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Abstract

Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through
which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major
component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy
and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules,
which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of
RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to
define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide
evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The
presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the
intrinsic pilus flexibility.
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Introduction

Most bacterial pathogens have long filamentous structures,

known as pili or fimbriae, extending from their surface. These

structures are often involved in the initial adhesion of the bacteria

to host tissues during colonization. Over the past five decades,

several distinct pilus types have been identified, most of which

were described and characterized in Gram-negative bacteria.

Gram-negative pili are typically formed by non-covalent

interactions between identical copies of pilin subunits, thus

generating the pilus shaft. They have been reported to be involved

in adherence to host cells, induction of cell signalling [1], transfer

of genetic material [2,3] and motility [4,5]. In Gram-positive

bacteria, these surface appendages were first detected in

Corynebacterium renale by electron microscopy [6]. More recently,

pili were reported in many diverse species such as Actinomyces

naeslundii, Corynebacterium diphtheriae, and many pathogenic Strepto-

coccus spp [7,8,9,10]; [11]; [12]). During the past several years, pili

of pathogenic streptococci have been under intense investigation,

where they were shown to be fundamental for the adhesion/

invasion process and pathogenesis [2,13,14,15,16].

Gram-positive pili differ from those of Gram-negative bacteria

by the presence of covalently linked subunits containing a

conserved LPXTG motif or a variant of it. This motif is the

target of sortase enzymes which during pilus formation catalyse the

covalent attachment of the consecutive backbone pilins by means

of intermolecular isopeptide bonds formed between the Thr of the

LPxTG motif and a Lys residue located at the N-terminus of the

next subunit [17].

In S. pneumoniae, the genes coding for the pilus are contained in a

12 Kb pathogenicity island (the rlrA islet), consisting of seven genes

of which rrgA, rrgB, and rrgC encode LPXTG-containing proteins

[14,18]. Only RrgB is strictly necessary for the pilus formation

while the other two are ancillary proteins [2]. The major ancillary

protein RrgA has been shown to be the pilus adhesin [19].

Consistently with its role in adhesion, recent data suggest that

RrgA is located at the tip of the pilus, whereas the minor ancillary

protein RrgC serves as the pilus anchor and is located at the base

of the shaft [20,56]).

For many years, no information on the structure and assembly

of these pili were available. Novel awareness of the mechanism of

Gram-positive pilus assembly arose from crystal structure

determination of single pilus subunits of S. agalactiae (GBS) [21]

and S. pyogenes (GAS) [22], however the determination of the

macromolecular architecture of these important structures still

remained elusive.

Here we present for the first time the three dimensional

structure of the S. pneumoniae native pilus obtained using a

combination of electron microscopy (EM) and single-particle
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image reconstruction method. The rigid body fitting of the

RrgBD2-D4 X-ray coordinates into the pilus electron density map

highlights a head-to-tail arrangement made exclusively by the

RrgB protein. These results provide insights into the molecular

structure of the repetitive backbone unit of the pilus as well as on

the regions that are exposed on its surface and may be important

for the development of therapeutic inhibitory molecules and for

the next generation of protein vaccines.

Results

Microscopy and image analysis of native pneumococcal
TIGR4 pili

To shed light on the molecular architecture of native pili we

examined the 3D architecture of S. pneumoniae pili by applying the

single-particle reconstruction method to low-dose transmission

electron microscopy (TEM) images of negative stained native pili.

When observed by TEM purified S. pneumoniae TIGR4 pili

preparation appeared as long and thin filaments. Random

presence of pili aggregated into bundles of various diameters or

twines were also observed. On TEM micrographs (Figure 1A,

arrowheads) S. pneumoniae pili appeared as faint, gently curved

filaments with a variable length ranging from 100 nm up to

1000 nm and with an average width of 5 nm. High magnification

TEM images revealed pili as elongated structures with a ‘‘pearl

necklace’’ organization.

To understand pilus morphology at molecular level over 5000

independent segments of linear fibres were manually selected from

digitized micrographs and boxed into a 1646164 pixel box in

order to generate the three-dimensional reconstruction of the

pilus. The final structure was solved at 22 Å resolution applying

the single-particle approach [23].

Boxed segments were pre-aligned to a future-less reference

cylinder centred into the image box (Figure 1B). The correctly pre-

aligned segments were then subjected to multivariate statistical

analysis (MSA) [23,24] for classification. The resulting class-

averages determined by angular reconstruction applying a C1

point-group symmetry [25] showed S. pneumoniae pili as fibres with

an irregular ‘‘pearl necklace’’ appearance. Visual inspection

allowed us to observe that most of the class averages displayed

pili composed by individual elongated beads organized in a head-

to-tail arrangement (Figure 1C). Depending on the orientation a

lateral concavity could be detected in some of the beads, giving

thus them a ‘‘bean’’ appearance. Since the concavity was not

always detectable along the pilus this suggested that the beads did

not follow a defined helical rule of assembly. In order to confirm

the data a final set of class averages were compared to re-

projections of the 3D reconstruction obtained (Figure 1D). The

electron density map of the reconstructed full-length RrgB scaffold

(Figure 2) resulted in an extremely compact structure clearly

showing a contiguous organization of individual subunits, with

each single subunit made by a thin connecting region (,3 nm

width) followed by larger (,5.2 nm width) and smaller (,5 nm

width) globular densities separated by a lateral concavity (Figure 2).

