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Long-term delivery of anti-HIVmonoclonal antibodies using adeno-associated virus (AAV)

holds promise for the prevention and treatment of HIV infection. We previously reported

that after receiving a single administration of AAV vector coding for anti-SIV antibody 5L7,

monkey 84-05 achieved high levels of AAV-delivered 5L7 IgG1 in vivo which conferred

sterile protection against six successive, escalating dose, intravenous challenges with

highly infectious, highly pathogenic SIVmac239, including a final challenge with 10 animal

infectious doses (1). Here we report that monkey 84-05 has successfully maintained

240–350µg/ml of anti-SIV antibody 5L7 for over 6 years. Approximately 2% of the

circulating IgG in this monkey is this one monoclonal antibody. This monkey generated

little or no anti-drug antibodies (ADA) to the AAV-delivered antibody for the duration

of the study. Due to the nature of the high-dose challenge used and in order to

rule out a potential low-level infection not detected by regular viral loads, we have

used ultrasensitive techniques to detect cell-associated viral DNA and RNA in PBMCs

from this animal. In addition, we have tested serum from 84-05 by ELISA against

overlapping peptides spanning the whole envelope sequence for SIVmac239 (PepScan)

and against recombinant p27 and gp41 proteins. No reactivity has been detected in

the ELISAs indicating the absence of naturally arising anti-SIV antibodies; moreover,

the ultrasensitive cell-associated viral tests yielded no positive reaction. We conclude

that macaque 84-05 was effectively protected and remained uninfected. Our data

show that durable, continuous antibody expression can be achieved after one single

administration of AAV and support the potential for lifelong protection against HIV from

a single vector administration.

Keywords: gene therapy, AAV vector, long-term expression, broadly neutralizing antibodies, HIV/SIV cure,

immunotherapy, prophylaxis, rhesus monkeys

INTRODUCTION

Gene therapy has come of age. Almost 50 years after its inception, gene therapy is now considered
a promising treatment option for several human diseases including cancer, genetic disorders and
infectious disease (2). Gene therapies can work by several mechanisms: replacing defective genes
with healthy ones, adding new genes to help the body fight or treat disease, or deactivating
problematic genes (3). Importantly, for any of these gene therapy approaches, achieving long-term
delivery of the transgene remains a key, infrequently realized goal. Recombinant adeno-associated
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virus (AAV) vectors have been widely used for such gene delivery
applications because of their safety and cost-efficiency: a single
injection can result in long-term expression of the transgene
product (4). Also, recombinant AAV is ideal as a delivery vehicle
in some additional respects: the only protein expressed from it
comes from the inserted transgene; it can effectively transduce
terminally differentiated non-dividing cells; and it shows little or
no integration into host genome sequences (5–10).

One potentially important application of the AAV system is
the delivery of broadly neutralizing antibodies as a gene therapy
approach against HIV (1, 11–14). For that purpose, recombinant
AAVs encoding neutralizing antibodies are inoculated into
the host and the antibody or antibodies of interest will then
be directly expressed from the transduced cells. Thus, the
immune system is bypassed in the sense that no immune
response to an immunogen or vaccine is needed; the desired
final products (broadly neutralizing antibodies) are delivered
directly to the host. This approach against HIV has been made
realistically possible in recent years thanks to the isolation and
characterization of a remarkable collection of potent, broadly-
neutralizing, monoclonal antibodies from select individuals (15–
17). These antibodies have been extensively characterized in
the laboratory and some have moved to clinical trials, where
they have shown activity (18–22). They have the potential to
prevent infection and also serve as a therapeutic approach
complementing or even substituting antiretroviral drugs (11,
14, 18, 20–25). Importantly, the use of AAV voids the need
for repeated administrations of purified antibody to maintain
therapeutic levels in circulation. Due to its simplicity and ease
of deployment, the approach is ideal for global use (26).

