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ABSTRACT
Objectives To develop a disease stratification model for 
COVID- 19 that updates according to changes in a patient’s 
condition while in hospital to facilitate patient management 
and resource allocation.
Design In this retrospective cohort study, we adopted a 
landmarking approach to dynamic prediction of all- cause 
in- hospital mortality over the next 48 hours. We accounted 
for informative predictor missingness and selected 
predictors using penalised regression.
Setting All data used in this study were obtained from a 
single UK teaching hospital.
Participants We developed the model using 473 
consecutive patients with COVID- 19 presenting to a UK 
hospital between 1 March 2020 and 12 September 2020; 
and temporally validated using data on 1119 patients 
presenting between 13 September 2020 and 17 March 
2021.
Primary and secondary outcome measures The 
primary outcome is all- cause in- hospital mortality within 
48 hours of the prediction time. We accounted for the 
competing risks of discharge from hospital alive and 
transfer to a tertiary intensive care unit for extracorporeal 
membrane oxygenation.
Results Our final model includes age, Clinical Frailty 
Scale score, heart rate, respiratory rate, oxygen saturation/
fractional inspired oxygen ratio, white cell count, presence 
of acidosis (pH <7.35) and interleukin- 6. Internal 
validation achieved an area under the receiver operating 
characteristic (AUROC) of 0.90 (95% CI 0.87 to 0.93) and 
temporal validation gave an AUROC of 0.86 (95% CI 0.83 
to 0.88).
Conclusions Our model incorporates both static risk 
factors (eg, age) and evolving clinical and laboratory data, 
to provide a dynamic risk prediction model that adapts to 
both sudden and gradual changes in an individual patient’s 
clinical condition. On successful external validation, the 
model has the potential to be a powerful clinical risk 
assessment tool.
Trial registration The study is registered as 
‘researchregistry5464’ on the Research Registry (www. 
researchregistry.com).

INTRODUCTION
SARS- CoV- 2 virus infection, the cause of 
COVID- 19, results in a spectrum of disease 
ranging from asymptomatic infection through 
to life- threatening disease requiring critical 
care and even death. For patients admitted to 
hospital, it is essential to identify who is at risk 
of deterioration and death to enable timely 
targeted interventions (such as immune 
modulation and mechanical ventilation), to 
facilitate appropriate resource allocation and 
patient flow, and to inform discussions with 
patients and families.

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ Our dynamic prediction model can incorporate pa-
tient data as it accumulates throughout a hospital 
visit.

 ⇒ We use the established statistical landmarking ap-
proach to dynamic prediction; we account for com-
peting risks for the primary outcome of in- hospital 
mortality, and the potentially informative availability 
of clinical and laboratory data.

 ⇒ The sample size of the first wave of patients ad-
mitted with severe COVID- 19 was relatively low, 
due to the lower incidence in Cambridgeshire, but 
increased significantly during the winter months of 
2020/2021, providing the opportunity to temporally 
validate the model.

 ⇒ As a single- centre study, the presented model will 
require external validation to assess its performance 
in other cohorts; and also if there are significant 
changes in the characteristics of new variants or the 
management thereof.

 ⇒ Our work also highlights the adaptability of the sta-
tistical landmarking framework to be used to model 
individual patient outcomes using frequently collect-
ed hospital data.
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Most existing disease severity prediction models for 
COVID- 19 use only data that are available at the time of 
admission to hospital. Such point- of- admission models 
have been proposed for both mortality and composite 
escalation/mortality outcomes, including new and repur-
posed severity and early warning scores1–7 and time- to- 
event models.8–13

While some markers of severity, such as sex and age 
can be assumed constant for the duration of the hospital 
visit, others, such as clinical observations and blood test 
results, can change markedly over the course of admis-
sion. COVID- 19 is a dynamic disease in which patients 
can deteriorate over a short time period or suffer acute 
complications, for example, thromboembolism.14 15 This 
may have a significant effect on a patient’s prognosis that 
cannot be foreseen by a point- of- admission model.

A model with the ability to adjust predictions at arbi-
trary time points by including updated patient infor-
mation could greatly aid in clinical decision- making. 
Dynamic models that assimilate clinical data as it accrues 
may provide more accurate and clinically useful predic-
tion of a patient’s clinical course and prognosis over the 
subsequent days than point- of- admission models. Predic-
tive models that incorporate post- admission informa-
tion are limited in number and scope. Some models for 
predicting mortality or deterioration have used informa-
tion after admission, but do not continue beyond the first 
few days of admission.16 17 More recent time- varying Cox 
models (for mortality and escalation)18 19 and machine 
learning models (for mortality)20 have used additional 
post- admission data. However, time- varying Cox models 
should not be used for prediction, because they require 
knowledge of clinical information from the future to 
calculate the hazard function, which is impossible in prac-
tice.21 Furthermore, while indicating promising discrimi-
nation, these models use clinically unjustifiable or unclear 
methods for handling missing data and censoring, and do 
not account for informative missingness or consider the 
effect of treatments. Informative missingness describes 
the fact that in routinely collected data the availability 
(or absence) of a result or observation may be related 
to the probability of the outcome. For example, a more 
extensive panel of investigations may be sent for patients 
thought more likely to benefit from escalation in care, 
such as transfer to an intensive care unit (ICU). While 
often ignored, such effects can be strong in electronic 
health record (EHR) data.22 23