The filament interior is tightly-packed. A twist along the

longitudinal axis was observed between two neighbouring subunits

along the length of the pilus. Different degrees of twist ranging

between 17u and 22u were measured. The refinement of the pilus

structure was performed using a 3D model of the fibre composed

of 2 averaged subunits. The projections around the long axis of the

averaged pilus were used for multi-reference alignment (MRA)

[26] of the different pilus segments. Two EM reconstructions of

the pilus were generated, which differed in the number of filament

segments used, the defocus range, and the approach to contrast

transfer function (CTF) correction. Comparison of these two

reconstructions by Fourier shell correlation method [27] (FSC,

threshold 0.50) provided a resolution estimated 22 Å.

Structure of major pneumococcal pilin RrgB fragment
Attempts to obtain full-length RrgB crystals were made with no

success. Crystallisable construct of fragments of RrgB were derived

from limited proteolysis and mass spectroscopy experiments (see

Materials and Methods construct design for details). The fragment

of RrgB designated RrgBD2-D4 (residues 184–627, Figure 3A)

was crystallized in three different crystal forms (Table 1) (in space

groups P212121, P6122 and C2221). All the three forms of

RrgBD2–D4 possess identical tertiary structure and all exhibited

root mean square deviations (rmsds) with each other on aligned

carbon alpha atoms of less than 7 Å (Table S1). Due to this,

reference to the RrgBD2–D4 will be made to the orthorhombic

crystal structure only, the coordinate set used in the analysis.

Each RrgBD2–D4 crystal form contained one molecule in the

asymmetric unit, consisting of an elongated polypeptide (84 Å in

length, 50 Å in width) made of three immunoglobulin-like

domains (named D2, D3 and D4).

A further crystal form designated RrgBD2–D3 (residues 141–

592) was also derived via the construct design process. Crystals

grown from these constructs belong to the monoclinic (space group

C2) crystal form and diffracted to high resolution (Table 1) but

Figure 1. Negative stain EM of purified S. pneumoniae pili.(A) The micrograph shows a network of elongated thin structures indicated by white
arrows. (B) Set of raw images of purified S. pneumoniae pili. (C) Representative class averages of purified S. pneumoniae pili segments. (D) Re-
projection of the 3D reconstruction of the pilus. Scale bar in panel A 20 nm, scale bar in panels B, C and D 10 nm.
doi:10.1371/journal.pone.0010919.g001

S. pneumoniae Pilus Structure
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lacked any ordered electron density outside regions defining

domains D2 and D3. Because of the close packing of the molecules

in this crystal form, it seems very likely that crystal growth

occurred after a degradation event during the crystallization

process.

The first 262 residues (184–446) form a dual domain (D2 and

D3) made of two b-sandwiches of approximately 100 residues

present in all crystal forms. The C-terminal 180 residues (446–627)

form a third domain (D4) that contains an additional anti-parallel

a-helical motif. As all domains described consist of modified

bacterial immunoglobulin domains, b-strands are named accord-

ing to the standard greek key nomenclature, represented in

Figure S1.

All three domains D2, D3 and D4 are structurally homologous

to each other, consisting of a pair of four-stranded b-sheets

forming a b-sandwich configuration. Despite the topological

equivalence, considerable variation exists between the domains

and superposition of the three domains D2/D3, D2/D4 and D3/

D4 results in the hydrophobic core being aligned with rmsd of 3.6,

3.3 and 2.8 Å on 68, 56 and 71 Ca coordinates, respectively. The

C-terminal b-sheet of domain D3 contributes one additional

strand to domain D2 completing the 4-stranded b-sheet of the b-

sandwich. Further details on the structural similarity between D2

and D3 domains are reported in Text S1. This intercalation of

secondary structural elements contributes to the stability of the

D2–D3 fragment. The helical component in domain D2, one 3–10

helix and a short 6 residue stretch (aa 283–289), is consistent with

that found in the eukaryotic IgG immunoglobulin fold. Domains

D2 and D3 are oriented together in such a way that the six loops

form a flat relatively broad surface of .5000 Å2 (Figure 3).

The core of these domains is made of seven b-strands within two

b-sheets arranged in a greek key motif reminiscent of the

immunoglobulin domain fold (Figure 3B). This core, which

corresponds to the collagen binding domain (Cna_B), is present

in several surface proteins of Gram-positive bacteria, including the

backbone protein Spy0128 of S. pyogenes (PDB code 3B2M) [22]

and the minor ancillary pilus protein GBS052 of S. agalactiae (PDB

code 2PZ4) [21]. The tertiary structure of the RrgB fragment

relative to these two proteins is also similar, with the exception that

the RrgB fragment contains an additional domain (D3) arranged

laterally relative to the other two structures, which only contain

two longitudinally oriented Ig-like domains.