One main problem has been encountered in the applicability
of this approach. Host antibodies generated against the delivered
antibody (generally known as anti-drug antibodies or ADAs)
can reduce its functionality and concentration thus drastically
reducing its effectiveness (1, 11, 24, 27–32). The large repertoire
of endogenously generated antibodies present in any individual
has gone through a complex checks and balances system to
be allowed into circulation (33). The antibodies being made in
one individual are different from the antibodies being made
in another individual (34). In addition, the potent broadly-
neutralizing anti-HIV antibodies that one would want to use for
these applications are typically highly evolved over a prolonged
period of time. Due to years of affinity maturation, they exhibit
unusually high levels of somatic hypermutation in the variable
domains and many have accumulated unusual structural features
(35, 36) which are generally required for potent neutralization
and breadth (37). This high level of mutation likely enhances
the immunogenicity of these antibodies when delivered to a
host other than the one in which those particular sequences
originated. Interestingly, when characterizing the humoral
responses to the AAV-delivered antibodies we and others have
found that the variable regions were predominantly or exclusively
targeted (1, 11, 28, 30). We have also reported a highly significant
correlation of the magnitude of the host anti-antibody response
with the distance from germline of the AAV-delivered antibody:
the more mutated, the more immunogenic (28). ADAs are in
fact a common problem with many gene therapy approaches

(38, 39). However, if the hurdle of the ADAs can be overcome, the
promise of the AAV-delivery of antibodies against HIV could be
realized (12). Here, we report that monkey 84-05 has maintained
240–350µg/ml of anti-SIV antibody 5L7 for over 6 years in
the absence of detectable ADAs. Our data show that durable,
continuous antibody expression can be achieved after a single
administration of AAV and support the potential for lifelong
protection against HIV from a single vector administration.

MATERIALS AND METHODS

Macaque 84-05
The animal used in this study is a Mamu B∗08-neg B∗17-
neg female Indian-origin rhesus macaque (Macaca mulatta),
originally housed at the New England Primate Research Center
in a biosafety level 3 animal containment facility in accordance
with the standards of the Association for Assessment and
Accreditation of Laboratory Animal Care and the Harvard
Medical School Animal Care and Use Committee. Research was
conducted according to the principles described in the Guide for
the Care and Use of Laboratory Animals and was approved by the
Harvard Medical School Animal Care and Use Committee (40).
Macaque 84-05 tested negative for the presence of antibodies
to HIV and AAV1 capsid prior to AAV administration. At the
time this manuscript was written, the monkey was 14 years old
and weighted 6.4 kg. She was administered AAV encoding for
5L7 antibody when she was 7 years old and weighted 5.5 kg
(1). At week 108 (about 2 years) post-AAV administration, the
monkey was transferred to and subsequently housed at the
Wisconsin National Primate Research Center and cared for in
accordance with the guidelines of the Weatherall Report under
a protocol approved by the University of Wisconsin Graduate
School Animal Care and Use Committee.

Recombinant AAV
Coding sequences were designed in silico, codon-optimized and
gene-synthesized (GenScript). 5L7 immunoadhesin sequences
(11) served as a template and full-length antibodies were
constructed by adding CH1 domain and CL domain of rhesus
IgG to the already known immunoadhesin sequences. 5L7
sequences originate from recombinant anti-SIV Fab sequences
(347-23h) derived from the bone marrow of SIV-infected rhesus
monkeys (41). The rhesus IgG1 sequence used is based on
accession no. AAF14058 and AAQ57555. Rhesus kappa light
chain was designed using the constant light domain sequence
from AAD02577. Synthesized fragments were then cloned into
the NotI site of our AAV vector plasmids (1, 42). Production
of recombinant AAVs was conducted as described previously
(43). In short, HEK-293 cells were transfected with a select AAV
vector plasmid and two helper plasmids to allow generation of
infectious AAV particles. After harvesting transfected cells and
cell culture supernatant, AAV was purified by three sequential
CsCl centrifugation steps. Vector genome number was assessed
by Real-Time PCR, and the purity of the preparation was
verified by electron microscopy and silver-stained SDS-PAGE.
The AAV genomes were encapsidated with the AAV1 serotype.
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Monkey 84-05 received recombinant AAV1 encoding the anti-
SIV antibody 5L7, using a total dose of 1.6 × 1013 particles (2.9
× 1012 AAV vector genomes per kilogram of body weight). AAV
administration was conducted by a one-time inoculation of four
deep intramuscular injections (two separate 0.5ml injections into
both quadriceps).

