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Simple Summary: Microalgae and cyanobacteria are considered intriguing microbes for sustainable
biotechnological production of a wide array of high-value metabolites from carbon dioxide and
(sun)light. Mature genetic engineering concepts have only recently begun to emerge with the
advent of customized DNA synthesis due to complicated genetics in these hosts. The delivery
of heterologous DNA into cells is the first step in engineering concepts, yet is highly diverse in
methodology, efficacy of expression cassette delivery, and applicability to variable organisms. This
work overviews common and not-so common methodologies of DNA delivery, which may find use
in engineering concepts for photosynthetic microbes.

Abstract: Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the
simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the
promise of tailored bio-molecule production using sustainable, environmentally friendly waste car-
bon inputs. Although algal engineering examples are beginning to show maturity, severe limitations
remain in the transformation of multigene expression cassettes into model species and DNA delivery
into non-model hosts. This review highlights common and emerging DNA delivery methods used
for other organisms that may find future applications in algal engineering.

Keywords: microalgae; transformation; cyanobacteria; DNA

1. Introduction

Microalgae and cyanobacteria are interesting study organisms capable of photosyn-
thetic growth on carbon dioxide (CO2) as a sole carbon source. These organisms naturally
synthesize different metabolites such as pigments, oils and lipids, sterols, starches, polysac-
charides, and halogenated compounds, and algae are also amenable to contained, scalable
growth in photobioreactors driven by (sun)light energy [1,2]. Genetic engineering of algae
and cyanobacteria in the era of synthetic biology holds the promise of tailored production
of novel and customized metabolites using sustainable waste CO2 as a feedstock. However,
algae are a diverse and polyphyletic group of organisms which do not share close evolu-
tionary relatedness and exhibit incredible variability in their genomes [3]. These features
have hindered intensive molecular tool development except in a handful of model species,
and their broader application to biotechnology has been slower compared to other hosts
such as bacteria, yeast, plant, and mammalian cells [2,4].

The genomic diversity of algae necessitates customized molecular tools that work with
genetic architecture of a specific host. Once these tools are produced by piecemeal cloning
or complete DNA synthesis, the reliable introduction of foreign genetic material into cells is
an essential prerequisite to biotechnological concepts [5–7]. DNA delivery methods result
in stable chromosomal integration or episomal/plasmid extrachromosomal replication
of foreign transgene expression elements [7–9]. Methodologies of DNA delivery and cell
membrane/wall permeabilization vary according to the host organism and target cellular
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compartment (organellar or nuclear). For example, cyanobacteria will natively take up
DNA from their environment without the need for manipulation, while many eukaryotic
algae maintain cell walls that necessitate more aggressive delivery methods [10,11].

Foreign DNA delivery can be achieved by mechanical agitation, surfactant permeabi-
lization, electroporation, particle bombardment, and bacterial DNA transfer (conjugation
or Agrobacterium tumefaciens-mediated) [9,12–15]. In addition to these classical methods,
emerging techniques used in other cell systems that have not been widely applied to algae
may potentially improve DNA delivery (Figure 1). Strategies based on cell penetrating
peptides (CPP), polymers, metal-organic frameworks, nanoparticles, and liposomes have
all been demonstrated in non-algal hosts [16–18]. This review examines recent progress in
gene delivery methodologies and discusses their technical aspects, advantages, limitations,
and potential in the context of algal biotechnology.
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Figure 1. Gene delivery technologies for microalgae engineering. Overview of several available transformation technologies
which have been or could be applied to algal engineering. (1) and (2) Several carriers that can mediate transformation of a
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DNA, protein, or chemical cargo (left panel) MOF: metal-organic framework, CPP: Cell-penetrating peptide. (3) Algal
species which transformation has been commonly employed are depicted on the upper right: C. reinhardtii, Nannochloropsis
sp., and P. tricornutum, including various cyanobacteria and other algal species as described in the manuscript. (4) Classical
transformation methods are presented in the bottom left panel. (5) Process of transformation mediated by different DNA
carriers and their interaction with the cell for delivery of the respective cargo. (5A) MOF-DNA, (5A1) recognition and
cell uptake by endocytosis, (5A2) internalization and fusion with phagolysosome, 3 phagolysosome escape, 4 transport
to nucleus, chloroplast or mitochondria; (5B) Liposome-DNA, (5B1) lyposome integration with cell membrane, (5B2)
cargo (DNA or protein) exposed in cytoplasm and potential enzymatic degradation, 3 intact cargo transport to nucleus,
mitochondria or chloroplast; (5C) Polymer-DNA, (5C1) cell recognition of polymer nanoparticle, charge interaction and
cell uptake by endocytosis, (5C2) internalization and fusion with phagolysosome, (5C3) phagolysosome escape, (5C4)
transport to nucleus, chloroplast or mitochondria; (5D) CPP-DNA, 1 cell recognition of CPP, by charge interaction (5D1a) or
receptor recognition (5D1b) and cell uptake by endocytosis, (5D2) internalization and fusion with phagolysosome, (5D3)
phagolysosome escape, (5D4) Transport to nucleus, chloroplast or mitochondria. Created with BioRender.com.