As first shown by Kang et al. [22], each domain of the

backbone subunit spy0128 of S. pyogenes contains a stabilizing

Asn-Lys isopeptide bond within its core and an acidic residue in

its proximity, which provides the carboxylate anion needed for

the formation of the isopeptide link. We also find that each of the

three crystallized domains of RrgB contains intra-molecular

isopeptide bonds involving: Asn 318-Lys193 for D2; Asn 428-

Lys349 for D3, and Asn 623-Lys453 for D4 (Figure 4A, B, and

C). The isopeptide bonds in domains D3 and D4 are localized in

the proximity of Glu residues (aa 405 and 577, respectively) as

observed for Spy0128 (Figure 4D), while the isopeptide bond of

the D2 domain is close to Asp241. Comparison of the area

surrounding the isopeptide bonds of RrgB with those of GBS052

and Spy0128 shows that they are relatively well conserved, with

the exception of RrgB D2 domain where Asp241 is positioned in

a reverse orientation with respect to the Glutamate residues

present in the other two. In RrgB the carboxylate group is located

in closest proximity to the e-amino of the Lys rather than to the

carboxyl-oxygen of the Asn (Figure 4A). Despite these differences,

the amino acids surrounding the carboxylate anions of the

catalytic residues are largely conserved, each constituting a

hydrophobic cavity nearby the carboxylate contributing residue.

Figure 2. Three-dimensional reconstruction of the S. pneumo-
niae pilus. Surface representation of the S. pneumoniae pilus viewed
along three orthogonal directions. The reconstruction is rendered at the
molecular mass expected for two RrgB subunits (66 kD each). Structure
is viewed along three orthogonal directions. Surface representation
rendered with Chimera (Pettersen EF et al 2004).
doi:10.1371/journal.pone.0010919.g002

Figure 3. Structure of RrgB. A) Sequence organization of the full-
length RrgB protein. D1 is depicted in yellow, while D2, D3 and D4
domains are respectively in blue, green and red. Position of the intra-
molecular isopeptide bonds, the leader peptide (LP) and LPXTG motif
are indicated. B) Ribbon Diagram showing the three domains of RrgB
coloured as in A. Isopeptide bonds in each domain are shown as yellow
spheres. Figure produced with Pymol (http://www.pymol.org/).
doi:10.1371/journal.pone.0010919.g003

S. pneumoniae Pilus Structure
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In domain D2, Asp241 is surrounded by Phe277, Phe249, Ile300,

Ile224 and Val230; in domain D3 Glu405 is surrounded by

Val426, Phe367, Ala365 and Ile408; finally in domain D4

Glu577 is surrounded by Leu587, Phe466, Phe563, Phe451 and

Ala464 (Figure 4A, B and C).

The presence and nature of the isopeptide bonds in D2, D3 and

D4 were also supported by mass spectrometry data (Texts S2 and

S3 and Figure S2).

Gram positive pili contain different types of backbone
subunits

Sequence comparison was performed between RrgB and pilus

backbone proteins of other streptococcal pili. Significant

similarity resulted between RrgB and the backbone proteins of

S. pyogenes and S. agalactiae (Figure 5). In particular RrgB is more

similar to backbone subunits of S. agalactiae pilus islands 1 and 2a

[28] and to serotype M4 S. pyogenes backbone protein Spy0116

[11], where the level of sequence conservation ranges from 36 to

44% of sequence identity. With only one exception, the residues

involved in the formation of the intra-molecular isopeptide

bonds present in D2, D3 and D4 are also conserved in backbone

proteins belonging to pilus island 1 and 2a of GBS and in M4

GAS Spy0116 (Figure 5A), indicating that these subunits might

also share a similar global folding with RrgB. In contrast, the

overall similarity between RrgB and the pilus backbone of pilus

island 2b of GBS and most GAS pilus backbone proteins

(including the crystallized spy0128) revealed only a very limited

sequence conservation (data not shown). In line with this, while

RrgB consists of four independently folded domains, spy0128

has only two distinct domains and is much shorter in length

(665aa of RrgB versus 340 aa of spy0128). These diversities

suggest that Gram-positive pili can adopt a similar overall

architecture despite using different types of molecules as major

building blocks.

Table 1. Crystal forms of RrgBD2–D4 and of RrgBD2–D3 fragments.

RrgB-184-627 RrgB-184-627 RrgB-184-627 RrgB-187-448

Data collection

PDB ID 2X9W 2X9X 2X9Y 2X9Z

Spacegroup P212121 P6122 C2221 C2

No. Mol. in ASU 1 1 1 1

Unit Cell (Å) a/b/c 67.36/74.06/104.46 142.56/142.56/89.40 43.67/157.75/147.67 94.97/46.63/64.38 b= 115.48

Wavelength (Å) 0.9795 0.9795 1.54 0.9795

Resolution (Å) 50-1.9 50-1.5 50.0-2.3 50.0-1.3

Total Reflections unique,
(no observations)

40672 (529986) 85582 (812884) 21514 (135832) 61593 (192302)

Completeness %
(highest shell)

99.4 (89.3) 99.7 (98.3) 96.3 (86.3) 98.0 (90.7)

Rmerge, % (highest shell) 0.071 (0.93) 0.062 (0.91) 0.2 (0.705) 0.09 (0.71)