Recombinant 5L7 Antibody
5L7 recognizes gp120 and gp140 forms of the SIVmac239
envelope glycoprotein (28) and binds conformational epitopes
involving the V3-V4 region (41). HEK-293T cells were expanded
and then transfected with recombinant AAV vector plasmid
coding for 5L7 antibody. Cells were washed after 4 h with
pre-warmed PBS and then transferred to serum-free medium
(Invitrogen). Afterwards, the antibody-containing medium was
harvested, precleared by centrifugation, and filtered through a
0.22 µm-pore-size membrane. Then, IgG was affinity-purified
using protein A Sepharose 4 Fast Flow (GE Healthcare),
concentrated and desalted, followed by protein quantification
with a Nanodrop UV spectrometer (Thermo Fisher Scientific).
Antibody purity was confirmed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent
Coomassie blue staining (Thermo Fisher Scientific).

In vivo 5L7 Antibody Quantification and
Anti-Drug Antibody (ADA) Responses
AAV-delivered 5L7 antibody was quantitated by standard ELISA
using plate bound SIVmac239 gp140 (Immune Tech) to capture
the antibody from pre-diluted serum samples and then HRP-
conjugated secondary anti-rhesus IgG (Southern Biotech) as the
detection method. Absorbance at 450 nm was compared to a
serial dilution of purified 5L7 produced in HEK 293T cells, and
the amount of antibody in serum was interpolated based on the
standard curve. To measure host humoral responses to the AAV-
delivered 5L7 antibody, purified recombinant 5L7 was used to
coat plates. Then, serum samples frommonkey 84-05 were tested
at a 1:20 dilution and ADA responses were detected by means of
an anti-lambda HRP-conjugated secondary antibody (Southern
Biotech) in a regular ELISA (28). This secondary did not cross-
react with 5L7 coated on the plates since 5L7 bears a kappa light
chain. This allowed us to readily detect those anti-antibodies with
a lambda light chain, which have been reported to reflect humoral
responses in our previous studies (1, 28). Levels of AAV-delivered
5L7, and the corresponding ADAs, were measured for a total of
340 weeks.

PepScan
PepScan or ELISA against a panel of 218 peptides overlapping the
entire SIVmac239 envelope protein was used to detect antibody
responses to the viral spike. Fifteen-mer-length peptides, each
successive peptide overlapped by 11 amino acids, were obtained
from the NIH AIDS Research and Reference Reagent Program.
Peptides were properly resuspended and used to coat ELISA
plates at 40µg/ml in phosphate-buffered saline (PBS). Plates
were then washed, blocked and incubated for 1 h at 37◦C
with a 1:20 dilution of the corresponding monkey sera or
5L7 antibody diluted to 2µg/ml. Binding antibodies were

detected with an HRP-conjugated goat anti-human IgG antibody
(SouthernBiotech) diluted 1:1,000 in 5% non-fat powdered milk
in PBS and developed with soluble tetramethylbenzidine (TMB)
reagent (Calbiochem, Gibbstown, NJ). The reaction was stopped
by the addition of 50 µl of acidic stop solution (SouthernBiotech,
Birmingham, AL), and the optical density at 450 nm was
measured using a Wallac Victor plate reader (Perkin-Elmer,
Waltham, MA).

Antibody Responses to p27 and gp41
Antibody responses against p27 and gp41 were quantitated
by regular ELISA using SIVmac239 p27 purified recombinant
protein (Catalog# 13446; obtained through the NIH AIDS
Reagent Program, Division of AIDS, NIAID, NIH) and
recombinant SIV gp41 (Catalog# 5019; ImmunoDX) to
coat plates at 10µg/ml in PBS. Plates were then washed,
blocked and incubated for 1 h at 37◦C with a 1:20 dilution
of the corresponding monkey sera or 5L7 antibody diluted
to 2µg/ml. Antibodies binding the p27 antigen or the
gp41 were detected with a goat anti-monkey secondary
antibody (Catalog# 2015-05, Santa Cruz) and developed
with TMB High Sensitivity Substrate Solution (Catalog#
421501, Biolegend). The reaction was stopped by the
addition of 50 µl of acidic stop solution (SouthernBiotech,
Birmingham, AL), and the optical density at 450 nm was
measured using a Wallac Victor plate reader (Perkin-Elmer,
Waltham, MA).

