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Abstract

Motivation: Differential network analysis is an important way to understand network rewiring

involved in disease progression and development. Building differential networks from multiple

‘omics data provides insight into the holistic differences of the interactive system under different

patient-specific groups. DINGO was developed to infer group-specific dependencies and build dif-

ferential networks. However, DINGO and other existing tools are limited to analyze data arising

from a single platform, and modeling each of the multiple ‘omics data independently does not ac-

count for the hierarchical structure of the data.

Results: We developed the iDINGO R package to estimate group-specific dependencies and make in-

ferences on the integrative differential networks, considering the biological hierarchy among the plat-

forms. A Shiny application has also been developed to facilitate easier analysis and visualization of

results, including integrative differential networks and hub gene identification across platforms.

Availability and implementation: R package is available on CRAN (https://cran.r-project.org/web/

packages/iDINGO) and Shiny application at https://github.com/MinJinHa/iDINGO.

Contact: mjha@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The analysis of differential networks has led to a deeper understand-

ing of network rewiring, which explains changing molecular relation-

ships associated with a characteristic of interest, such as disease states

or progression, clinical treatments or environmental stress

(Bandyopadhyay et al., 2010; Califano, 2011). Most of the previous

approaches for differential network analysis have relied on different

correlation-based metrics to measure the dependencies between pairs

of nodes in a network (Hudson et al., 2009; Reverter et al., 2006).

However, these methods are limited to marginal correlation networks

(i.e. two nodes at a time) that are estimated separately using observa-

tions within each group, and generally do not consider relationships

that are conserved across multiple groups. This has been refined in the

DINGO framework (Ha et al., 2015) that separates group-specific

conditional dependencies into global and group-specific components,

and this method has been shown to improve performance over other

existing methods in simulation studies and with real data.

At the same time, integromic analyses (including genomics, epige-

nomics, proteomics and others) have provided biological and clinical

insight into a variety of diseases (Gerstung et al., 2015; Qin, 2008).

Differential network analysis of integromic datasets introduces new

opportunities, as an understanding of the relationships of elements

across platforms can provide a more complete biological understand-

ing of the characteristic of interest. Our integrative approach identifies

a set of edges between nodes that are differentially connected between

patient groups, including directed edges between platforms and undir-

ected edges within platforms. Using data from additional platforms

allows us to adjust for the upstream data, providing a more refined

network than the original DINGO method. The resulting network

allows us to identify ‘hub nodes’ (nodes with the greatest number of
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outgoing or undirected edges) across platforms, which may have the

greatest effect on the clinical/grouping variable (Flintoft, 2004).

In this paper, we present the R package ‘iDINGO’ (with accom-

panying Shiny application) as an expansion of the ‘DINGO’ pack-

age. This package integrates relationships between different ‘omics

levels in the analysis using a chain graph model. Parallelization is

implemented to improve computation time, and a multiple-testing

correction is also included to improve inference on differential

edges. Finally, we introduce a Shiny application to facilitate easier

analysis and visualization.

2 The iDINGO R package

We can integrate ordered data platforms using the chain graph

model. For example, we can integrate microRNA, mRNA and pro-

tein data using the assumed ordering,

microRNA < mRNA < Protein;

which means that microRNA can affect mRNA and protein, and

mRNA can affect protein, but not vice versa. In this case, we have a

set of nodes V ¼ VM [ VR [ VP, where VM ¼ M1;M2; . . .gf is a set

of microRNA nodes, VR ¼ fR1;R2; . . .g is a set of mRNA nodes and

VP ¼ fP1;P2; . . .g is a set of protein nodes, and a set of edges E that

may contain both directed (!) and undirected (-) edges between and

within VM, VR and VP, respectively. Following the Markov property

for chain graphs (Frydenberg, 1990; Lauritzen and Wermuth,

1989), the within- and between-platform conditional independence

is defined as follows:

D1ð Þ Mi q Mjj VM n fMi;Mjg

D2ð Þ Mi q Rjj VM [ VR n fMi;Rjg

D3ð Þ Ri q Rjj VM [ VR n fRi;Rjg

ðD4Þ Mi q Pjj V n fMi;Pjg

ðD5Þ Ri q Pjj V n fRi;Pjg

ðD6Þ Pi q Pjj V n fPi;Pjg;

where the conditional dependencies in (D1), (D3) and (D6) encode

undirected edges within microRNA, mRNA and protein, respect-

ively, and those in (D2), (D4) and (D5) represent directed edges

microRNA!mRNA, microRNA!protein and mRNA!protein. In

our iDINGO framework, we investigate the differential network be-

tween those integrative dependencies for random variables from

multiple platforms, which follows a multivariate normal distribu-

tion. This approach allows us to consider more refined biological re-

lationships between platforms than the original DINGO package,

which did not consider dependencies between different data plat-

forms (the implementation of this chain graph model is described in

Supplementary Section S1, along with a notation table).

The input to iDINGO includes up to three matrices containing ex-

pression data on the same samples from different platforms, as well as

a vector denoting the group membership of each sample. The final

iDINGO object contains all of the possible edges among and between

platforms, along with their respective partial correlations for each

group, differential scores and P-values. The iDINGO methodology is

general to be applied with just one, two or more than three platforms

with known ordering information between them (in the case of one

platform, the regular DINGO algorithm will be used).

Examples of the iDINGO implementation have been provided in

Supplementary Section S5. In addition, we discuss additional fea-

tures added to iDINGO, including parallelization, false discovery

rate (FDR) corrected P-values and differential network plotting

(Supplementary Section S1).

3 Shiny web application

iDINGO has been implemented in a web application using the Shiny

R package (Chang et al., 2017), to provide a user-friendly integro-

mic analysis method. A description of its graphical user interface

and a usage example are provided in Supplementary Section S4.

One, two or three omics datasets (matched samples) are to be pro-

vided as text files. The sample group classifiers are input as another

text file, containing the binary group information for the samples. We

recommend generating pathway-based iDINGO networks with no

more than a few hundred elements, due to the computational re-

sources and time required. More information about pathway-level

analysis is provided in Supplementary Section S2, as well as other con-

siderations in platform integration in Supplementary Section S3.

After running iDINGO, the resulting network is presented in the

main panel along with a table of the top hub elements (those with

the greatest number of differential edges). In the network plot

(Fig. 1), nodes are colored by platform level, and the differential net-

work can be depicted in multiple layouts. The differential score

threshold can be set to further filter which edges are considered ‘dif-

ferential’ and included in the plotted network. A scatterplot of

group-specific partial correlations (Fig. 1) is provided to compare

the magnitude of the group-specific dependencies.
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