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Abstract

The insulin-like growth factor (IGF) system exerts pleiotropic effects on mammalian cells.
This review focuses on type I IGF receptor (IGF1R)-mediated signal transduction and its
relevance in breast cancer. Upon activation by the IGFs, IGF1R, a transmembrane tyrosine
kinase receptor, undergoes autophosphorylation, and then binds and phosphorylates
additional signaling molecules. These intermediates initiate a series of downstream signaling
events that are involved in multiple physiologic processes for cells. Recent data demonstrate
that the IGF receptor system actively interacts with the estrogen receptor and integrin
receptor systems. Cross-talk among these pathways regulates breast cancer proliferation,
protection from cell death, and metastasis. Better understanding of IGF biochemical
signaling pathways is of utmost importance for developing therapies for breast cancer.
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CSK = carboxyl-terminal src kinase; ER = estrogen receptor; FAK = focal adhesion kinase; IGF = insulin-like growth factor; IGF1R = type I IGF
receptor; IGF2R = type II IGF receptor; IGFBP = insulin-like growth factor-binding protein; IRS = insulin receptor substrate; MAPK = mitogen-
activated protein kinase; PI-3K = phosphatidyl inositol-3 kinase. 
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Introduction
The IGF system is composed of IGF ligands, receptors,
and binding proteins. These system components form a
highly regulated network of interactions both among them-
selves and between other biologic signaling pathways.

The two well-characterized ligands, IGF-I and IGF-II, are
mitogenic peptides that are highly homologous to each
other and to insulin [1]. Whereas insulin is composed of
two chains (A and B) of 21 and 30 amino acids, respec-
tively, the IGFs are single-chain molecules that retain the
equivalent of the connecting (C)-peptide of proinsulin
between the A and B domains. IGF-I and IGF-II are
thought to have autocrine, endocrine, and paracrine roles

in normal mammary development and in the etiology of
breast cancer [2–5].

Unlike insulin, circulating IGFs are found complexed to
high-affinity binding proteins known as IGF-binding pro-
teins (IGFBPs). Six distinct species have been cloned. An
additional family of structurally homologous proteins has
been identified and named IGFBP-related proteins,
because their affinity for the IGFs is significantly lower
than that of the IGFBPs [6,7]. Cleavage of IGFBPs by
specific proteases modulates levels of free IGFs and
IGFBPs, and thereby their actions. In addition, IGFBPs
may also have effects that are completely independent of
their role in modulating the action of IGF [8].
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The cellular actions of IGFs are mediated by type I and
type II receptors, insulin receptor, and insulin receptor–
IGF1R hybrids. The type II IGF receptor (IGF2R) is a multi-
functional nontyrosine kinase receptor [9–11] that is also
known as the cation-independent mannose-6-phosphate
receptor, and its function in regulating the action of IGF-II
has been controversial. IGF1R is a glycosylated heterote-
tramer that is composed of two extracellular α-subunits and
two transmembrane β-subunits that have intrinsic tyrosine
kinase activity [12,13]. This review focuses on IGF1R-
mediated signaling and its relevance in breast cancer.

Type I insulin-like growth factor receptor
signaling
Activation of the IGF1R by IGFs results in its oligomeriza-
tion, autophosphorylation, and activation of the intrinsic
tyrosine kinase [12–15]. The IGF1R tyrosine kinase
further directly phosphorylates various intracellular sub-
strates. Several substrates of the IGF1R have been identi-
fied, including insulin receptor substrates (IRSs) 1, 2, and
4 [16–19], src-homology 2/collagen-α proteins (Shc)
[20,21], phosphatidyl inositol-3 kinase (PI-3K) [22],
growth factor receptor-binding protein 10 [23], focal
adhesion kinase (FAK) [24•], and carboxyl-terminal src
kinase (CSK) [25•].

IRS-1 is a well-characterized IGF1R-signaling molecule
that has multiple sites for tyrosine phosphorylation and
acts as a ‘docking protein’ for other signaling molecules
[26,27]. Upon activation of IGF1R, IRS-1 binds and
becomes rapidly tyrosine phosphorylated, allowing
docking sites for SH2 domain-containing proteins. IRS-1
phosphorylation results in the activation of many down-
stream signaling pathways; many of these pathways are
implicated in mitogenesis and protection from apoptosis.
For instance, the following are all known to be stimulated
through IRS-1: PI-3K pathway through the association
with the p85 regulatory subunit of PI-3K [28];
Ras–mitogen-activated protein kinase (MAPK) cascade
through Grb-2/Sos [29]; Syp phosphatase [30]; as well
as other pathways involving adapters Nck and Crk
[31,32]. Upon tyrosine phosphorylation by the activated
IGF1R, Shc (a common substrate of most tyrosine kinase
receptors) also recruits Grb-2–Sos complexes and acti-
vates the Ras–MAPK pathway.