Viral Load Monitoring
Plasma SIV RNA was measured using a gag-targeted quantitative
real-time/digital PCR method with 6 replicate reactions analyzed
per extracted sample for an assay threshold of 30 SIV RNA
copies/ml (44). Cell-associated SIV RNA and DNA were
measured by quantitative hybrid real-time/digital RT-PCR and
PCR assays (45, 46).

RESULTS

Over 6 Years of Continuous Antibody
Expression in vivo
Monkey 84-05 received a single administration of AAV
on September 6th, 2012. As we reported at that time (1),
starting at week 44 post-AAV inoculation and then every
3 weeks, this animal was repeatedly challenged with highly
pathogenic, highly infectious SIVmac239 for a total of six
intravenous administrations (see schematics in Figure 1A).
The first four challenges were performed with 1 animal
infectious dose (AID), followed by challenge with 2 AID and
then a final 10 AID challenge. Viral load measurements
in plasma from 84-05 were negative (<30 copies/ml),
indicating the animal successfully resisted all six challenges
(1). The antibody levels achieved remarkable values of
∼270µg/ml (1). We now report long-term follow-up on
levels of 5L7 antibody and the corresponding ADAs in
circulation. As shown in Figure 1B, macaque 84-05 has
successfully maintained 240–350µg/ml of anti-SIV antibody
5L7 for over 340 weeks (>6 years). Moreover, this animal has
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FIGURE 1 | 5L7 antibody levels and the corresponding anti-antibodies (ADAs)

in serum following AAV administration. (A) Schematic of the experiment in

which rhesus monkey 84-05 received intramuscular administration of AAV1

coding for antibody 5L7 and was subsequently challenged with SIVmac239

(six times: 4 times with a 1 animal infectious doses followed by a 2x dose

challenge and a final 10x dose challenge). (B) 5L7 antibody levels (blue;

plotted on left axis) and anti-5L7 antibody levels (red; plotted on right axis) in

serum from monkey 84-05, quantified by ELISA.

shown little or no ADA responses to the AAV-delivered 5L7
antibody (Figure 1B).

Negative Envelope PepScan
Due to the nature of the high-dose challenge employed, and
the high levels of anti-envelope reactivity found in serum of
this animal, one could speculate about a potential low-level
infection not detected by regular viral load measurements, which
could lead to development of endogenous anti-Env responses,
resulting in an overestimation of the concentration of 5L7
antibody in the anti-SIVmac239 gp140 ELISA employed (see
Materials and Methods). In order to rule out this potential
scenario, we tested serum from 84-05 by PepScan (ELISA against
overlapping peptides spanning the whole envelope sequence
for SIVmac239) (47, 48). One of the most sensitive measures
of infection is seroconversion. Established immunodominant
regions of the envelope, i.e., the variable loops V1–V2 and V3,
the C terminus of gp120, some peptides in the ectodomain of
gp41, and the highly immunogenic region (HIR) at the beginning
of the cytoplasmic tail of gp41(47–49) are the regions frequently
targeted by antibodies. As shown in Figure 2A, the serum from
this animal did not detectably react to any of the peptides in
the SIVmac239 envelope PepScan. Importantly, and as expected,
recombinant purified antibody 5L7 (which is known to bind
a conformational epitope involving the V3-V4 region of the
envelope (11, 41) and should therefore not bind the linear
epitopes present in the PepScan), did not detectably bind any
of the tested peptides (Figure 2B). Conversely, when positive
control serum from a SIV-infected macaque (r10028) was tested

FIGURE 2 | Analysis of antibody responses by PepScan. PepScan (ELISA

against overlapping peptides) spanning the whole envelope sequence for

SIVmac239, performed with (A) serum from 84-05 (week 328 post-AAV) at a

1:20 dilution; (B) recombinant purified 5L7 antibody at a concentration of

2µg/ml; and (C) serum from a rhesus monkey experimentally infected with

SIVmac239 (week 12 post-SIV infection) at a 1:20 dilution. Note: regions of

interest are shadowed in gray and indicated as follows: variable regions 1–2, 3,

4, and 5 are labeled V1–V2, V3, V4, and V5, respectively; the cleavage site

and beginning of gp41 are represented by brackets; g123 indicates the

location of the N-linked carbohydrate sites found in gp41; TM is the

transmembrane domain of gp41; and HIR stands for highly immunogenic

region. Data from SIV+ monkey in panel (C) is representative of many such

SIV+ monkeys tested previously (47, 48).

on a PepScan in the same conditions, strong reactivity was shown
to the immunodominant regions cited above (Figure 2C).