Highest Res. Shell, (Å) 1.95-1.92 1.55-1.5 2.38-2.34 1.32-1.3

Mean I/s (I), (highest shell) 26.0 (1.4) 35.9(1.28) 8.7 (1.3) 24.6 (1.0)

Mean Redundancy
(highest shell)

13.0 (5.8) 9.5 (4.5) 6.3 (4.1) 3.3 (1.8)

Phasing

Mean Figure of merit
for resolution range (Å)

0.2 (50.0 2.3) - - -

Refinement

No. refs. working set 70612 85061 21265 56542

No. refs. test set 3579 4253 1092 2866

Rcryst (Rfree
*){ 0.17 (0.23) 0.168 (0.2) 0.2 (0.25) 0.15 (0.17)

Rmsd bonds, Å 0.012 0.004 0.004 0.005

Rmsd angles, u 1.294 0.849 0.764 1.033

Average B, Å2 29.9 20 35.3 16.2

Maximum Likelihood
based on Rfree, Å{

0.25 0.23 0.67 0.16

Ramachandran Plot

Most Favored, % 90.9 91.6 90.6 90.4

Additional Allowed, % 8.8 8.1 9.2 9.6

Generously Allowed, % 0.3 0.3 0.3 0.0

Disallowed, % 0.0 0.0 0.0 0.0

{Rfactor~
P
H

P
i

jIi Hð Þ{vIi Hð Þwj
�P

H

P
i

Ii Hð Þ where Ii is the scaled intensity of the ith measurement, and ,Ii. is the mean intensity for that reflection.

*Rfree = as for Rfactor, but for 5.0% of the total reflections chosen at random and omitted from refinement.
doi:10.1371/journal.pone.0010919.t001
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Fitting of the RrgB D2-D4 crystal coordinates into the
pilus density map

In order to investigate subunit arrangement and interactions in

the S. pneumoniae pilus, a rigid-body fitting of two RrgBD2–D4

crystal fragments into the electron density map was performed by

using CHIMERA [29] (Figure 6A). The C-terminal immunoglob-

ulin domain (D4) of the crystal structure matched well into the

smaller globular density present below the groove with the core of

seven b-strands placed internally the filament and the additional

anti-parallel a-helical motif exposed on the surface. The fitting

confirmed that pilus volume (,1556e3 Å3) and dimensions (52 Å

in width and 252 Å in length) could accommodate two RrgBD2–

D4 molecules organized in a head-to-tail arrangement with

rotations ranging between 17u and 22u along the vertical axis of

the lower RrgBD2–D4 subunit in respect to the upper one. Here

both the flattened surface of the D2–D3 dual domain and the D4

Figure 4. Isopeptide Bonds of RrgB and Spy0128. A) and B) the isopeptide bond between residues Lys193 and Asn318 in domain 2 (D2) of
RrgB. Dashed lines show the distance of the carboxylate anion provided by Asp241; the isopeptide bond between Lys 349 and Asn428 in domain 3
(D3) and the position of Glu405 contributing the carboxylate anion; the isopeptide bond between Lys 453 and Asn623 and the position of Glu577 in
domain 4 (D4). C) Sigma-a weighted 2Fo–Fc map contoured at 1s level is shown for the isopeptide bond in D4 of RrgB. D) Isopeptide bond between
Lys36 and Asn168 in Spy0128 (drawn from PDB 3b2m). Carbon atoms are coloured green for residues involved in the formation of the isopeptide
bonds, yellow for neighbouring hydrophobic residues, and gray for residues adjacent to the isopeptide bond. Oxygen and nitrogen atoms are
coloured red and blue, respectively. Figure produced by Pymol.
doi:10.1371/journal.pone.0010919.g004

Figure 5. Sequence alignments of related pili proteins from Gram-positive bacteria. A) Sequence alignment showing intra-molecular
isopeptide bond formation which involves conserved residues Lysine (K), Aspartic Acid (D), Glutamic Acid (E) and Asparagine (N). Residues are
highlighted and coloured according to the domain localization. UniProtKB/TrEMBL accession codes are shown; RrgB-TIGR4, RrgB-6BSP and RrgB-
23FTW represent the sequences of the three RrgB alleles of S. pneumoniae; SAG0645 (also known as GBS80) belongs to PI-1 of Streptococcus
agalactiae; GBS1477, SAL1486, SAG1407 and SAI1511 belong to GBS PI-2a, whereas SAK0776 belongs to GBS PI-2b; Spy0116 belongs to the M4
serotype of Streptococcus pyogenes. The sequence alignment was obtained and edited by Jalview/ClustalW [55]. B) Cartoon representation of RrgB
single domains coloured as in 1A) is shown on the bottom. Yellow spheres depict the residues forming the isopeptide bonds.
doi:10.1371/journal.pone.0010919.g005
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domain could interface with the D1 domain of the neighbouring

subunit. Furthermore the fitting suggested that the inter-subunit

density (7 Å thick) could accommodate the 8-residue C-terminal

tail not present in the RrgB crystal. Notably, no information

about the neighbouring subunits or the missing residues in the

truncated pilin model was introduced into the fitting at any

stage. Therefore, the packing of the 84 Å long molecule within

the 60 Å diameter EM density without significant collision

independently validates the EM reconstruction and docking

procedures.

