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Abstract

Motivation: Differential network analysis is an important way to understand network rewiring
involved in disease progression and development. Building differential networks from multiple
‘omics data provides insight into the holistic differences of the interactive system under different
patient-specific groups. DINGO was developed to infer group-specific dependencies and build dif-
ferential networks. However, DINGO and other existing tools are limited to analyze data arising
from a single platform, and modeling each of the multiple ‘omics data independently does not ac-
count for the hierarchical structure of the data.

Results: We developed the iDINGO R package to estimate group-specific dependencies and make in-
ferences on the integrative differential networks, considering the biological hierarchy among the plat-
forms. A Shiny application has also been developed to facilitate easier analysis and visualization of
results, including integrative differential networks and hub gene identification across platforms.
Availability and implementation: R package is available on CRAN (https://cran.r-project.org/web/

packages/iDINGO) and Shiny application at https://github.com/MinJinHa/iDINGO.

Contact: mjha@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of differential networks has led to a deeper understand-
ing of network rewiring, which explains changing molecular relation-
ships associated with a characteristic of interest, such as disease states
or progression, clinical treatments or environmental stress
(Bandyopadhyay et al., 2010; Califano, 2011). Most of the previous
approaches for differential network analysis have relied on different
correlation-based metrics to measure the dependencies between pairs
of nodes in a network (Hudson et al., 2009; Reverter et al., 2006).
However, these methods are limited to marginal correlation networks
(i.e. two nodes at a time) that are estimated separately using observa-
tions within each group, and generally do not consider relationships
that are conserved across multiple groups. This has been refined in the
DINGO framework (Ha et al., 2015) that separates group-specific
conditional dependencies into global and group-specific components,
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and this method has been shown to improve performance over other
existing methods in simulation studies and with real data.

At the same time, integromic analyses (including genomics, epige-
nomics, proteomics and others) have provided biological and clinical
insight into a variety of diseases (Gerstung et al., 2015; Qin, 2008).
Differential network analysis of integromic datasets introduces new
opportunities, as an understanding of the relationships of elements
across platforms can provide a more complete biological understand-
ing of the characteristic of interest. Our integrative approach identifies
a set of edges between nodes that are differentially connected between
patient groups, including directed edges between platforms and undir-
ected edges within platforms. Using data from additional platforms
allows us to adjust for the upstream data, providing a more refined
network than the original DINGO method. The resulting network
allows us to identify ‘hub nodes’ (nodes with the greatest number of
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outgoing or undirected edges) across platforms, which may have the
greatest effect on the clinical/grouping variable (Flintoft, 2004).

In this paper, we present the R package IDINGO’ (with accom-
panying Shiny application) as an expansion of the ‘DINGO’ pack-
age. This package integrates relationships between different ‘omics
levels in the analysis using a chain graph model. Parallelization is
implemented to improve computation time, and a multiple-testing
correction is also included to improve inference on differential
edges. Finally, we introduce a Shiny application to facilitate easier
analysis and visualization.

2 The iDINGO R package

We can integrate ordered data platforms using the chain graph
model. For example, we can integrate microRNA, mRNA and pro-
tein data using the assumed ordering,

microRNA < mRNA < Protein,

which means that microRNA can affect mRNA and protein, and
mRNA can affect protein, but not vice versa. In this case, we have a
set of nodes V.= Vi U Vg U Vp, where Viyy = {M;,M,,...} is a set
of microRNA nodes, Vg = {Ry, R, ...} is a set of mRNA nodes and
Vp = {P1,P,...} is a set of protein nodes, and a set of edges E that
may contain both directed (—) and undirected (-) edges between and
within Vy, Vg and Vp, respectively. Following the Markov property
for chain graphs (Frydenberg, 1990; Lauritzen and Wermuth,
1989), the within- and between-platform conditional independence
is defined as follows:

(D1) M;uM;| Vi \ {M;, M;}
(D2) M;uR;| ViU Vg \ {M;,R;}

)
)
(D3) RiuR;| Vi U Ve \{R;,R;}
(D4) M;uP;| V\ {M;,P;}
)
)

(DS) RjuP;| V\{R;,P;}
(D6 P,'J_lP,‘ V\{Pl',P,’},

where the conditional dependencies in (D1), (D3) and (D6) encode
undirected edges within microRNA, mRNA and protein, respect-
ively, and those in (D2), (D4) and (DS5) represent directed edges
microRNA—mRNA, microRNA—protein and mRNA—protein. In
our iDINGO framework, we investigate the differential network be-
tween those integrative dependencies for random variables from
multiple platforms, which follows a multivariate normal distribu-
tion. This approach allows us to consider more refined biological re-
lationships between platforms than the original DINGO package,
which did not consider dependencies between different data plat-
forms (the implementation of this chain graph model is described in
Supplementary Section S1, along with a notation table).

The input to iDINGO includes up to three matrices containing ex-
pression data on the same samples from different platforms, as well as
a vector denoting the group membership of each sample. The final
iDINGO object contains all of the possible edges among and between
platforms, along with their respective partial correlations for each
group, differential scores and P-values. The iDINGO methodology is
general to be applied with just one, two or more than three platforms
with known ordering information between them (in the case of one
platform, the regular DINGO algorithm will be used).

Examples of the iDINGO implementation have been provided in
Supplementary Section S5. In addition, we discuss additional fea-
tures added to iDINGO, including parallelization, false discovery
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Fig. 1. Left: iDINGO differential network plot (with microRNA nodes on the
left, mRNA nodes in the center and protein nodes on the right), containing
partial correlations increased in breast cancer (red edges) or normal tissue
(blue edges), with FDR < 0.1. Right: A scatterplot comparing the partial correl-
ations of the edges in the two groups, colored as in the network

rate (FDR) corrected P-values and differential network plotting
(Supplementary Section S1).

3 Shiny web application

iDINGO has been implemented in a web application using the Shiny
R package (Chang et al., 2017), to provide a user-friendly integro-
mic analysis method. A description of its graphical user interface
and a usage example are provided in Supplementary Section S4.

One, two or three omics datasets (matched samples) are to be pro-
vided as text files. The sample group classifiers are input as another
text file, containing the binary group information for the samples. We
recommend generating pathway-based iDINGO networks with no
more than a few hundred elements, due to the computational re-
sources and time required. More information about pathway-level
analysis is provided in Supplementary Section S2, as well as other con-
siderations in platform integration in Supplementary Section S3.

After running iDINGO, the resulting network is presented in the
main panel along with a table of the top hub elements (those with
the greatest number of differential edges). In the network plot
(Fig. 1), nodes are colored by platform level, and the differential net-
work can be depicted in multiple layouts. The differential score
threshold can be set to further filter which edges are considered ‘dif-
ferential’ and included in the plotted network. A scatterplot of
group-specific partial correlations (Fig. 1) is provided to compare
the magnitude of the group-specific dependencies.
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