Additional pathways may be affected by IGF1R activation.
For example, the cytoplasmic tyrosine kinase c-Src can
phosphorylate IGF1R on the same sites as the IGF-
induced autophosphorylation sites [33]. CSK, a negative
regulator of Src activity, associates with activated IGF1R,
and therefore may play a role in the decrease in Src activ-
ity after IGF-I stimulation. Other substrates of Src are
almost exclusively proteins that regulate actin cytoskeleton
dynamics, such as FAK, p130 Crk-associated substrate,
cortactin, and p190RhoGAP. IGF-I through its receptors

has been shown to positively or negatively modulate tyro-
sine phosphorylation of focal adhesion proteins such as
FAK, p130 Crk-associated substrate, and paxillin
[24•,34,35]. Thus, activation of IGF1R, via its interaction
with Src, could influence aspects of cytoskeletal organiza-
tion and cell adhesion.

Insulin-like growth factors and insulin-like
growth factor receptor signaling in breast
cancer
Expression of IGF-I and IGF-II has been measured in
normal and breast tumor tissues by in situ hybridization
and immunohistochemistry. IGF-I is found mainly in
stromal cells that are adjacent to normal breast cells [2].
IGF-II is also mainly expressed in the stroma [5], but may
occasionally be found in malignant epithelial cells [4].
Increased IGF-II expression is seen in stromal cells that
are adjacent to malignant epithelial cells, whereas levels
are lower in stroma that are adjacent to benign and normal
breast epithelium [36,37]. Furthermore, malignant breast
epithelial cells can induce IGF-II expression in breast
stroma in vitro [38]. High IGF-II expression is reported to
be associated with poor prognostic features in breast
cancer [39].

Endocrine levels of IGF-I have been implicated in breast
cancer. Breast cancer patients have higher serum IGF-I
levels than do matched control individuals [40]. Higher
IGF-I levels have also been associated with an increased
risk of developing breast cancer [41••].

IGF1R has been found to be both significantly overex-
pressed [42–44] and highly activated [45••] in cancer
cells with respect to its status in normal or benign breast
tissues. Recent reports [46•] have suggested that insulin
receptor may mediate the IGF-II response in breast cancer
cells. In addition, insulin receptor–IGF1R hybrids are over-
expressed in breast cancer, and these receptors can also
mediate IGF responsiveness [47•]. Although the IGF2R
does not appear to function in a signaling pathway, there
is significant loss of heterozygosity at the IGF2R locus in
breast cancer, suggesting that IGF2R may represent a
breast tumor suppressor gene [48]. Mutation in the IGF-II
binding domain of the remaining IGF2R allele has been
identified in cancer cells [49•]. These observations
suggest that IGF2R loses the ability to bind IGF-II in some
cancer cells. This would allow enhanced interaction of
IGF-II with the tyrosine kinase receptors and, perhaps,
tumor promotion.

Expression of the IGF downstream signaling molecule
IRS-1 is also detected in breast cancer. Increased levels
of expression were found to correlate with estrogen recep-
tor (ER) status in 200 node-negative patients, and identi-
fied patients with a decreased disease-free survival in a
subset of patients with small tumors [50•]. Taken together,
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these studies show that the IGFs are freely available to the
malignant epithelial cells from endocrine or paracrine
sources. Furthermore, IGF receptors are present on breast
cancer cells to mediate the biologic effects of the IGFs.

Consequence of insulin-like growth factor
activation in breast cancer
Activation of the IGF system is known to have substantial
pleiotropic effects on mammalian cells. Mitogenesis, trans-
formation, and antiapoptosis induced by IGF1R stimula-
tion could account for many aspects of the malignant
phenotype. Both IGF-I and IGF-II stimulate ER-positive
breast cancer cell proliferation at picomolar to nanomolar
concentrations [51]. Once IGFs interact with receptors,
we found that IRS-1 is the predominant signaling molecule
activated in ER-positive human breast cancer cells [52•].

There is also accumulating evidence that IGF action influ-
ences breast cancer cell responsiveness to estrogen. It is
well established that estrogens stimulate the growth of ER-
positive breast cancer cells. ER acts as a ligand-activated
transcription factor. Two forms of ER have been cloned,
ERα and ERβ [53–55]. Erα contains a hormone-binding
domain, a DNA-binding domain, and two transcriptional
activation domains (AF-1 and AF-2). Estradiol binding to
ERα results in dimerization and subsequent binding of the
hormone–receptor complex to specific DNA palindromic
sequences (estrogen response elements) to initiate gene
transcription, and therefore induce the expression of
growth promoting genes. To date, a similar role for ERβ
has not been found. Antiestrogens, such as tamoxifen,
influence ERα function by blocking the initiation of tran-
scription from estrogen response elements without interfer-
ing with the binding of ligand–receptor complex to DNA.