Moreover, the rigid body fitting performed with the electron

density map countered at the same threshold levels that

corresponded to the molecular mass of two RrgB subunits

(,132 kD total mass) showed that the two RrgBD2–D4 crystal

structures occupied a total volume of ,1176e3 Å3 leaving two

regions of unoccupied volume (,216e3 Å3) in the density map.

The two remaining extra unoccupied volumes, both present above

the N-terminus of each fitted RrgBD2–D4 crystal fragment

(Figure 6A), easily accommodated the volume of two computer

modelled D1 domains (RrgBD1) (Text S4, Figure S3A), each

containing 156 residues. Each D1 computer model was first fitted

manually using CHIMERA by placing as much of the atomic

structure as possible fully into the EM density map, approximately

in the position thought to be correct. This step was then followed

by a rigid body fitting using CHIMERA and optimized, as

previously, for the spatial frequency band of 22–60 Å (Figure 6B).

The low correlation values (,0.55) and the absence of clashes

were both indications of the correct orientation of the D1

computer models into the 3D pilus density in respect to the

RrgBD2–D4 crystal fragment orientation (Figure S3B). Finally,

the packing of the RrgB subunits within the EM density was the

only one validating the EM reconstruction. Any attempt of fitting

done with the computer models of the two ancillary proteins at the

spatial frequency band of 22–60 Å did not satisfy the spatial

restrains and generated a too high level of collisions.

Discussion

Fibrillar structures have been recently found in Gram-positive

bacteria complementing the wide range of Gram-negative

pathogens that since long have been known to express pili on

their surface. Pili were first observed in the Gram-positive species

Corynebacterium renale by electron microscopy, than followed by their

detection on the surface of other Gram-positive bacteria such as

Corynebacterium diphtheriae, Streptococcus salivarius and Streptococcus

sanguis. Recently these elongated appendages have been found

on the surface of the principal streptococcal pathogens including

Group A streptococci, Group B streptococci and S. pneumoniae. In

addition to colonization and adhesion, Gram-positive pili have

also been associated to other functions among which biofilm

formation and immune evasion [15,17,30]. Pilus subunits are

immunogenic in humans [13] and able to elicit a protective

response when tested in mouse models of infection [12,31]. Pilus

expression increases pathogenicity in animal models [32,33], and

enhances adhesion to epithelial cells [14,34,35].

To accurately define the structure and assembly mechanism of

the pneumococcal pilus we determined both a low-dose EM

reconstruction of the pilus filament and a high resolution crystal

structure of the backbone subunit.

Here the crystal structure of the RrgBD2–D4 backbone subunit

fitted into the EM reconstruction of the S. pneumoniae pilus reveals

for the first time the polymeric architecture of a Gram-positive

pilus indicating a head-to-tail organization of individual backbone

subunits. The measured unoccupied volume present between two

neighbouring subunits is compatible with the predicted density of

the flexible 8-residue C-terminus sequence 624KKVTIPQT631

Figure 6. Fitting of the RrgBD2–D4 crystal structure and of the RrgBD1 computer model into the 3D map of the S. pneumoniae pilus.
A) Semi transparent rendered surface representations of the 3-D map of the S. pneumoniae pilus viewed along the z-axis tilted by 90u showing the
docking of two copies of the atomic resolution RrgBD2–D4 subunit into the pilus reconstruction. Empty densities present above the two fitted
RrgBD2–D4 copies have a volume of ,216e3 Å3 each. B) Same semi-transparent rendered surface representations as in panel A showing the docking
into the pilus reconstruction of two copies of the RrgBD2–D4 subunit and contemporaneously of two computer model RrgBD1 domains. The docking
reveals that the inter-subunit density (7 Å thick) present between the upper and lower subunits could accommodate the 8-residue C- terminal tail,
not present in the RrgBD2–D4 crystal. Crystal structures are in cartoon representation and the three domains are coloured following the
nomenclature of Figure 3. Figure produced with Pymol (http://www.pymol.org/). Surface representation and molecule rendered with Chimera [29].
doi:10.1371/journal.pone.0010919.g006
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that is missing from the crystal structure. This region contains

Thr631, implicated in the formation of the inter-molecular

isopeptide bond that links the C-terminus of one subunit to the

N-terminal region of the next one in the row. Sequence analysis of

RrgB indicates the presence of two lysines potentially implicated in

the isopeptide bond formation: i) Lys183 which is part of a

canonical pilin motif (180VYPKN184); ii) Lys162 which can be

nicely aligned with Lys161 of Spy0128, previously identified by

Kang et al. [22]. When mapped onto the predicted model of the

RrgBD1 domain, both residues were well exposed and located on

the same face of the molecule. However, according to the model,

only Lys162 could be close enough to the presumed position of the

LPXTG motif of the neighbouring RrgB molecule to be involved

in the formation of an inter-molecular isopeptide bond. Never-

theless, experimental evidence is still needed to discriminate the

essential Lys.

