coefficient [38], sensitivity, and specificity.

4. Results

4.1. Accuracy Results. InTable 1, the averageDICE coefficient,
sensitivity, and specificity for all 49 cases of LOO dataset
using the different methods compared are provided. Results
for all the cases together and separated by dataset subtype are
provided (Alzheimer’s disease (AD), normal infants (infant),
and normal adult subjects (adult)). As can be noticed, NICE
method obtained the best results in all the situations. Table 2
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Figure 5: Comparison of intracranial cavity volume estimation results. Automatic versus manual volume correlation for all the compared
methods and datasets used. The first row shows results for the whole library (𝑁 = 49), the second only for normal adults (𝑁 = 30), the third
only for AD subjects (𝑁 = 9), and the fourth only for infant cases (𝑁 = 10). Red line represents ideal mapping between estimated and real
volumes to highlight eventual over or under volume estimations (it does not represent the fitting line).

shows the statistical significance of these differences (paired
𝑡-test).

Intracranial cavity volume is normally used to normalize
brain tissue volumes to provide a tissuemeasure independent
of head size. Therefore, the ability of the compared methods
to provide an accurate ICV estimation has to be assessed. To

this end, volume estimations using the different compared
methods were obtained and compared to gold standard
manual volumes. Figure 5 shows the automatic versusmanual
volume correlation for all the compared methods and dataset
used. As can be noticed, theNICEmethod had highest overall
correlation (0.976) while BEaST and VBM8 had 0.923 and
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Figure 6: Example segmentation results usingNICE (a), BEaST (b), andVBM8 (c)methods on the three different population samples. Sagittal
slices and 3D renderings of the segmentations are shown. Red voxels correspond to correct voxels in the segmentation compared to the gold
standard. Blue voxels are false positives and green voxels are false negatives (AD case belongs to Oasis dataset and the adult and infant cases
belong to the IXI dataset).

0.778, respectively. In Figure 6, a visual comparison of the
segmentation results of three examples belonging to the three
different subject populations can be performed.

To perform an independent validation of the compared
methods, the SVE dataset was used. The SVE web service
allows the comparison of results with hand-corrected brain
masks. As done in BEaST and MAPS papers, we used the
brain masks provided by the SVE website which included all
the internal ventricular CSF and some external sulcal CSF.
Although this mask definition slightly differs from our mask
definition (not all CSF was included), this does not represent
a problem for the method’s comparison since all the methods
shared the same references.

Validation of NICE using the SVE test dataset resulted
in a mean DICE of 0.9819 ± 0.0024 (see http://sve.bmap.ucla
.edu/archivel/). At the time of writing, this result was the best
(𝑃 < 0.01) of all themethods published on thewebsite. BEaST
had a DSC of 0.9781 ± 0.0047 and VBM8 obtained a DSC of
0.9760 ± 0.0025. Sensitivity and specificity results are also
included in Table 3. A visual representation of false positive
and false negative as supplied by the website is presented at
Figure 7.

4.2. Reproducibility Results. In Table 4, the average ICV dif-
ferences for the differentmethods anddatasets is provided.As

Table 3: Segmentation results of SVE dataset using different quality
measures. NICEwas compared to the other twomethods (𝑃 values).
Best results are in bold (note that in this dataset, BEaST method
obtained a significant higher sensitivity than NICE at the expense
of a lower specificity).

Method DICE Sensitivity Specificity
NICE 0.9819 ± 0.0024 0.9857 ± 0.0044 0.9960 ± 0.0015

BEAST 0.9781 ± 0.0047 0.9887 ± 0.0035 0.9940 ± 0.0025
(𝑃 = 9.82 × 10−7) (𝑃 = 0.0001) (𝑃 = 2.11 × 10−5)

VBM8 0.9760 ± 0.0025 0.9840 ± 0.0046 0.9942 ± 0.0014
(𝑃 = 2.56 × 10−15) (𝑃 = 0.06) (𝑃 = 4.31 × 10−8)

can be noticed,NICEmethod obtained themost reproducible
results in all situations. For the SSS dataset experiment (test-
retest), NICE significantly improved BEaST method while
these differences were not significant for VBM8 method. For
the DSDF dataset experiment, volume differences were
higher than in the previous experiment. In this case, NICE
was found to yield significantly improved estimates (𝑃 <

0.05) compared to the two other methods.
Finally, execution times of the different methods were

compared. NICE method took around 4 minutes (NICE was
implemented as amultithreadedMEXC file), BEaSTmethod
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Figure 7: False positive and false negative maps for NICE, BEaST, and VBM8 on SVE dataset. VBM8 tended to produce a systematic
oversegmentation compared to the used manual gold standard. The errors obtained by NICE and BEaST were more uniformly distributed
indicating nonsystematic segmentation errors. Note that in the images provided by the SVE website the vertical scale measuring error is not
the same over all images.

Table 4: Percent mean IC volume differences for the SSS dataset.
NICE was compared to the other two methods (𝑃 values). Best
results are in bold.