We propose a prognostic risk stratification score for 
hospital patients with COVID- 19, based on prediction 
of mortality in the subsequent 48 hours, using routinely 
collected clinical data. Our model is based on a princi-
pled statistical approach called landmarking21 24 25 that 
allows inclusion of any time- varying clinical parameters 
recorded prior to the time of prediction, while appropri-
ately accounting for censoring and changes in the set of 
patients at risk. The model accounts for informative miss-
ingness and competing risks, which arise when there are 
two or more mutually exclusive outcomes, for example, 

once a patient is discharged, the risk of in- hospital 
mortality (during that admission) is removed. There-
fore, discharge is a ‘competing risk’26 when viewed from 
the perspective of in- hospital mortality. We account for 
competing risks within the landmarking framework using 
a recently proposed approach27 that has not previously 
been used to model individual patient outcomes using 
frequently collected EHR data.

MATERIALS AND METHODS
Study design
This is a retrospective cohort study of all patients 
presenting to Cambridge University Hospitals, a regional, 
tertiary care, university hospital in the East of England, 
between 1 March 2020 and 17 March 2021. This hospital 
is the sole admission hospital for patients in its immediate 
catchment population with COVID- 19, and is a regional 
referral centre for a wide range of specialist services, 
which do not include extracorporeal membrane oxygen-
ation (ECMO).

We report our findings according to the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis reporting guidelines.28

Study population
All adults (≥18 years of age) presenting to hospital 
during the study period and diagnosed with COVID- 19 
were included. Diagnosis was based on either a positive 
diagnostic SARS- CoV- 2 test during or up to 14 days prior 
to the hospital visit, or a clinical diagnosis of COVID- 19 
(online supplemental appendix 1). Patients with clini-
cally diagnosed COVID- 19 (based on symptoms, and the 
clinical opinion of the treating clinician) were included 
because diagnostic testing was limited during the early 
stages of the pandemic.29

We include only the first hospital visit for each patient 
involving (or subsequent to) their first positive test; any 
readmissions were excluded. Nosocomial infection was 
defined as a first positive SARS- CoV- 2 test or diagnosis 
more than 10 days after hospital admission. Since we first 
train our model at 6 hours (to allow time for laboratory 
investigations), patients who died, were discharged or 
were classified as end of life within 6 hours of presenta-
tion to hospital were excluded.

All patients were treated as per detailed local guid-
ance in use in the hospital at the time. Patients were also 
eligible for inclusion in relevant clinical trials running 
at the hospital during the study period (online supple-
mental eappendix 2).

Outcomes
Throughout each patient’s hospital visit, we aim to predict 
all- cause in- hospital mortality during the next 48 hours, a 
time period that we refer to as the ‘prediction horizon’. 
We also considered two competing risks: transfer to a 
tertiary ICU for ECMO; and discharge from the hospital 
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due to clinical improvement. Patients were followed up 
until 19 March 2021.

Patient and public involvement
No patients were involved in the design of this study.

Model development
A list of 59 candidate clinical parameters (online supple-
mental etable 1) were chosen based on existing point- of- 
admission prediction models for COVID- 19; components 
of scores predicting mortality in critical illness more 
generally, such as the Sequential Organ Failure Assess-
ment30 and the Acute Physiology and Chronic Health 
Evaluation II31; and clinical opinion as to other likely 
predictors. These are divided into five categories: demo-
graphics, comorbidities, observations, laboratory tests, 
and treatments, interventions and level of care.

Basic patient demographics were extracted from the 
hospital EHR: sex, ethnicity and age at hospital presen-
tation; and deviation from standard ranges of body mass 
index, using the most recent measurement (up to 1 year 
old).

Twelve comorbidities that have previously been associ-
ated with COVID- 19 severity32 were identified by the pres-
ence of the corresponding ICD- 10 codes entered in the 
EHR prior to the time at which the prediction is made 
(either before or during the hospital visit). Online supple-
mental etable 2 provides the ICD- 10 codes used to define 
each comorbidity. In addition to specific comorbidities, 
frailty among patients over 65 years old was assessed by 
the Clinical Frailty Scale (CFS) score33 (online supple-
mental eappendix 3).

We included the following observations that are regu-
larly recorded in the EHR: heart rate (HR), mean arte-
rial pressure, temperature and respiratory rate (RR). 
Oxygen saturation (SpO2)/fractional inspired oxygen 
(FiO2) ratio was calculated (where SpO2 and FiO2 
were available at the same time point) to indicate the 
severity of hypoxia.34 35 SpO2 itself was not included as 
a potential predictor as our exploratory work suggested 
that, without accounting for FiO2, this largely reflected 
a patient’s assigned oxygen saturation targets, and there-
fore, acted as a proxy for underlying respiratory disease 
(eg, patients with chronic obstructive pulmonary disease 
being assigned a lower SpO2 target). Where only oxygen 
flow rate was available, FiO2 was estimated according to 
the EPIC II conversion tables.36 PaO2/FiO2 (P/F) ratio 
was also included. We summarised the measurements 
recorded over the previous 24- hour period as follows: 
mean, minimum and maximum value. We also calculated 
the ‘median- trend’ as the difference between the median 
value for the last 24 hours, and the median value for the 
24 hours prior to this. The Glasgow Coma Score (GCS) 
was extracted from the EHR; patients without a recorded 
GCS were assumed to have a GCS ≥12.