2. Traditional Algal Transformation Techniques
2.1. Agitation of Cells in the Presence of DNA and Non-Ionic Surfactants

The agitation of algal cells in the presence of glass beads, polyethylene glycol (PEG),
and foreign DNA has become a standard protocol for the delivery of foreign DNA into
the model green microalgae C. reinhardtii and other species as Cyanidioschyzon merolae,
Chlorella vulgaris, and Dunaliella salina [14,19–21]. This protocol has been adopted for
nuclear and chloroplast transformation and can be applied to cell wall deficient cell lines or
those with a cell wall when chemo/enzymatic removal is performed before transformation
(as with Chlorella strains) [13–15,22–24]. Agitation-based transformation is achieved by
agitation (vortexing) of cells in the presence of a physical agitator (glass beads), a non-ionic
surfactant (i.e., polyethylene glycol (PEG)), and DNA [14,25]. Transformation efficiency
depends on many factors such as cell size, presence or absence of a cell wall, duration
of agitation, velocity, the concentration of surfactant, and the use of linear or circular
DNA [26]. The frequency of DNA integration into the C. reinhardtii genome with glass
bead agitation has been reported at ~103 transformants µg of DNA-1 with ~108 cells mL−1

starting cell concentration [14]. Reports have shown that numerous other non-reactive
materials, such as silicon carbide whiskers can also serve this purpose [27]. Agitation-based
transformation protocols are advantageous as they do not require specialized equipment,
and are inexpensive and relatively fast [14,15].

A significant limitation of the technique is the requirement of cell wall removal, which
can be achieved with the autolysin protein of C. reinhardtii for itself, or other enzyme cock-
tails (e.g., cellulase, macerase, pectinase, and hemicellulose) for other hosts [14,19,28–32].
Reports have shown that cell-wall free protoplasts of Chlorella ellipsoidea and the naturally
cell wall deficient C. merolae have been transformed using DNA and PEG without me-
chanical agitation, suggesting that surfactant mediated permeabilization is sufficient to
enable DNA uptake [33]. However, the main drawback of agitation-based transformation
techniques is the low transformation efficiency [34]. This has led to development of other
more efficient strategies.

2.2. Electroporation

DNA transformation by electroporation is as an alternative method in numerous
algae and pioneered in C. reinhardtii [34]. This technique uses electrodes to generate
voltage differential across the cell membrane, temporarily disturbing the phospholipid
bilayer, allowing molecules to pass into the cell [35,36]. Transformation efficiencies from
electroporation vary according to factors such as field-strength, pulse length, ionic strength
of medium composition, temperature, cell membrane characteristics, the species used,
its molecular toolkit, and the presence of cell-wall [36,37]. Electroporation can increase
transformation efficiency up to 100-fold over agitation and is not affected by the cell wall.
Fewer sequence deletions have been observed at the genomic insertion sites than those
seen from agitation transformation [34,37,38]. Electroporation has been shown to enable
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the transformation of cell-wall containing algae and cyanobacteria such as Monoraphidium
neglectum, Nannochloropsis sp., Phaeodactylum tricornutum, C. reinhardtii, Anabaena, and Nostoc
punctiforme [34,35,39–44]. Electroporation is a useful technique for delivering DNA, RNA,
proteins, nucleotides, and dyes into cells [34,35,45]. Electroporation is a rapid protocol and
requires equipment which is often present in microbial laboratories to transform bacterial
cells [37,46].