The analysis of the rigid body fitting indicates that not only the

surface-surface interaction between neighbouring subunits but also

the presence of the inter-molecular isopeptide bond constrains the

flexibility of the pilus. The limited curviness observed in the pili

could be conferred by the hinge region of 2–4 residues which links

D1 to D2 in each individual subunit. This internal flexibility is

suggested also by the proteolysis experiments where the presence

of a proteolytic cleavage site between D1 and D2 indicates that a

mobile loop connects the two domains.

Another important aspect of pilus biogenesis is the understand-

ing of how the ancillary proteins are incorporated into the pilus

backbone. Originally, two distinct mechanisms were hypothesized.

The first assumed that the ancillary proteins are incorporated in

the pilus shaft in a similar manner as the backbone subunits, either

interspersed between the backbone subunits or located at the

extremities of the fiber. The second one sustains that the ancillary

proteins are associated laterally to the pilus shaft generating a

branched structure.

Previous reports [36] [19] [37] [20] showed by Immunogold

EM that RrgA and RrgC were distributed in clusters along pili

when organized in bundles. The single pilus structure presented in

this work and in Hilleringmann et al. [56] clearly show that the

pilus shaft is made by multiple copies of RrgB organized in a head-

to-tail linear structure and with the two opposite tips decorated by

the two ancillary proteins. Thus the presence of the ancillary

proteins clusters observed along the bundles could be a

consequence of the disposition of single pili along the bundle.

Recent works on GBS and C. diphtheriae have suggested that the

minor pilin may anchor the pili on the cell wall [30] [38], whereas

another recent paper shows that in GAS the major ancillary

protein is only attached at the tip of the fiber, consistently with its

role in adhesion [39]. These data are in agreement with our

observations that in S. pneumoniae the ancillary proteins are not

appended laterally, conferring to the pilus a pearl on a string

appearance of identical subunits bound to each other. Moreover

rigid-body fitting clearly indicates that the pilus density can

correspond only to a linear assembly of RrgB monomers,

excluding that other molecules, apart from RrgB, are incorporated

into the pilus shaft or appended laterally. Therefore, as in the case

of C. diphtheriae the most probable scenario for the pilus of S.

pneumoniae is the one that contemplate the presence of the major

ancillary protein RrgA at the distal tip where it could be more

available for adhesion, whereas the RrgB backbone provides the

structure with the elasticity required to reach the host cell

receptors.

The work described above shows the powerful synergy and

mechanistic insights that can result from a combined EM, X-ray

crystallography and Mass Spectrometry approach. The three-

dimensional structure of the pilus generated from TEM images

fitted with high resolution crystal structure of the major fragment

of RrgB have provided a detailed molecular view of the backbone

of S. pneumoniae pilus, and could be a key-model for the study of the

assembly, attachment and function of the pili in Gram-positive

bacteria.

Materials and Methods

Bacterial strains and culture conditions
S. pneumoniae type 4 strain TIGR4 was employed [40]. The

pneumococcal strains were stored at –80uC in 12% glycerol and

routinely grown at 37uC in 5% CO2 on Tryptic Soy Agar (Becton

Dickinson) supplemented with 5% defibrinated sheep blood or in

Tryptic Soy Broth (Becton Dickinson). When appropriate,

erythromycin and kanamycin (Sigma-Aldrich) as selection marker

were used.

Native TIGR4 pili purification
S. pneumoniae TIGR4 strain was chosen as starting material as

the bacteria belong to a clinical relevant serotype 4 isolate, the

sequence of which is known [40].

Native pili of TIGR4 and TIGR4DrrgA were purified essentially

according a protocol described by Hilleringmann et al. [37].

Purified pili fractions were judged to be homogeneous based on

electron microscopy and SDS-PAGE. Samples were stored at –

80uC or liquid nitrogen until further use.

Electron microscopy
A 5 ml aliquot of purified pili preparation with a final

concentration of 0.052 mg/ ml was applied to 200-square mesh

copper grids coated with a thin carbon film and let stand for

5 min. Excess of solution was blotted by Whatman filter paper.

The grids were first washed by streaming several drops of PBS

over the grids. They were subsequently negatively stained by two

drops of 1% buffered PTA (pH 6.5). The last drop was left on the

grids for 17 s. Finally the grids were washed with several drops of

ddH2O, the excess of liquid was soaked off by Whatman filter

paper and air dried. The grids were observed using a CM200 FEG

Philips Electron Microscope (FEI, Eindhoven, The Netherlands),

equipped with a GATAN GIF 2002 post column energy filter

(Gatan, Pleasanton, California, United States). All images were

collected at an accelerating voltage of 200 kV and a nominal

magnification of 500006, on Kodak SO163 film. Micrographs

where checked for astigmatism and drift on an optical diffractom-

eter prior to digitisation.

Image processing
Micrographs taken at 500006 of magnification were digitized

on an IMACON 949 scanner at spacing of 7.95 mm resulting in a

nominal sampling of 1.6 Å/pixel-1. Analysis of defocus and

Contrast Transfer Function (CTF) using the Medical Research

Council (MRC) program CTFFIND3 [41] and IMAGIC 5 [26]

showed that the first zero corresponds to ,17–19 Å. Since only a

moderate resolution of the 3-D reconstruction of the S. pneumoniae

pilus was required in order to identify the arrangement of the

backbone subunits, the final 3-D map was obtained at 22 Å

resolution using the 0.5 threshold of the Fourier shell correlation

(FSC) [27]. Pili segments were picked manually from digitized

images using the command ‘‘helixboxer’’ from the software

EMAN [42]. Digitized pili images were cut into individual repeats

by using boxes of 1646164 pixels, with overlapping ends, using 10

pixel shift for each box, so that adjacent boxes had 90% overlap.