No Detectable Antibody Responses to p27
or gp41 by ELISA
With the high levels of 5L7 antibody consistently found in
serum of 84-05, meaning high reactivity to gp120, assessing
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FIGURE 3 | Analysis of antibody responses to p27 and gp41. Serum from 84-05 (week 328 post-AAV) at a 1:20 dilution was tested by ELISA against recombinant

purified proteins p27 (A) gp41 and (B) sera from two rhesus monkeys experimentally infected with SIVmac239 (week 12 post-SIV infection) at a 1:20 dilution were

used as positive controls, and recombinant purified 5L7 as a negative.

a potential low-level infection can be complicated since that
serum would definitely yield a positive result when tested against
whole virus or recombinant gp120 by ELISA, the benchmark
assays. An alternate method to test potential seroconversion is
by measuring ELISA reactivity to p27 and gp41 recombinant
proteins. Antibodies to both p27 and gp41 are readily detectable
shortly after SIV infection and importantly, the 5L7 antibody
present in the serum would not react to these proteins. Tests
of serum from 84-05 (week 328 post-AAV) did not reveal any
reactivity to p27 (Figure 3A), while positive control sera from
two rhesus macaques experimentally infected with SIVmac239
for 12 weeks (r10028 and r14076) showed high reactivity under
the same conditions. Similarly, serum from 84-05 did not
detectably react against gp41, but sera from the two SIV-positive
monkeys did (Figure 3B). Purified 5L7 antibody tested in parallel
did not significantly bind to either p27 or gp41 (Figure 3).

Absence of Cell-Associated Viral DNA or
RNA
To further rule out a potential low-level infection that could not
be detected by the aforementioned ELISA-based tests, we used
ultrasensitive techniques to detect cell-associated viral DNA and
RNA in PBMCs from 84-05. We did not detect SIV gag RNA
or DNA in the analysis of a combined total of 1.17 × 108 cell
equivalents obtained over a 2-week period (week 340 and week
342; Table 1) with a nominal sensitivity of 1 copy per reaction.

DISCUSSION

Here we describe continuous, prolonged, high level delivery
of an antibody to a rhesus monkey using AAV vector over
6 years of longitudinal measurements. Approximately 2% of
the IgG in monkey 84-05 is derived from the vector that we
inoculated more than 6 years previous. This result is consistent
with the belief that muscle cells essentially do not turn over

TABLE 1 | Ultrasensitive detection of cell-associated viral DNA and RNA in

PBMCs.

Week 340a Week 342b

Cell associated viral DNA <1 DNA copies/106 cells <1 DNA copies/106 cells

Cell associated viral RNA <1 RNA copies/106 cells <1 RNA copies/106 cells

a A total of 7.4× 107 cells were analyzed for this time point and b a total of 4.3× 107 cells

were analyzed for this time point. Both with a nominal sensitivity of 1 copy per reaction.

(50) and thus represent a potentially long term stable source
of AAV-delivered antibody. It seems likely that monkey 84-
05 will continue to produce similar levels of this antibody
for the rest of its life. Importantly, this animal withstood six
successive challenges with SIVmac239, including a final challenge
with 10 animal infectious doses (1). By different means we
show here that monkey 84-05 was effectively protected and
remained uninfected: these include testing seroconversion in
three different ways and the use of ultrasensitive techniques to
detect cell-associated viral DNA and RNA. Due to the difficulties
associated with proving curative and/or protective interventions
(51), additional tests were considered such as in vivoCD8+ T-cell
depletion and attempts at adoptive transfer of infection to naïve
rhesus macaques. However, we did not want to put this precious
monkey at any risk with the CD8 depletion; and, surprisingly,
adoptive transfer may not be as sensitive as one would think (14).