For each of the 31 laboratory tests, we considered 
(online supplemental eTable 1), we included results up 
to 48 hours prior to the time at which the prediction 

was made. Where more than one result was available, we 
used the most recent result. In addition, for seven of the 
most frequently measured blood tests (C reactive protein 
(CRP), white cell count (WCC), platelets, haemoglobin, 
creatinine, sodium, potassium), we included the median 
trend. The neutrophil/lymphocyte and interleukin- 6/
interleukin- 10 (serum IL- 6/IL- 10) ratios have previously 
been identified as prognostic, therefore we also consid-
ered these as potential predictors.9 17 37 For blood markers 
where both abnormally low and abnormally high results 
could potentially be associated with poor prognosis 
(sodium and pH), we included the maximum deviation 
below and above the normal range in the previous 24 
hours. We adjusted venous pH results by adding 0.03 to 
approximate arterial pH results.38

We included five indicators of treatments, interventions 
and levels of care. The level of care of the patient was 
summarised by whether the patient had been in an ICU 
bed in the previous 24 hours. Mechanical ventilation was 
defined as patients receiving invasive ventilation during 
the previous 24 hours, either via endotracheal tube or 
tracheostomy. The use of renal replacement therapy 
during the last 24 hours was identified from the EHR. 
Cardiovascular support was defined as the administra-
tion of any vasopressors or inotropes in the last 24 hours. 
Steroid administration has been shown to reduce 28- day 
mortality in patients with COVID- 19.39 40 We therefore 
include an indicator of whether the patient had received 
treatment dose steroids (defined as 6 mg dexamethasone 
daily or an equivalent dose of prednisolone, hydrocorti-
sone or methylprednisolone) during their hospital admis-
sion prior to the time the prediction is made.

Models
We used a landmarking approach,27 which has been 
proposed for dynamic prediction.21 24 25 At intervals 
of 24 hours (referred to as the ‘landmark times’), we 
trained time- to- event models, using clinical parameters 
recorded before (or at) the landmark time as predictors. 
This makes it possible to include repeatedly measured 
clinical parameters into the prediction model, so that 
predictors reflect any changes in the trajectory of the 
patient, while appropriately accounting for censoring 
and changes in the at- risk population. If the primary 
outcome was recorded within the prediction horizon of a 
landmark time, we recorded the outcome at the relative 
time from landmark to event; events after the prediction 
horizon were censored. Patients who have had any event 
prior to the landmark time were excluded, since these 
patients were no longer at risk. The first landmark is 6 
hours after presentation to allow time for clinical infor-
mation to accrue, or at the point of COVID- 19 diagnosis 
for nosocomial patients (diagnosed 10 days or more 
after presentation). We only used data at each landmark 
time from patients being actively treated for COVID- 19 
at that point in time: landmark times after transition to 
end of life care were omitted, meaning that no predic-
tions were made at these timepoints, although events 
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occurring within the existing prediction horizon were still 
included. Patients receiving end of life care were identi-
fied from their recorded escalation status in the EHR and 
by manual review of patient notes containing relevant 
keywords (online supplemental eappendix 4). We used a 
supermodel approach in which the time- to- event model is 
assumed constant across landmark times.39

Specifically, we used a competing- risks landmarking 
approach27 41 which uses a Fine- Gray competing risk 
model to predict in- hospital death, and account for 
the competing risks of hospital discharge and transfer 
for ECMO.42 43 A Fine- Gray model uses subdistribution 
hazards, which are directly related to the cumulative 
incidence function, by which the probability of an event 
of interest occurring can be estimated. While the cause- 
specific hazard function used by Cox models is prefer-
able for inferring biological mechanisms, subdistribution 
hazard- based models are preferable for prediction.44

Missing values
We handled missing data using the missingness indicator 
approach since the recording in the EHR of a clinical 
parameter, regardless of the value, is often indicative of 
the treating health professional’s contemporaneous view 
of the patient’s condition.45 46 Conceptually our approach, 
as well as estimating the ‘effect’ of a unit increase of a 
particular clinical parameter (as is standard in all regres-
sion approaches), estimates the ‘effect’ of a variable 
being ‘missing’. A clinical parameter may be ‘missing’ 
(also referred to as ‘not recorded’ or ‘not available’) due 
to not being measured or due to not being documented 
in the EHR. For each potential predictor in the model we 
also include a missingness indicator, which indicates that 
no data were recorded during the corresponding time 
period. This approach allows clinical parameters with 
an incomplete record to be included in our model and 
avoids the need to make the missing at random (MAR) 
assumption that is unlikely to hold in these data.47 For 
each parameter, ultimately one of the two expressions is 
used for prediction for each patient at each timepoint: 
either a coefficient describing the relationship with the 
clinical parameter when it is recorded, or a fixed value if 
the clinical parameter is missing.