Electroporation efficiencies were increased by considering the specific mitotic phase
of C. reinhardtii growth [47]. Synchronization of C. reinhardtii cultures has been shown to
increase transformation efficiency after three days. C. reinhardtii culture synchronization
using 28 ◦C during the light phase and 18 ◦C in the dark phase was also shown to enable
increased homologous recombination efficiencies specifically at 12 hours after illumination
initiation [48]. Digital microfluidics (DME) have also been used to optimize electroporation
protocols, using a fluid mixture of cell/DNA droplets encapsulated in biocompatible oil,
and electric pulses applied from an array of microelectrodes to the droplets [49,50]. DME
showed an efficiency of 2.5 × 104 of C. reinhardtii mutants per µg of DNA without cell wall
removal with an initial concentration of 2 × 106 cells mL−1 algal cells, and 1 µg DNA [49].
A square-electric-pulse electroporation technique has also been reported with efficiencies
of 6 × 103 C. reinhardtii transformants per µg of DNA with 1.5 × 107 cells mL−1 initial cell
density 0.1 µg of DNA [47]. However, this technique has not been broadly adopted, as it
requires specialized equipment. It was described in N. limnetica, which contains a rigid
cell wall, that treatment with 10 mM lithium acetate and 3 mM dithiothreitol (DTT) before
electroporation improved transformation efficiency by increasing cell wall permeability,
resulting in 1.1 × 107 transformants per µg of DNA with an initial concentration of 3.3 × 109

cells mL−1 and 4 µg of DNA [40].

2.3. Microparticle Bombardment

Microparticle bombardment is one of the most versatile gene delivery methods due
to its ability to transform the nucleus, mitochondria, or chloroplast genomes and even
transform cells containing cell walls [13,51–53]. Microparticle bombardment is based on
accelerated non-reactive metal (gold or tungsten) micro-projectiles coated with DNA being
shot at and colliding with target cells [1,51]. The impact of these particles allows them
to penetrate the cells and deliver foreign DNA. Transformation efficiency depends on
the starting cell density, target organelle, selection efficiency, the number of DNA-coated
particles, the DNA concentration on each particle, the kinetic energy of the particles,
temperature, and ability of the cell to regenerate after particle damage [54].

The most common use for this technique is the transformation of chloroplast genomes,
as it enables penetration of DNA through multiple membrane layers, but it has also recently
been used to transform circular plasmids into the nucleus of the red alga Porphyridium
purpureum [23,51,55]. Unlike agitation, but similar to electroporation, cell-wall presence
does not affect transformation efficiency; however, cell viability can be disturbed if many
micro-projectiles are used [51,56]. The efficiency of nuclear transformation in C. reinhardtii
has been as low as 15 transformants per µg of DNA, with ~107 cells mL−1 starting cell
concentration and 0.8 µg of DNA [13]. Efficiencies reported in D. salina, Volvox carteri
and P. tricornutum are 2.5 × 10−5, 1.7 × 102, and 1.0 × 102 transformants per µg of DNA
(0.1–0.7 µg of DNA), respectively, with 105–107 cells mL−1 as starting cell density [57–59].
However, it was reported that in C. reinhardtii, transformation efficiency could be improved
when smaller particles are used (0.6 µm vs. 1.0 µm) [60].

Microparticle bombardment has also been described for the delivery of 24–68 kDa
proteins, a technique called proteolistics. This approach is a simple physical deposition of
target protein onto delivery substrate which is then used as other microprojectiles [61]. The
application was shown to deliver Cas9–gRNA ribonucleoprotein (RNP) into P. tricornutum,
where knock out of the PtUMPS and PtAPT genes led to 5-fluoroorotic acid (5-FOA) and
2-fluoroadenine (2-FA) resistance at an efficiency of ~10−6 per 106 cells mL−1 [62]. This
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technique was also found to be suitable for multiplexing mutations [62] and could become
a powerful strategy for generating targeted knockouts in this and other diatoms/algae.

One disadvantage of bombardment is the requirement of gene-gun infrastructure as
well as reagents and equipment. Transformation parameters must also be optimized for
every alga and target cell compartment/genome [9,63]. One thing that must be considered
is the potential post-transcriptional gene silencing (PTGS) due to the relatively high copy
number of transgenes integrated into the genome [53,64].