Estrogen induces the expression of several members of
the IGF family, including IGF-II [3,56,57], IGF1R [58],
IGF2R [59], IGFBPs [60], and IRS-1 and IRS-2 [61•]. The
increased expression of IGF1R and IRS-1 results in an
enhanced response to IGF-I that is manifested in greater
downstream signaling through MAPK. Removal of estro-
gen results in a dramatic decrease in IRS-1 expression
and MAPK activity. Antiestrogens may inhibit IGF action
by increasing IGFBP-3 [62,63], affecting phosphorylation
of IGF1R or IRS-1 [64•,65,66], downregulating expression
of IGF1R and IRS-1 [58,67], and inhibiting ligand-inde-
pendent activation of the ER by IGF-I [68–71]. Thus,
several members of the IGF family could be the growth-
promoting genes that are regulated by estrogen.

On the other hand, IGF-I also directly increases the tran-
scriptional activity of the ER and increases expression of
estrogen-inducible genes, such as the progesterone
receptor gene [71]. Furthermore, IGFBP-1, an inhibitor of
IGF-1 action, not only inhibited IGF-mediated activation of
the ER, but also had a significant inhibitory effect upon

estrogen-mediated activation of the ER. Although the
mechanisms that account for this cross-talk are not clear,
it is obvious that both signaling pathways can positively
influence each other, resulting in reinforcement of biologic
effects for both estrogen and IGFs.

Many model systems have shown that IGF1R activation
protects cells from programmed cell death. The PI-3K
pathway and its substrate AKT1 probably mediate this
effect. It has been reported [72] that AKT1 is highly
expressed in several human breast carcinoma cell lines,
and its activity in MCF-7 cells is modulated by estradiol
and IGF-I. Overexpression and activation of AKT1 pro-
duces estrogen and IGF-I independent proliferation and
controls an antiapoptotic pathway. IGF-I reduces apopto-
sis in doxorubicin-treated and paclitaxel-treated MCF-7
cells [73]. Detailed studies indicate that IGF-I rescue of
MCF-7 cells from chemotherapy-induced cell death
involves at least two mechanisms: inhibition of apoptosis
through PI-3K and induction of proliferation through both
PI-3K and MAPK cascades. In clinical specimens, high
levels of IGF1R may protect cells from radiation therapy-
induced apoptosis [74•].

Several reports have documented the interaction of IGF and
integrin signaling pathways. The direct interaction of the two
pathways was demonstrated through a physical association
between αvβ3 integrin and IRS-1 [75••]. Later reports [24•]
also showed that FAK, a downstream signaling molecule of
integrins, is a substrate for the insulin receptor and IGF1R.
In vascular smooth muscle cells, ligand occupancy of αvβ3
integrin is required for full activation of the IGF1R β-subunit
and IRS-1 by IGF-I stimulation [76,77•]. IGFs are chemoat-
tractants for breast cancer cells, perhaps due to the ability
of IGF to affect the integrins [78]. Activation of integrin sig-
naling pathways have been reported [79] to inhibit the mito-
genic effect of IGF-I in human breast cancer cell lines.
Recently, IGF1R activation was shown to induce rapid and
transient tyrosine dephosphorylation of FAK, p130 Crk-
associated substrate, and paxillin in MCF-7 breast cancer
epithelial cells [80]. Finally, IGFs may be involved in cell
migration and invasion, because dominant-negative IGF1R
constructs inhibit invasion and metastasis of MDA-435
breast cancer cells in vitro and in vivo [81•].

Conclusion
Breast cancer is a lethal disease because the transformed
epithelial cells proliferate, metastasize, and are protected
from programmed cell death. The pathways responsible
for each of these phenotypes are only now becoming
understood. Despite the multiple accumulated genetic
abnormalities that cause malignant transformation,
however, it is evident that some of the transformed cells
can still respond to signals from their external environment.
Notably, the inhibition of ER function has proven to be a
powerful weapon in breast cancer treatment.



There now is a large body of evidence showing that IGF
activation is involved in these malignant processes; clearly
some fully transformed cells can still respond to these
cues. It is also evident that the signaling pathways that are
activated by the IGFs are not simple or linear. Multiple
divergent and convergent biochemical signaling pathways
are stimulated after receptor activation, which then
impinge upon multiple other pathways that are known to
be important in breast cancer biology. We are now just
beginning to understand how the IGFs affect breast
cancer biology. The next challenge will be to untangle the
web of signal cascades initiated by these factors. By
doing so, we will be better positioned to develop therapies
based on interruption of the key signaling pathways that
are responsible for the malignant phenotype.
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