Blood tests are considered missing if the most recent 
measurement was collected more than 48 hours prior to 
the landmark time. When a blood test is repeated during 
the previous 48 hours, the most recent result is used. The 
vital signs we considered did not have missing values at 
any included landmark.

Predictor selection
To select the most predictive parameters for the model we 
adopted an approach proposed for Fine- Gray models48 
that uses standard penalised variable selection, specifi-
cally smoothly clipped absolute deviations (SCAD), with 
the tuning parameter chosen to minimise the Bayesian 
information criterion. We paired parameters together 
with their corresponding missingness indicator to prevent 

inclusion of an incompletely recorded parameter without 
its missingness indicator, using the group SCAD49; but 
also allowed for the missingness indicators to be included 
by themselves.

The development and validation of the model has been 
carried out in R V.3.6.50

Model assessment
Quantitative assessment of discrimination was performed 
using the area under the receiver operating characteristic 
(AUROC) curve, in which 0.5 indicates no discrimination 
and 1.0 indicates perfect discrimination. For validation 
of the performance of the model on the training data, in 
addition to the unadjusted AUROC, we also performed 
repeated fivefold (split into 80% training, 20% validation 
data) cross- validation to account for uncertainty and over-
optimism due to the complete model building process 
(including variable selection).51 We also calculated the 
precision- recall (PR) curve and the area under the PR 
curve (AUPRC) since it provides a clearer performance 
summary than AUROC when the primary outcome has 
low incidence, as here.52 We assessed clinical benefit visu-
ally via the number needed to evaluate (NNE), defined 
as 1/positive predictive value (1/PPV), against the sensi-
tivity. We also calculated the net benefit curve.53

We assessed calibration visually using a calibration 
plot of predicted risk against observed mortality rate. 
We also quantitatively assessed the calibration slope and 
calibration- in- the- large.54

Sensitivity analyses
To assess whether the model is unduly influenced by 
patients with long hospitalisations we retrained the 
model using only each patient’s first 28 landmark times 
(spanning 28 days). We also assessed the sensitivity of our 
model assessment by stratifying by whether COVID- 19 
was confirmed by a positive SARS- CoV- 2 diagnostic test, 
and according to whether patients had received at least 
a single COVID- 19 vaccination dose prior to admission 
(Oxford- AstraZeneca Covishield, Pfizer- BionTech Comir-
naty or Moderna Spikevax). We also assessed the discrim-
ination of the model if we removed all laboratory tests. 
Finally, we explored the implications of replacing the 
24- hour prediction horizon with a 72- hour prediction 
horizon.

RESULTS
Development of prediction model
We developed the model using data from wave 1 (1 
March 2020 to 12 September 2020), with the end date 
chosen since only a single patient remained in hospital 
with COVID- 19 on this date. A total of 519 patients 
presented to hospital with COVID- 19 during wave 1, of 
whom 46 were excluded due to discharge (34), death 
(2) or transition to end- of- life care (10) prior to the first 
landmark time (ie, within 6 hours of presentation). The 
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characteristics of the 473 patients included in the devel-
opment of the model are shown in table 1.

In total, we included 6846 landmark times for training 
the model, with a median of 9 (IQR 3–17) landmark 
times per patient. In the 48- hour prediction horizon 
following these landmark times, there were 119 in- hos-
pital death events (1.7% of landmarks), 658 hospital 
discharge events (9.6%) and 10 transfers for ECMO 
(0.1%). Note that, since landmarks occur every 24 hours 
and the prediction horizon is 48 hours, patient events 
will usually occur within the prediction horizon of two 
adjacent landmark times. Online supplemental etable 1 
reports summary statistics, missingness and the number 
of measurements available per landmark time for each 
predictor. No patients were excluded due to missing data.

Model results
Our proposed model (table 2 and online supplemental 
etable 3) for 48- hour in- hospital mortality includes age, 
CFS score,55 HR, RR, SpO2/FiO2 ratio,34 35 WCC, acidosis 
(pH <7.35) and interleukin- 6 (IL- 6). The mortality prob-
ability can be calculated using the calculator at http:// 
shiny.mrc-bsu.cam.ac.uk/apps/covid19mortalityrisk/; 
see online supplemental eappendix 5 for details.

Table 1 Cohort demographics and clinical features in wave 
1 and wave 2

Characteristic

Wave 1
(training data 
set)

Wave 2
(validation data 
set)

Admission dates 1 March 2020–
12 September 
2020

13 September 
2020–17 March 
2021

No of patients 473 1119

Female, n (%) 196 (41.4) 579 (48.3)

Age at admission, median 
(IQR), years

69 (55–81) 65 (49–79)

Admission BMI, median 
(IQR), kg/m2 *

25.7 (22.1–29.9) 27.35 (23.5–32.1)

Clinical Frailty Score at 
admission for over 65 year 
olds, median (IQR)

5 (3–6) 5 (4–6)

Nosocomial infection, n (%) 36 (7.6) 116 (9.7)

Length of stay, median 
(IQR), days

10.8 (3.9–19.8) 8.0 (2.95–18.5)†

Ethnicity, n (%)

  White 354 (74.8) 792 (66.1)

  Asian 24 (5.1) 61 (5.1)