3. Natural Transformation, Bacterial Conjugation, and Agrobacterium-Mediated
Transformation
3.1. Natural Transformation

The natural uptake of DNA from the surrounding environment without surfactants
is a process found in cyanobacteria species [65,66]. This natural transformation capacity
was exploited in 1970 as a simple tool for cyanobacterial genetic engineering [67]. Biotech-
nologically relevant species such as Synechocystis PCC 7942, Synechococcus PCC 7002, and
Thermosynechococcus elongatus BP-1 are naturally transformable [65,67–69]. However, the
detailed mechanism of natural transformation remains unclear, although pili type IV and
secretion system type II have been shown to play roles in this process [70–73]. Natural trans-
formation functions together with replicative and integrative plasmids, which differ only in
their homologous recombination regions or replicative elements. Transformation efficiency
relies on cyanobacterial physical and chemical features (e.g., polysaccharides), culture state
(i.e., mid-exponential growth), and the use of DNase inhibitors (i.e., EDTA) [74,75]. Foreign
DNA characteristics such as concentration, length, and single or double-stranded state play
a role in the number of transformants obtained [66,76,77]. Natural transformation provides
the most practical and straightforward method for transformation; however, it is limited to
species in which this a native feature [74].

3.2. Bacterial Conjugation

Conjugation is based on the ability of bacteria to share genetic information by exchang-
ing plasmids through pili. This natural process can be employed using either a double or
triple vector approach combining shuttle, conjugative, and helper plasmids. The shuttle
and helper plasmids mediate the transfer of a conjugative plasmid between E. coli and the
target host while the helper plasmid aids transformation by preventing vector degrada-
tion by endogenous restriction systems; it codes for DNA methylases (Aval, AvaW, and
AvaIII) that prevent target host restriction enzyme recognition [78,79]. The helper vector
contains an oriT-region, bom-site, and mob genes that encode a nickase and enable conju-
gation [80,81]. Bacterial conjugation has been used commonly in cyanobacterial species
such as Synechococcus, Prochlorococcus, N. punctiforme, Anabaena, and Synechocystis sp. and
recently in eukaryotic algae such as P. tricornutum, Thalassiosira pseudonana, Acutodesmus
obliquus, and Neochloris oleoabundans [79,81–88]. The effectiveness of transformation by
conjugation is based on the capability of the algal recipient strain to integrate and main-
tain the vector, either in the chromosome, in endogenous plasmids, or as an episomal
plasmid [78,79,87,88].

Episomes, circular plasmids which self-replicate and do not integrate into the chromo-
some, can be efficient and straightforward vectors to enable transgene delivery of desired
genetic elements between bacteria, cyanobacteria, and eukaryotes. Episomes avoid inser-
tions and knock-out of non-targets and replicate independently from chromosomes [89–91].
Yeast centromere sequences (CEN/ARS) were found to act as autosomal replicating ele-
ments that allow stable maintenance of the circular episomal plasmid in diatoms [79,92].
Factors such as the growth phase of both target and donor organisms are crucial factors for
proper conjugation [93]. Episomal vectors to transform microalgae via conjugation provide
an efficient means of multi-gene pathway transfer due to stable self-replication of episomal
vector and minimal possibility of positional or epigenetic effects [79]. Conjugation has the
advantage over electroporation, microparticle bombardment, and glass-beads agitation
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to deliver larger DNA fragments [45]. The use of the conjugation-based method in P.
tricornutum, N. oceanica, and Neochloris oleoabundans has been demonstrated to generate
mutants with higher transformation efficiency compared to microparticle bombardment
transformation: 500–1000 transformants/108 cells/200 ng DNA (conjugation) compared to
5–25 transformants/108 cells/2.5 µg DNA (bombardment) in P. tricornutum [87,94–96].

3.3. Agrobacterium-Mediated Transformation

The use of A. tumefaciens to transform plant cells relies on the natural infection process
of the bacterium, which causes crown gall tumors on various plant species [97]. Natural
tumor formation is a consequence of replicating a single-stranded copy of the transferred
bacterial tumor-inducing (Ti) plasmid. The Ti plasmid and A. tumefaciens have been ex-
ploited since 1988 when it was found to allow transfer and permit stable integration of
DNA fragments into a target higher plant genomes and has even been shown to trans-
form mammalian cells [98–100]. The technique has the reported advantage of low gene
rearrangements and foreign transcript silencing in plant cell lines [101,102].