Images were band-pass filtered at 17–200 Å to remove back-
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ground and normalized. The individual pili segments were treated

as single particles. In a first analysis, the segments were selected

and pre-aligned interactively, subsequently the pre-aligned repeats

were aligned using alignments with only limited angular ranges

(25u, +5u), finally a vertical alignment has been performed using

as a future-less reference the projection of a model cylinder, with a

5 nm width that corresponds to the width of the pilus measured in

the images, followed by translational alignment perpendicular to

the cylinder axis only. All the aligned and filtered images were

consistent: they all presented centred rods with similar diameters.

The only major differences were the surrounding stain distribu-

tions. Aligned pili segments were than classified by MSA to sort

images into class averages with similar features. The class averages

obtained have an improved signal-to-noise ratio and represent

characteristic molecular views of the pilus. Most class averages

showed pili with subunit-like features. Several iterations of

alignments and MSA classification led to homogeneous class

averages showing pili with globular subunits arranged linearly.

The initial model was determined from four side views of the pilus

and one end view [43]. In a first approximation, the end view was

taken as rotationally symmetrised average. The 3-D map was than

refined by adding class averages of the side views and a

reprojection along the z-axis as the end view. Re-projections of

the final 3-D were compared for consistency with input class

averages to check the accuracy of the Euler angles assigned [23].

Image processing of the pilus was performed using software

IMAGIC-5 [26]. The final 3-D map of the S. pneumoniae pilus was

refined at 22 Å resolution (FSC = 0.5) [27] by iterating procedures

of alignment and classification. 3D rendered surface representa-

tions were visualized in UCSF Chimera [29].

Construct Design
Full length RrgB (aa1-665) was expressed and purified in E.coli

strain HK100, according to standard protocols [44]. The resultant

protein was purified by Ni-NTA IMAC (Quiagen) and eluted by a

HEPES elution buffer, Buffer A (20 mM HEPES pH 7.3,

150 mM NaCl, 1 mM TCEP). 80 ml TPCK-Trypsin (Pierce)

was washed three times with 400 ml Buffer A, and then

resuspended in 800 ml of the same buffer. 25 ml of the TPCK-

Trypsin suspension was added to 50 ml protein (0.5–1.5 mg/ml)

and incubated at 37uC, 250 rpm for 4 hours. The immobilized

trypsin was removed by centrifugation and the proteolyzed

samples were then submitted for LCMS. Mass spec data were

analyzed by PAWS (Genomic Solutions Inc.) to determine possible

truncation boundaries. The resultant constructs were cloned in the

pSpeedET vector by the PIPE cloning method [45]. Positive

clones were verified by DNA sequence analysis, and expressed in

an identical way to the full length construct [46].In all, ten

constructs were generated via this methodology with boundaries,

24–227, 52–460, 109–562, 139–590,141–592, 184–627,163–

615,191–337 and 281–484 of the full length RrgB construct.

Crystallization
All crystallization experiments were carried out in 96 well low

profile Greiner crystallization plates in a nanodroplet sitting drop

vapour diffusion format with 480 conditions screens performed at

both 4 and 20u [46]. Equal volumes of protein concentrated to

10 mg/ml were added to the reservoir solutions to create a total

drop volume of 500 nl. Three crystal forms of the RrgBD2–D4

(containing residues 184–627) constructs were produced belonging

to spacegroups P212121, P6122 and C2221 in conditions 0.05

potassium dihydrogen phosphate, 20% PEG-8000 pH 4.5 4uC,

1.0 M Sodium Citrate 0.1 M Imidazole pH 8.0 at 20uC and

0.2 M Lithium Sulfate, 30% Peg-4000 0.1 M Tris pH 8.5 4uC

respectively. The other constructs which ultimately produced a

two domain version of the structures RrgBD2–D3, (containing

residues 141–592 of full length RrgB) were produced with identical

crystallization screens in crystal condition 30% PEG-6000 0.1 M

Citrate pH 5.0 at 20uC. All crystals were mounted using 20%

glycerol as a cryo-protectant prior to cooling to 100uK for data

collection.

Data Collection and Structure Solution
Data were collected at beamline 5.0.2 and 5.0.3 of the ALS and

were processed with the HKL2000 package [47] . Data collection

for phasing was performed on the orthorhombic crystal form of

RrgB184–627 at the Selenium edge with an inverse beam strategy.

Substructure solution, phasing, density modification and initial

model building was performed with SOLVE and RESOLVE

[48,49] on the primitive orthorhombic crystal form. Given that

only one Seleno-Methionine residue existed in the 441 residues

present in the asymmetric unit, the anomalous signal was relatively

weak (DF/sDF,1.2 on all data between 50 and 2.3 Å) but

implementation of a brute force searching strategy over various

resolution ranges and redundancies resulted in the location of the

substructure and initial phases, capable of building the model.