  Black 10 (2.1) 13 (1.1)

  Other 11 (2.3) 39 (3.3)

  Prefer not to say/not 
recorded

74 (15.6) 294 (24.5)

Outcomes, n (%)

  Deceased in- hospital‡ 99 (20.9) 145 (12.1)

  Transferred for ECMO 5 (1.1) 1 (0.0)

  Discharged alive 369 (78.0) 967 (80.7)

  Remain in hospital on 19 
March 2021

0 (0) 86 (7.2)

Support/treatments received during hospital stay, n (%)

  ICU admission 103 (21.8) 238 (19.8)

  Invasive mechanical 
ventilation

82 (17.3) 172 (14.3)

  Non- invasive ventilation 
(CPAP or Bi- PAP)

37 (7.8) 144 (12.9)

  Cardiovascular support 86 (18.2) 170 (14.2)

  Renal replacement 
therapy

32 (6.8) 39 (3.3)

  Steroid treatment 120 (25.4) 619 (55.3)

Admission observations*, median (IQR)

  Mean arterial pressure, 
mm Hg

86 (76–96) 88 (78–98)

  Heart rate, beats/min 83 (72–93) 81 (72–91)

  Temperature, °C 37.2 (36.7, 37.8) 36.9 (36.5, 37.4)

  Respiratory rate, breaths/
min

19 (17, 22) 18 (17, 20)

  SpO2, % 96 (94, 97) 95 (94, 97)

  SpO2/FiO2 ratio 448 (337, 457) 452 (400, 462)

Admission blood results*, median (IQR)

Continued

Characteristic

Wave 1
(training data 
set)

Wave 2
(validation data 
set)

  Urea, mmol/L 7.8 (5.0–11.8) 7.1 (5.1–10.5)

  Creatinine, μmol/L 75 (61–106) 70 (56–93)

  Sodium, mmol/L 137 (134–140) 137 (135–140)

  CRP, mg/L 87 (39–178) 55 (26–109)

  WCC, 109 /L 6.9 (4.9–9.3) 6.8 (5.0–9.8)

  Neutrophils, 109 /L 5.4 (3.6–7.8) 5.3 (3.5–7.9)

  Lymphocytes, 109 /L 0.8 (0.5–1.2) 0.8 (0.5–1.2)

  D- dimer, ng/mL 334 (177–682) 292 (167–641)

  Troponin, ng/L 20.0 (8.3–63.6) 11.0 (4.0–39.5)

  pH 7.43 (7.37–7.46) 7.44 (7.39–7.46)

  IL- 6, pg/mL 15.1 (5.3–40.2) 11.6 (4.0–29.8)

*First after positive SARS- CoV- 2 test result for hospital- acquired 
COVID- 19 cases.
†For wave 2, includes stays completed by 19 March 2021 only. 
Note that because follow- up continued until 19 March 2021, 
the outcome during the 48- hour prediction horizon was known 
for all landmark times up to 17 March 2021, and so patients 
remaining in hospital at the study end- date could be included in 
the validation.
‡Total in- hospital mortality including those patients who were 
classified as ‘end of life’ prior to death.
Bi- PAP, Bi- level positive airway pressure; BMI, body mass 
index; CPAP, Continuous positive airway pressure; CRP, C 
reactive protein; ECMO, extracorporeal membrane oxygenation; 
FiO2, fractional inspired oxygen; ICU, intensive care unit; IL- 6, 
interleukin- 6; SpO2, oxygen saturation; WCC, white cell count.

Table 1 Continued
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Internal performance assessment
Figure 1 shows the internal performance metrics for the 
model in table 2 (using the training data). The unadjusted 
internal area under receiver operating characteristic curve 
(AUROC) was 0.90 (95% CI 0.87 to 0.93) and the median 
cross- validation AUROC was 0.87, both indicating good 
discrimination (figure 1A). The PR curve (figure 1B) also 
showed good discrimination, with an AUPRC of 0.31 in 
a population with 48 hour in- hospital mortality of 0.017 
(1.7%), and we observe that the NNE <10 for sensitivity 
less than 0.75 (figure 1C). Figure 1D shows the calibration 
plot. The calibration intercept was −0.02 (95% CI −0.22 
to 0.17) indicating that the mean predicted probabilities 
matched the mean observed mortality, while the calibra-
tion slope was 1.16 (95% CI 1.02 to 1.31) suggesting that 
the observed mortality in high predicted risk patients 
slightly exceeded the predicted mortality risk, although 
the CIs are wide. The net benefit curve for risk stratifica-
tion by the proposed model is clearly higher than for the 
two non- model alternatives of classifying either everyone 
or no- one as high risk patients, indicating the clin-
ical utility of the dynamic model (online supplemental 
efigure 1).

Temporal validation of prediction model
We assessed the performance of the model by applying 
it to held- out data corresponding to admissions during 
wave 2 (13 September 2020 and 17 March 2021). A total of 
1119 patients presented to the study hospital during this 
period. In total, we tested the model using 12 981 land-
mark times, with a median of 6 (2–14) landmark times 

per patient. In the 48- hour prediction horizon following 
these landmark times, there were 253 in- hospital death 
events (1.9% of landmarks), 1615 hospital discharge 
events (12.4%) and 2 transfers for ECMO (0.015%). 
Forty- seven landmark times were omitted due to missing 
vital sign data. Characteristics are summarised in table 1. 
Of note, compared with wave 1, patients presenting in 
wave 2 were slightly younger and more likely to be female, 
evidenced by a more balanced data set.