A. tumefaciens-based transformation of algae has been reported in several species,
although its use has not been wildly adopted. Reports exist of transformation by Agrobac-
terium method in C. reinhardtii, H. lacustris, Chlorella sp., Dunaliella bardawil, Symbiodinium
sp., Nannochloropsis sp. and Parachlorella kessleri [98,103–107]. However, questions remain
about how the bacterium, which evolved to infect plant cells, can infect evolutionarily dis-
tant algae and whether the infection requires specific recognition machinery on the target,
or whether it is target independent. The standard protocol for Agrobacterium-mediated
transformation is to mix target cell cultures with Agrobacterium containing a transgene
cassette of interest; the mixture is exposed with the virulence agent acetosyringone, which
signals the bacterium to infect wounded plant tissue. After transformation of the target cell
by the bacterium, the selection is made using an antibiotic that can be selective against the
bacterium while selecting the transformed cells. Variable transformation efficiencies have
been reported depending on the protocol followed [103,108–110]. Factors such as tempera-
ture, pH, and time of virulence gene induction have been reported to have a substantial
effect on transformation efficiency [111]. This method may enable integrating multigene
pathways into host genomes as the capacity of the Ti plasmid has been reported as large
as 150 kbp. If stably integrated into the genome, this would vastly outperform current
methods of gene delivery that exhibit random nuclease digest en route to the nucleus,
especially in green algae [112–114]. However, a recent report indicated that this method is
no better than electroporation for stable integration of a plasmid containing a luciferase
expression cassette and a selectable marker cassette into Parachlorella kessleri [103]. Further
investigation is required to determine if this standard plant transformation protocol can be
robustly applied to enhancing multi-gene expression cassette delivery to algal hosts.

4. Non-Traditional and Emerging Transformation Technologies
4.1. Cell-Penetrating Peptides

Protein vehicles for DNA transformation hold promise for enhancing transformation
efforts in algae. Owing to non-covalent interactions with DNA structures, protein molecules
can assist in the penetration of nucleic acids into cells and affect their integration into the
genome [115]. Small delivery peptides, known as cell-penetrating peptides (CPP), have
been the most commonly used among different cell-penetrating compounds. CPPs are small
peptides (<30 amino acids) that can mediate the penetration of protein-cargo complexes
into cells [116]. CPPs have been found from many different origins as some are derived
from translocation peptide signals, and others are chimeric peptides with combined or
engineered domains [117,118].

CPPs can be categorized as amphipathic, cationic, and hydrophobic, based on their
physical chemistries and interaction patterns with cellular structures. Amphipathic CPPs
have both hydrophobic and hydrophilic characteristics. Their amphipathic properties
arise primarily from α-helical structures of both polar and non-polar amino acid regions,
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which are involved in their intracellular transport and preferential accumulation in the
nucleus [119]. Common amphipathic peptide examples include modified poly-lactic-
co-glycolic acid (MPG) peptide, transportan, tumor suppressor peptide (ARF), model
amphipathic peptide (MAP), and vascular epithelial cadherin (pVEC), which have all
been used to mediate cellular uptake of various substrates in cell-culture [120–122]. MPG
has been found to have a relatively high affinity for single and double-stranded DNA as
well as rapid (<1 h) and efficient (90%) delivery of fluorescent oligonucleotides into the
nucleus of human fibroblast cells [120]. MAP was developed to provide a non-endocytic
translocation vehicle into endothelial cells [122]. MAP is taken up by cells directly by
several mechanisms: inverted micelle, pore formation, and membrane thinning [123].
Another CPP, pVEC, was used to study internalization patterns in plant epidermal and leaf
cells. Cellular uptake of fluorescently labeled pVEC in plant cells was concentration and
inversely temperature-dependent [121].

Cationic CPPs are peptides that contain a continuous chain of basic amino acids in
their domains. Common cationic motifs are oligo-arginines, leucine-zipper, and paired
tryptophan peptides. Cationic motifs act as CPPs due to their strong electrostatic binding
and transient permeabilization of the cell membrane [124,125]. The transactivating tran-
scription protein (Tat) and penetratin are two commonly employed cationic CPPs [126,127].
Tat has been used to demonstrate the importance of cationic motifs in CPP internalization
and nuclear translocation using embryonic rat brain cell cultures [127]. Hydrophobic CPPs
contain non-polar amino acids in their motifs with a high affinity for hydrophobic zones of
the cell membrane [124]. However, hydrophobic CPPs have rarely been reported, and only
for G protein-coupled receptor delivery, due to the complicated chemical strategies needed
for their production [128].