Subsequent refinement and building was performed with Phenix

and Coot [50,51]. All other crystallographic manipulations were

carried out with the CCP4 package [52]. Solutions of all other

crystal forms were performed by molecular replacement using the

orthorhombic crystal form as a search model and Phaser [53]

followed by refinement and building with Phenix and Coot

[50,54]. The geometry of all structures is excellent and all residues

are in allowed regions of the Ramachandran plot (Table 1).

Fitting of the X-ray coordinates into the electron density
map

The fitting was carried out independently for two individual

RrgBD2–D4 crystals and optimized for the spatial frequency band

of 22–60 Å. The correlation values between the fitted atomic

structures of two copies of RrgBD2–D4 and the 3-D map

corresponding to the upper and lower subunits of the pilus

reconstruction were both 0.66. All other orientations of two

subunits into the 3-D map resulted in lower correlation values

(,0.5 for each single subunit). Moreover, the alternative checked

orientations did not satisfy the spatial restrains on the distance

between neighbouring subunits. Alternative fittings of two adjacent

subunits had tilts and rotations that increased the distance between

the N-terminus of one fragment and the C-terminus of the next

one. Basically the first two modified immunoglobulin domains D2

and D3 of the crystal structure aligned well with the larger

globular density present in the pilus reconstruction, placing the

pair of four-stranded b-sheets parallel to the filament axis and

facing outward.

Supporting Information

Figure S1 Structure of RrgB. A) Ribbon Diagram showing the

three domains of RrgB coloured as in Figure 3B. Intra-isopeptide

bonds in each domain are shown as yellow spheres. Figure

produced with Pymol (http://www.pymol.org/). Greek-key rep-

resentation of the secondary structure organization of RrgB D2-

D4 domains (panel B) and the prototypic immunoglobulin fold

(panel C).

Found at: doi:10.1371/journal.pone.0010919.s001 (3.08 MB TIF)

Figure S2 Peptide mass fingerprinting of RrgB Domain 4. Each

signal is labelled with an m/z ratio and the amino acid position of
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the corresponding tryptic peptide. A) Signals labelled in red are

consistent with peptides linked by an isopeptide bound between

Lys453 and Asp623. The signal at m/z 1675.94 is consistent with

one trypsin missed cleavage while the signal at m/z 1290.74 is

consistent with no missed cleavage. Signal labelled with an asterisk

is consistent with the tryptic N-terminal and C-terminal peptide of

the cloned D4 domain of sequence MASVTYGK (m/z 856.50)

and ITLEHHHHHH (m/z 1297.64), respectively. Signal labelled

with a T is generated by trypsin autolysis products. B) MS/MS

spectrum of parental ion at m/z 1675.94. Only b and y series are

reported. A scheme of the fragmentation is shown at the top of the

figure.

Found at: doi:10.1371/journal.pone.0010919.s002 (3.34 MB TIF)

Figure S3 Fitting of the RrgBD1 computer model into the 3D

map of the S. pneumoniae pilus. A) Computer model of the D1

domain and sequence alignment of RrgB D1 to the N-terminal

domain of Spy0128 (PDB code 3B2M). Gold rectangles depict the

localization of beta strands on the crystal structure. B) The overall

protein fold is represented as a ribbon; the side-chains of Lys41

and Asn184, involved in the intra-molecular isopeptide bond are

highlighted. Lys162, with putative involvement in the inter-

molecular isopeptide bond is evidenced in grey. B) After fitting, D1

and D2-D4 coordinates were merged into a single file and

overlapping atoms were removed. The resulting RrgBD1-D4

model was visually inspected for absence of steric conflicts and

minimized with the same protocol used for D1. Threading was

performed with SwissPDBViewer, surface representation and

molecule rendered with Chimera. Crystal structures are in cartoon

representation and the three domains are coloured following the

nomenclature of Figure 3. Figure produced with Pymol (http://

www.pymol.org/). Surface representation and molecule rendered

with Chimera.

Found at: doi:10.1371/journal.pone.0010919.s003 (10.23 MB

TIF)

Table S1 Root mean square deviations (rmsd) of the three

crystal forms of RrgBD2-D4.

Found at: doi:10.1371/journal.pone.0010919.s004 (0.03 MB

DOC)

Text S1 Structural relationship between D2 and D3 domains.

Definition of the reciprocal orientation of domains D2 and D3.

Found at: doi:10.1371/journal.pone.0010919.s005 (0.03 MB

DOC)

Text S2 Presence of intra-molecular isopeptide bonds in D2, D3

and D4 are confirmed by MS. Details on the characterization of

isopeptide bonds.

Found at: doi:10.1371/journal.pone.0010919.s006 (0.03 MB

DOC)

Text S3 In-gel digestion and mass spectrometric analysis. Details

on mass spectroscopy analysis.

Found at: doi:10.1371/journal.pone.0010919.s007 (0.03 MB

DOC)

Text S4 Computer modelling of the RrgBD1 domain. Details on

the generation of the D1 computer model.

Found at: doi:10.1371/journal.pone.0010919.s008 (0.03 MB

DOC)
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