Figure 2 shows the temporal validation performance 
metrics, obtained by applying the trained model (table 2) 
to the wave 2 patients. The receiver operating character-
istic (ROC) curve (figure 2A) shows the model continues 
to discriminate well, with AUROC 0.86 (95% CI 0.83 
to 0.88). The PR curve (figure 2B) shows that PPV was 
consistently well above the 48- hour in- hospital mortality 
incidence of 0.019 (1.9%) in the wave 2 cohort across all 
sensitivities. The AUPRC 0.15 is reduced and the NNE is 
higher than in the training data, although NNE <10 for 
sensitivities between 0.02 and 0.63 (figure 2C). Figure 2D 
shows the calibration plot, which shows a tendency of the 
model to underpredict risk in the higher risk patients: 
calibration- in- the- large was 0.35 (95% CI 0.21 to 0.47), 
suggesting the mean of the predicted probabilities was 
lower than the mean observed mortality, and calibration 
slope was 0.90 (95% CI 0.82 to 0.99), indicating that the 
spread of predicted risk was significantly smaller than the 
spread of observed mortality. The calibration plot shows 
a good correspondence between observed mortality rate 
and predicted mortality risk for the lower- risk patients 
(<0.4), but due to the low incidence of mortality events 
among the landmarks corresponds less well for the higher- 
risk patients. This is evidenced by the considerable CIs. 
The net benefit curves for the proposed model surpasses 
both alternatives of classifying everyone and no- one as 
high- risk patients (online supplemental efigure 2).

Sensitivity analyses
The model trained on only data from the first 28 land-
marks for each patient closely resembled the model in 
table 2, although the Clinical Frailty Score and IL- 6 were 
not selected (online supplemental etable 4).

We did not find evidence that the discrimination of the 
model was affected by the presence or absence of positive 
diagnostic SARS- CoV- 2 results (rather than solely a clin-
ical diagnosis). In patients with a positive SARS- CoV- 2 test 
the AUROC was 0.90 (95% CI 0.87 to 0.93) in the training 
dataset and 0.85 (95% CI 0.83 to 0.88) in the validation 
dataset; whereas for patients with only a clinical diagnosis 
the AUROC was 0.94 (95% CI 0.88 to 1.00) in the training 
dataset and 0.88 (95% CI 0.79 to 0.99) in the validation 
dataset.

A small number of patients (65 patients, for whom 874 
landmarks were available) in our validation dataset had 
received a COVID- 19 vaccine at the time of analysis: the 
AUROC of 0.88 (95% CI 0.71 to 0.99) for these patients 
suggested good discrimination and is consistent with the 

Table 2 Final model coefficients

Predictor

Coefficients 
when 
recorded

Coefficients 
when not 
recorded*

Age <75 years, at admission −0.516 –

Age <80 years, at admission −0.245 –

Clinical Frailty Score, at admission 0.0678 0.0513

Heart rate, beats/min, mean during 
last 24 hours

0.00282 –

Respiratory rate, breaths/min, 
minimum during last 24 hours

0.102 –

SpO2/FiO2 ratio, minimum during 
last 24 hours

−0.0116 –

WCC, 109/L, most recent 
measurement during last 48 hours

0.00651 −0.0015

Acidosis, 7.35 − (lowest pH during 
last 24 hours), or 0 if all above 7.35

3.18 0.22

IL- 6, pg/mL, most recent 
measurement during last 48 hours

0.000166 −0.0218

*If the predictor value is not recorded (due to not being 
measured or documented in the EHR within the relevant 
time window), the fixed value in this column is used, and the 
coefficient corresponding to the predictor value is ignored.
EHR, electronic health record; SpO2/FiO2, oxygen saturation/
fractional inspired oxygen; WCC, white cell count.

https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
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unvaccinated patients (AUROC 0.85 (95% CI 0.83 to 
0.88)).

To assess whether a simpler model could perform simi-
larly we considered removing the laboratory tests from 
our model (online supplemental etables 5 and 6). The 
resulting model provided slightly worse discrimination 
with an AUROC of 0.88 (95% CI 0.85 to 0.90) in the 
training data and an AUROC of 0.85 (95% CI 0.82 to 
0.87) in the validation data.

To assess whether CRP could serve as a proxy for IL- 6 in 
our model when it is not available, we refitted the model 
with CRP in place of IL- 6 (online supplemental etables 7 
and 8). The AUROC was slightly lower on both training 
(0.89, 95% CI 0.85 to 0.93) and validation (0.84, 95% CI 
0.81 to 0.87) data.

To assess the feasibility of our approach with an 
extended time horizon and the stability of the predictors 
selected, we refitted the model with a 72- hour predic-
tion horizon. The resulting model matched the previous 
AUROC in the training data of 0.90 and the AUROC 
of 0.85 in the validation data set. The full performance 

metrics are available in online supplemental figures 3 
and 4, and the model coefficients in online supplemental 
etable 9.