It has been shown that CPP-mediated delivery systems do not have a cytotoxic
effect in cyanobacteria. In Synechocystis sp. PCC 6803, the Tat peptide, coupled with the
green fluorescence protein (GFP), was efficiently internalized by endocytosis [129]. The
internalization rate may differ according to the cell type (yeast, mammalian, algae, or plant).
CPPs have a predisposition to move to the nucleus after being internalized in mammalian
cells, a tendency that might also be true for other eukaryotes such as algae [129–131]. This
property necessitates viability assays for each target cell type [121,130,132,133]. Similar to
other transformation methods, the presence of a cell wall is an issue for effective CPP-DNA
delivery. A CPP-dsDNA complex was able to penetrate D. salina, which is naturally cell
wall-deficient, but not into P. tricornutum or cell wall containing C. reinhardtii [130,132].

CPPs have been applied in Drosophila antennapedia, Saccharomyces cerevisiae, Candida
albicans, human lymphocytes cells, and the cyanobacteria Synechocystis sp., S. elongatus, as
well as the eukaryotic algae D. salina, P. tricornutum, Chlorella vulgaris, and C. reinhardtii. In
these systems, translocation of fluorescent proteins, phosphatases, dsDNA, and dsRNA into
the cells was shown [126,129,130,132–136]. Diverse CPPs have been used in C. reinhardtii
to deliver fluorochrome conjugates. It was noted through flow cytometry and confocal
microscopy that Tat, pVEC, penetretrin, and transportan exhibit variable performance in
cargo delivery. In a cell wall containin C. reinhardtii strain, pVEC seems to have the highest
efficiency with uptake at 10 µM in 15 min, similar to S. cerevisiae and C. albicans [134,135].
pVEC has also been recently demonstrated to enable ribonucleoprotein (RNP) delivery
to C. reinhardtii with or without cell walls to knock out Maa7 and FKB12 genes [137]. The
delivery is based on the hydrophobic region of pVEC which interacts with the external side
of a cell wall and further translocates the CPP and cargo across the lipid bilayer [137,138].
However, no study has yet reported gene expression construct delivery into algal cells
mediated by CPPs.

4.2. Cell-Penetrating Polymers

Beyond the surfactant properties of PEG, polymers such as polyethyleneimine (PEI),
polyethylene acrylic acid (PEAA), and polyamidoamine (PAMAM) have also been shown
to mediate DNA delivery in the absence of exogenous endosomolytic agents to various
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cell types [139,140]. These polymers have been used successfully to transform mammalian
cells and have been extensively studied because of their efficient endo-lysosome escape
properties [141,142]. Polymer acetylation, the addition of permethyl, perethyl, choline, and
long-chain alkyl groups have increased gene delivery efficiency up to 26-fold [143,144]. The
advantages of polymer encapsulation of DNA are efficient protection from degradation and
the possibility of polymer chemical functionalization to improve the target specificity [145].
Polymers represent a promising DNA delivery alternative in algal biotechnology due to
their excellent encapsulation capability and demonstrated stabilizing properties. However,
further development of polymer chemistries is needed. There are currently no reports of
polymer mediated DNA transformation to algal cells and the issue of cell wall interference
observed for other strategies will likely also be a hindrance to their broader application.

4.3. Metal-Organic Frameworks

Metal-organic frameworks (MOFs) are protein-based nanostructures that contain
metal ions linked together by organic bridging ligands to form reticular structures that can
also be used to assist DNA and other cargo delivery into cells. MOFs have extraordinarily
high surface areas, tunable pore size, low densities, and adjustable internal surface prop-
erties [146–148]. Nucleic acids can be encapsulated into peptide-inorganic nanoparticles
with dimensions of 4.0–7.8 nm, and ion metals of the structures allow the hybrid carriers to
be transported to the nucleus [148–151]. Aminoclay is a MOF which has been used to effec-
tively deliver DNA, polysaccharides, enzymes, and proteins into mammalian, plant, and C.
reinhardtii cells [152–157]. Aminoclay was used for transformation of the hygromycin-B
4-O-kinase (hygromycin–B resistance gene hph) into cell-wall containing C. reinhardtii, and
the nanoparticle-DNA complex was found to enable the transformation efficiency of 503
mutants with a starting cell density of 4 × 106 cells mL−1; 500 µL of the cell culture and
500 µL of the aminoclay-DNA (i.e., DNA = 150 ng/µL; aminoclay = 100 mg/L) mixture
solution were used for transformation [152].