The absence of an ADA response is almost certainly a
key factor in the continuous production of the transgene
product in monkey 84-05. Other examples of AAV delivery
of protein to monkeys over a prolonged period have been
documented in the reports of Rivera et al. (52) and Guilbaud
et al. (53). Both of these reports used periodic induction
of expression of an erythropoietin identical in sequence to
the monkey’s own erythropoietin over 5 or more years of
study. Additional examples include the persistent expression of
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dopamine-synthesizing enzymes in the putamen reported in one
monkey for 15 years in a primate model of Parkinson’s disease
(54); the sustained expression of human α-L-iduronidase, an
important enzyme required for the lysosomal degradation of
glycosaminoglycans, reported for almost 4 years after intrathecal
cervical AAV9 gene delivery in four one-month-old rhesus
monkeys (55); the sustained expression of alpha-1 antitrypsin
for over 5 years after one AAV vector administration in alpha-1
antitrypsin deficient patients (56); and the successful expression
for 3.5 years obtained in two dogs of a dystrophin gene in a canine
model for human Duchenne muscular dystrophy using AAV6
and a brief course of immunosuppressants (57), or in a similar
study for over 2 years in two dogs using AAV8 in the absence
of immunosuppression (58). Remarkably our animal 84-05 never
received any immunosuppressant. The hemophilia gene therapy
arena also has good examples of long-term delivery with AAV
for up to a decade of Factor IX in hemophilic humans (59) and
of Factor VIII in hemophilic dogs (60). For more examples on
long-term delivery with AAV of hemophilia factors, please see the
following references (61–68). The long-term delivery described
in our report here is significant as the first such report for very
long-term delivery of an antibody, particularly given the serious
difficulties that have been encountered when AAV has been used
to deliver antibodies that are significantly diverged from germ
line or contain unusual features (1, 14, 28, 30, 31). The findings
give hope that long-term delivery of therapeutic antibodies via
AAV can be consistently achieved if the ADA problem can
be overcome.

What may be responsible for the absence of ADAs in 84-
05 and the continued high level of production of the transgene
product over this prolonged period? Factors that have been
shown to influence whether, or not, ADAs are observed following
AAV-mediated expression of a transgene product include the
following: the particular sequence of the transgene product (69);
whether the recipient is already making a similar or identical
protein (39); the serotype of AAV used (38); and targeted delivery
or targeted expression at particular sites or in particular tissues
or cells (54, 70–76). AAV-delivered 5L7 antibody certainly has
the potential to be immunogenic in rhesus monkeys since 50%
of monkeys receiving it have had robust ADA responses (1).
Might there be particular genetic determinants that restrict an
ADA response to the 5L7 antibody in some monkeys but not
others? Might the antibody repertoire present in an individual at
any one time influence to what extent the 5L7 antibody may be
recognized as foreign? Might 5L7 just be on the cusp of self/non-
self recognition? These questions remain unanswered at least for
the time being.

Like the Miami monkey (14, 77, 78), monkey 84-05 stands
out as a shining example of what is possible in the realm of
AAV delivery of monoclonal antibodies in the fight against
HIV. The Miami monkey has maintained high levels of
two anti-HIV monoclonal antibodies and complete virologic
suppression of SHIV infection for more than 4 years of follow-
up without any repeated administrations and without any
other antiviral therapies. It is likely that the ADA problem
with AAV-delivered antibodies will need to be overcome for
this approach to become a consistent reality in the context

of human HIV infection. A recently-published human trial
of AAV to deliver the human anti-HIV monoclonal antibody
PG9 revealed readily detectable ADAs in 10 of 13 recipients
in the four highest dose groups and zero measurable delivery
of the PG9 antibody (31, 79). We feel that monkey modeling
will need to play a key role in the development of successful
strategies. Our group is currently focused on simple, easy-to-
apply strategies for creating tolerance in monkeys to AAV-
delivered monoclonal antibodies. If satisfactory delivery methods
are found, it becomes possible to envision long-term control
of viral replication in the absence of antiretroviral treatment
by delivering a combination of antibodies in people, and long-
lasting protection when this approach is used in a prophylactic
setting. The long-term expression reported here highlights the
potential of AAV-mediated antibody expression for impacting
HIV-1 infections worldwide.
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