DISCUSSION
SARS- CoV- 2 causes a wide spectrum of disease that 
can evolve over time, and may necessitate critical care 
management and even result in death. In light of the 
threat of further waves of coronavirus infections there 
is still a pressing clinical need to be able to anticipate 
disease severity and the trajectory of illness to facilitate 
patient management and resource allocation. The model 
described herein incorporates both static admission risk 
factors (age and CFS) and evolving clinical and laboratory 
data, providing a dynamic 48- hour risk prediction model 
that can adapt to both sudden and gradual changes in 
an individual patient’s clinical condition. The data used 
in the model were routinely collected demographic and 
clinical data from during the patient’s hospitalisation, 
automatically extracted from patient EHRs. As such, this 

Figure 1 Performance metrics for in- hospital mortality in the training dataset. (A) Receiver operating characteristic plot, with 
labels indicating the corresponding threshold and the dashed line indicating the line of no discrimination. (B) Precision- recall 
plot, with the 2.8% observed incidence indicated by the dashed line. (C) NNE against sensitivity. (D) Calibration plot (with 95% 
CI), by tenths of predicted risk and a LOESS interpolation (grey), with the dashed line indicating perfect calibration. AUPRC, 
area under the precision- recall curve; AUROC, area under the receiver operating characteristic; FPR, false positive rate; LOESS, 
locally estimated scatterplot smoothing; NNE, number needed to evaluate; PPV, positive predictive value; TPR, true positive 
rate.

https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
https://dx.doi.org/10.1136/bmjopen-2021-060026
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model could be readily incorporated into routine clinical 
care.

An extensive literature of risk stratification models for 
COVID- 19 has developed since the start of the pandemic 
for a variety of endpoints and time horizons, although 
many have been described as unreliable in a large system-
atic review56 and remain unvalidated. Most of the liter-
ature considers point- of- admission scores, including the 
4C Mortality score,57 which is based on demographic 
information, comorbidities and blood tests taken on 
admission. This score performed well in both large devel-
opment and validation cohorts (AUROC 0.77 and 0.79, 
respectively) and has now been externally validated in 
several countries.58–64 Similarly the point- of- admission 
ISARIC 4C Deterioration score3 has been externally vali-
dated.58 60 65 66 Promising machine- learning alternatives 
have also been recently proposed,67 68 although these have 
not yet been independently validated in contrast to the 4C 
scores. Another approach has been to repurpose existing 
early warning scores, particularly the National Early 
Warning Score (NEWS) 2 score.69 The discrimination of 

NEWS2 for predicting 14- day deterioration (a composite 
outcome of transfer to ICU or death) has been described 
as moderate1 64 (AUROC 0.70), whereas for 24- hour 
clinical deterioration (initiation of ventilatory support 
or death) it has been described as reasonable (AUROC 
0.78).64 The addition of age and additional physiolog-
ical parameters and blood tests led to an improvement 
in discrimination (AUROC 0.735 and 0.78).3 NEWS2 is 
a core component of escalation pathways in most UK 
hospitals, with a national recommendation that patients 
with NEWS2 score of 7 or above should be reviewed by 
the intensive care team. The fact that NEWS2 can, to a 
degree, predict intensive care admission is therefore 
unsurprising.

The literature for risk prediction using dynamic, post-
admission in- hospital data for patients with COVID- 19 is 
much smaller. Some models have used only data from the 
first few days of admission.16 17 70 Others have used addi-
tional postadmission data in time- varying Cox models (for 
mortality and escalation),18 19 which require knowledge 
of clinical information from the future and so should 

Figure 2 Performance metrics for in- hospital mortality in the validation dataset. (A) Receiver operating characteristic plot, with 
labels indicating the corresponding threshold and the dashed line indicating the line of no discrimination. (B) Precision- recall 
plot, with the 3.1% observed incidence indicated by the dashed line. (C) NNE against sensitivity. (D) Calibration plot (with 95% 
CI), by tenths of predicted risk and a LOESS interpolation (grey), with the dashed line indicating perfect calibration. AUPRC, 
area under the precision- recall curve; AUROC, area under the receiver operating characteristic; FPR, false positive rate; LOESS, 
locally estimated scatterplot smoothing; NNE, number needed to evaluate; PPV, positive predictive value; TPR, true positive 
rate.
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not be used for prediction.21 Machine- learning models 
for mortality20 and respiratory support71 have also been 
reported to have good discrimination, although missing 
data are either discarded or imputed, which ignores the 
problem of informative missingness and may limit their 
applicability on an individual patient level. They also do 
not account for competing risks, for example, hospital 
discharge. While this paper has been under review, a prom-
ising random forest- based dynamic model predicting the 
need for respiratory support (encompassing high flow 
nasal oxygen, and both invasive and non- invasive ventila-
tion) and death has been proposed.72 This model reports 
high internal discrimination (AUROC 0.89, 95% CI 0.88 
to 0.90) although PR is not reported. The most important 
predictors identified in this model were the SpO2/FiO2 
ratio and the RR, both of which also feature in our model. 
Both these observations play an important role in the 
decision to escalate the level of respiratory support, and 
so it is not clear whether for the 1 day horizon this model 
offers much in prediction that is not already apparent 
clinically (predicting the need for additional respira-
tory support after that decision has already been made 
serves little purpose). In addition, it is again unclear how 
the model handles missing data. Markov models have 
also been proposed that seek to model the trajectory of 
patients rather than focus on prediction as we do in this 
paper.73 74