A MOF subclass formed by coupling zinc cations (Zn+2) with methylimidazole (ZIF-8)
has been effective for delivering macromolecules, including DNA, proteins, carbohydrates,
and fluorescent compounds, as well as Cas9 nuclease and single-guide RNA (sgRNA)
into Chinese hamster ovary (CHO) cells [147,158–162]. The ZIF-8 MOF showed a load-
ing efficiency of 17% of sgRNA-Cas9 nuclease and enhanced endosomal escape by the
protonation of the ZIF-8 imidazole ring release of the cargo into the cytoplasm [147]. The
ZIF-8 structure can also be modified with a coating of cell membrane derivates to im-
prove cell-type targetability, suggesting this could also be done to facilitate alga-specific
chemistries [148]. MOFs exhibit unique properties such as biocompatibility, aqueous sta-
bility, excellent pH-buffering capacity, and exceptional versatility and could be further
explored for gene delivery into algal systems.

4.4. Liposome-Mediated Transformation

Liposome-mediated transformation is a convenient method for delivering biomolecules
(proteins and nucleic acids) into mammalian, bacterial, yeast, and plant protoplast
cells [163–166]. Liposomes are microscopic phospholipid cationic or neutrally charged
vesicles made of a concentric single lipid bilayer. Within the vesicle, cargo to be trans-
formed can be loaded in the central aqueous compartment, including nucleotides or
proteins. Liposomes have a cationic structure that facilitates nucleic acid encapsulation;
they are usually composed of 1,2-dioleoyl-3-trimethylammonium propane (DOPA) or
dieleoylphosphatidylethanolamine (DOPE) and coated with 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[polyethylene glycol] (PEG2000-DSPE) [167,168]. Liposomes
are formed based on amphipathic phospholipid characteristics that are self-assembled in
aqueous media into a bilayered structures. Inside the bilayer, polar groups line up to create
a water-attracting surface while their lipophilic chains face each other to yield a water-
free zone. Under certain conditions (e.g., shaking or heating), the phospholipid bilayers
continuously enclose the dispersing aqueous medium and form a vesicular system. This
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structure enables encapsulation of hydrophilic and hydrophobic materials inside the inner
aqueous core and the lipid bilayers, respectively. Liposome-encapsulation generates a sta-
ble complex, protecting genetic cargo from degradation outside of the cell [169]. Liposome
complexes fuse with the negatively charged cell membranes and merge into cells, releasing
the internal cargo [164]. These structures are interesting emerging tools for transforming
multiple plasmids because they form a protective layer against enzymatic degradation
outside of the cell [170]. However, lipid composition, liposome preparation, membrane
bilayers (lamellarity), and sizes have to be optimized for appropriate efficiency [170–172].
Transformation with liposomes requires protoplasts or cell-wall deficient lines, and cargo
is not protected from enzymatic digestion inside the cells upon liposome release, which is
the main drawback of this technique [170]. Thus far, there are no reports of the liposome-
mediated transformation of algae. However, liposomes should be useful in transforming
cell-wall deficient algae strains of C. reinhardtii, D. salina, and C. merolae or protoplasts made
from cell-wall containing species.

5. Considerations for the Future of Algal Transformation

The choice of the transformation method substantially impacts the overall effectiveness
of an engineering strategy for a target host as this step enables the transfer of heterologous
DNA into a target organism/cell line. Highlighted in this work are some transformation
techniques for DNA and protein complexes that have either not yet been applied or
have only recently been tested in algae, including cell-penetrating peptides, polymers,
liposomes, and metal-organic-frameworks. These techniques may open new avenues of
efficiency for protected DNA construct delivery to algal genomes. Whichever method
is chosen for a target alga, it is essential to consider infrastructure requirements, the
availability of molecular tools, expression efficiency, and reproducibility. Some of these
factors are compared in Table 1. Considerations such as nuclear or organellar genome
target, chromosomal/plasmid integration or episomal expression, and desired transgene
copy number play a role in deciding which transformation technique to use.