Method SSS dataset DSDF dataset
NICE 1.4046 ± 0.2447 3.1856 ± 1.0280

BEAST 2.1463 ± 0.6622 5.4696 ± 1.9097
(𝑃 = 3.21 × 10−4) (𝑃 = 1.55 × 10−10)

VBM8 1.4268 ± 0.3843 3.7741 ± 1.1627
(𝑃 = 0.8073) (𝑃 = 0.0242)

took around 25 minutes (we have to note that no multi-
threading optimizations were used here), and VBM8 took
around 8minutes on average (in this time it was also included
the different tissue segmentations). All the experiments were
performed using MATLAB 2009b 64 bits (Mathworks, Inc.)
on a desktop PC with an Intel Core i7 with 16GB RAM
running windows 7.

However, it is worth noting that if we reduce the number
of selected templates to 10 cases, we can reduce the processing
time to less than 1 minute with only a small reduction of the
segmentation accuracy (0.9911 to 0.9901 in the LOO accuracy
experiment).

5. Discussion

We have presented a new method for intracranial cavity
extraction that outperforms related state-of-the-art methods
and a previously proposed method (BEaST) by our group

both in terms of accuracy and reduced computational load.
In addition, we demonstrated that the new proposed method
is more robust in terms of measurement reproducibility.

This last point is of special interest since in many cases
we are not only interested in the specific brain volume at
one time point but in its evolution in a longitudinal study.
NICE method was demonstrated to be significantly more
reproducible and accurate than BEaST method. In addition,
VBM8 was found to be almost as reproducible as NICE but
at the expense of introducing larger systematic errors on the
segmentations. The high level of reproducibility of VBM8
may be explained by the fact that it uses a single template
and thus a more deterministic pipeline is applied. Also the
fact that it operates at 1.5mm3 resolution introduces a
blurring effect which increases the method reproducibility at
the expense of the accuracy. The increased reproducibility/
accuracy of our proposed method may have a significant
impact on the brain image analysis methods by increasing
their sensitivity to detect subtle changes produced by the dis-
ease. While the advantage of NICE in segmentation accuracy
of 0.9911 versus 0.9762 for VBM8 may appear small when
compared over the three datasets evaluated, it is statistically
significant and corresponds to more than a 2-fold reduction
in error, from 2.38% to 0.89%. In a large volume such as the
intracranial cavity (1500 cc), this reduction in error can
represent a volume of approximately 20 cc, a nonnegligible
amount. The improvement over BEaST is smaller (35%) but
still statistically significant. When evaluated on the SVE
dataset, the NICE yields a Dice overall of 0.9819, while BEaST
and VBM8 yield 0.9781 and 0.9760, corresponding to 20%
and 32% less error on average, respectively.
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The improved results of NICE over BEaST can be under-
stood thanks to improvements on two parts of the proposed
method. First, improvements on template library construc-
tion such as the improved intensity normalization yield
more coherent and better defined priors. This fact positively
impacts the intensity driven image similarities of the label
fusion part. One limitation of the first part of our validation
is in the use of manually corrected masks that may induce
a favourable bias toward BEaST and NICE. However, after
the conditional dilation and manual correction steps, almost
all edge voxels were modified, thus minimizing any bias.
Second, the blockwise and new bilateral label fusion scheme
results in more regular and accurate segmentations. The
advantages of using a 3D blockwise approach in comparison
to the previously used voxelwise are twofold: first, the fact
that we label together the whole block imposes an intrinsic
regularization which forces connected voxels to have similar
labels and second if a space between block centers is used,
a significant speed-up factor can be obtained in compari-
son with the voxelwise version. Finally, the new similarity
measure using spatial distance weighting takes into account
a locality principle that favors the contribution of closer
patches by assuming that after linear registration similar
structures are close in a similar manner as done for the well-
known bilateral filter for image denoising [34].

It is also worth noting that the segmentation accuracy
depends on the preexistence of similar local patterns within
the library. In our method, we do not need to have totally
similar templates to the case to be segmented within the
library since it is able to find locally similar patterns from
different templates in the library. However, it is also true that
if some specific pattern is not present in the library, it will
not be correctly identified and therefore the resulting seg-
mentation will be incorrect. This risk is normally reduced
when using nonlinear registrations at the expense of a much
higher computational load and the introduction of interpola-
tion artifacts in both images and associated labels. However,
this issue can be solved more efficiently (mainly in terms of
computational cost) by increasing library size with uncom-
mon cases and their associated corrected manual labels
making it unnecessary to perform costly nonlinear registra-
tions (but making necessary the manual label correction of
new library cases). We experimentally found that increasing
the size of the library just using the symmetric versions of
the original library improved the segmentation results as
previously reported in the BEAST paper. Finally, it is also
possible to construct disease specific libraries (as done for
templates in SPM) maximizing the likelihood to find suitable
matches for the segmentation process or to improve templates
preselection by adding extra information such as age or sex
which could help to find optimal matches (especially useful
when the library size will grow).

6. Conclusion

We have presented an improvedmethod to perform intracra-
nial cavity extraction that has been shown to be fast, robust,
and accurate. The improvements proposed have been shown

to increase segmentation quality and reduce the computa-
tional load at the same time (the proposed method is able to
work in a reasonable time of approximately 4 minutes). We
plan to make the NICE pipeline publicly accessible through
a web interface in the near future so everybody can benefit
from its use independently of their location and local com-
putational resources. Finally, the usefulness of the proposed
approach to provide accurate ICV based normalization brain
tissue measurements has to be addressed on future clinical
studies.
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