Our approach has several methodological strengths 
which we believe sets it apart from previous models. First, 
we accounted for competing risks, whereby the outcome 
(risk) of interest (in this case in- hospital mortality) can 
only happen while the patient is in hospital, and there-
fore the outcome of interest is ‘competing’ against the 
risk of transfer to another hospital and/or discharge from 
hospital. Allowance for this is important in predictive 
modeling.75 Second, we allowed for the possibility that 
the availability of observations and investigations may in 
itself reflect disease severity, as the fact that specific tests 
have been requested at a given time provides an insight 
into the treating clinicians’ contemporaneous view of the 
patient’s condition. While multiple imputation is often 
used in clinical prediction models because it gives unbi-
ased estimates under the MAR assumption, it is unlikely 
that this assumption holds in the routinely collected EHR 
data that we use.45 The missing indicator method that 
we adopted does not rely on the MAR assumption and 
can improve predictive performance in EHR data.45–47 
Furthermore, we validated our model using data from 
different waves. As each wave included COVID- 19 vari-
ants of different infectiousness that are potentially asso-
ciated with different morbidity and mortality risks, the 
fact that the model performs reasonably (NNE <10 for 
sensitivities between 0.02 and 0.63) across waves further 
attests to the fact that our selected parameters are useful 
for prognostication in different clinical scenarios. Finally, 
we did not seek to make prognostic predictions for 
patients after clinicians have identified them as entering 
the last few hours or days of life. Since observations and 

investigations are often discontinued at the end of life, 
including these time periods would distort the model due 
to extreme missingness (in our data, no vital sign obser-
vations were recorded on 43% of days during end- of- life 
care, compared with 0% of days during active treatment). 
In addition, predicting end- of- life after it is clinically 
apparent would have little clinical utility.

Several predictors of disease severity included in our 
model have also been identified by point- of- admission 
severity models, and in epidemiological studies of 
risk factors for severe disease. Increasing age is widely 
recognised as being the strongest predictor of poor 
outcome from COVID- 19.3 11 32 Frailty has similarly been 
shown to be a strong independent predictor of mortality 
in hospitalised older adults,76 including those with 
COVID- 19.55 77

Respiratory compromise is a common reason for 
hospital admission and markers of respiratory function, 
including RR,3 4 12 SpO2,3 oxygen requirement3 and 
SpO2/FiO2 ratio have been included in previous point- 
of- admission models. The SpO2/FiO2 ratio, as selected by 
our model, allows a fully quantitative rather than dichoto-
mous measure of the need for additional oxygen, as well 
as allowing for the confounding effect of variation in the 
target oxygen saturations in different patient groups.

Acidosis frequently complicates respiratory, renal and 
advanced circulatory failure and has previously been 
noted as a marker of disease severity in COVID- 19.78 The 
separate inclusion of the severity of acidosis and alkalosis 
in our set of candidate predictors allowed for pH changes 
in either direction to be accounted for and avoided, 
for example, a minor negative effect of alkalosis from 
masking a more major effect of acidosis.

Our model selected two markers of infection and 
inflammation: WCC and IL- 6. This is consistent with other 
findings.11 79 80 IL- 6 was included in the routine COVID- 19 
panel of blood tests at the study hospital but we recog-
nise that this may be less commonly requested in other 
hospitals. The results when refitting the model with CRP 
in place of IL- 6 produced a slightly weaker but potentially 
more broadly applicable model. The preference of the 
model for IL- 6 over CRP may reflect the fact that IL- 6 is 
responsible for the production of CRP and, as such, is 
an earlier and more dynamic marker of the inflammatory 
response.81

There are several limitations to our study. We chose 
to include only laboratory results up to 48 hours and 
vital signs up to 24 hours before the landmark time; 
exploiting older data might improve the predictive 
ability of our model, at the expense of complexity and 
real- world utility. Our data were gathered from a single 
centre, and therefore, the generalisability of our findings 
to other centres and populations are pending external 
validation. Further, our model was generated from a rela-
tively modest sample size due to the relatively low preva-
lence of COVID- 19 patients in the catchment population 
of the hospital, particularly during the early months of 
the pandemic. One advantage of using this single dataset 
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from a large, tertiary hospital was that the hospital never 
became overwhelmed with patients, and therefore, it is 
considered that patients received care according to what 
was considered clinically appropriate rather than what 
resources permitted. Finally, while it is encouraging that 
the model continued to perform well in the wave 2 vali-
dation data, changes in clinical care of patients (notably 
use of steroids and IL- 6 inhibitors) and the dominant 
virus strains (including the Delta and Omicron variants 
that emerged in the UK while this manuscript was under 
review) may influence the clinical picture of the disease, 
its severity and the risk factors for disease. The model 
will therefore likely need to be updated as the pandemic 
evolves, but the utilisation of routinely available data in 
this model makes this straightforward.
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