Although many examples exist, it is clear that there is no one-size-fits-all transforma-
tion strategy as each host organism has its own set of circumstances, especially related to
availability of molecular tools and the presence/absence of a cell wall. Techniques such as
bacterial conjugation and Agrobacterium-mediated transformation have some reported suc-
cess in algal strains [103,104,106–109]. Conjugation has shown promise for transfer circular
self-replicating episomal plasmids into diatoms and chromosomal integration in some mi-
croalgal species [79,87,92]. The major limitation in most algal systems is delivering multiple
sets of transgenes in one transformation round. It remains to be seen if the non-traditional
transformation techniques discussed above can help enable the stable transformation of
larger DNA fragments containing multigene pathways in single transformation steps. This
is especially important to reduce degradation/rearrangements and promote other avenues
of genome manipulation in green algal species.
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Table 1. Advantages and disadvantages of transformation strategies and reported efficiencies in algae and cyanobacteria.

Method Species Advantage Disadvantage
Transformation

Efficiency
(cells/µg DNA)

Initial Cell
Concentration

(cells/mL)

DNA
Added (µg) Ref.

Glass bead
agitation and PEG

mediated DNA
delivery

C. reinhardtii

Simple; inexpensive; fast

Requires cell wall
removal/deficiency;
occasional genome

lesions

103 108 2 [14,15]

C. merolae
C. vulgaris

C. ellipsoidea
D. salina

protoplasts

Electroporation

C. reinhardtii

Not affected by cell wall
presence; Occasional

genome
lesions

Specialized
equipment 105 108 2.5 [34,37,46,48]

M. neglectum
Nannochloropsis sp.

P. tricornutum
Anabaena sp.

N. punctiforme
N. limnetica

Digital microfluidic
electroporation (DME) C. reinhardtii

Not affected by cell wall
presence; occasional genome

lesions

Specialized
equipment 104 106 1 [49]

Square electric pulse
electroporation C. reinhardtii

Not affected by cell wall
presence; occasional genome

lesions

Specialized
equipment 103 107 0.1 [47]

Microparticle
bombardment (gene gun)

C. reinhardtii

Plastid target; not affected by
cell wall

Cell viability
compromise;
specialized
equipment

102 105 0.1 [23,51–53,59]
P. purpureum

D. salina
V. carteri

P. tricornutum

Natural transformation

Anacystis nidulans Straightforward method for
extensive genetic

engineering

Limited to some
species 104 107 5 [67,68,75]

Synechocystis sp.
Synechococcus sp.

T. elongatus
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Table 1. Cont.

Method Species Advantage Disadvantage
Transformation

Efficiency
(cells/µg DNA)

Initial Cell
Concentration

(cells/mL)

DNA
Added (µg) Ref.

Bacterial conjugation

Anabaena

Low non-target
insertions/knockouts;
independent episome

replication; allows delivery
of large DNA fragments

Relies on target species
characteristics based on
recipient capability to

integrate or maintain the
vector

104–106 107–109 30–50 [81,82,84–86]

Nostoc sp.
Prochlorococcus sp.
Synechococcus sp.
Synechocystis sp.
N. punctiforme
P. tricornutum
T. pseudonana

A. obliquus
N. oleoabundans

N. oceanica

Agrobacterium-mediated
transformation

C. reinhardtii

Low gene rearrangements;
low foreign transcript

silencing

Labor-intensive;
no higher gene

expression reported
10 108 30 [103,109]

H. lacustris
Chlorella sp.
D. bardawil

Symbiodinium sp.
Nannochloropsis sp.

P. kessleri

Cell-Penetrating
Peptides

Synechocystis sp.

High cargo stability;
internalized efficiently

Requires cell wall
removal/deficiency;

optimized for mammalian
cells

104 105–106 10–50 [129,130,132]

S. elongatus
C. reinhardtii
C. vulgaris

P. tricornutum
D. salina

N. oleoabundans
S. dimorphus

Botrycoccus braunii

Metal-Organic
Frameworks (MOF) C. reinhardtii

High aqueous stability
pH-buffering capacity,

versatile

Not yet optimized
requires cell wall

removal/deficiency
102 106 0.7 [152]
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6. Conclusions

In addition to reviewing some classical transformation methods for both DNA and
other molecules, this work has sought to bring attention to lesser-investigated yet emerging
modes of transformation to the algal biotechnologist. Perhaps these alternative techniques
can enhance transformation and transgene expression efficiency rates, or yield more con-
trolled and targeted delivery to generate high-frequency tailored genome manipulations in
both model and emerging algae hosts.
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