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Abstract

The liver and intestine are susceptible to the oxidative damage which could result in several

diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study

aimed to investigate the potential molecular mechanisms responsible for choline deficiency-

induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content

[165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days.

Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepa-

topancreas and intestine were measured. Choline deficiency decreased choline and phos-

phatidylcholine contents, and induced oxidative damage in both organs, as evidenced by

increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-

hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Cop-

per-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD),

glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline defi-

ciency increased glutathione contents in the hepatopancreas and intestine. Furthermore,

dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho,

mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas,

MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and

GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline defi-

ciency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-

mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related fac-

tor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels.

This study provides new evidence that choline deficiency-induced oxidative damage is

associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signal-

ing molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated
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that choline deficiency induced varied change patterns of different GPx and GST isoforms.

Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in

the intestine were contrary to those in the hepatopancreas.

Introduction

Oxidative stress appears to play a major role in the pathogenesis and progression of many liver

and intestinal diseases [1,2]. Therefore, it is very important to enhance the antioxidant ability

of liver and intestine thus increasing the liver and intestine health. Recently, dietary nutritional

supplements were found to be an efficient method for improving organ antioxidant capacity.

Choline is an essential vitamin for humans and other animals [3]. Our previous study showed

that choline deficiency induced growth retardation and decreased growth and development of

hepatopancreas and intestine in juvenile Jian carp (Cyprinus curpio var. Jian) [4]. Furthermore,

choline deficiency in rats induced the generation of reactive oxygen species (ROS) in hepato-

cytes [5], and increased lipid peroxidation in the liver [6]. These results showed that choline

deficiency might induce oxidant damage in the liver and intestine. But the detailed effect of

choline on antioxidant systems in the liver and intestine and the underlying molecular mecha-

nisms remain largely unknown.

Vertebrates possess enzymatic and non-enzymatic antioxidant systems as defense against

oxidative stress [7]. Our previous study showed that activities of superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathi-

one reductase (GR) in fish spleen were increased by choline deficiency probably as an adaptive

response [8]. The spleen is one of the main immune organs in fish. Reactive oxygen species

involves in immune cell functions such as cytotoxic and microbicidal activities [9]. However,

the liver (or hepatopancreas in some fish species) is the central metabolic organ, whereas the

intestine is an important site for nutrient digestion and absorption. Excessive ROS decreased

hepatocytes viability in rat [5] and intestinal epithelial cell function in carp [10]. Thus, the anti-

oxidant response to choline in the liver and intestine might be different from that in the spleen,

which is valuable for investigation. In rat, enhanced antioxidant enzyme activity was allied

with upregulated gene expression [11]. Some antioxidant enzymes (e.g., GPx and GST) are

polygenic. In common carp (Cyprinus carpio), GPx1 and GPx4 have been identified [12], and

nine GST genes (GST-alpha, -kappa, -theta, -mu, -pi, -rho, mGST1,mGST2 andmGST3) have

been cloned [13]. Despite being in the same family, genes encoding antioxidant enzymes tend

to exhibit differing tissue distribution and function. In river pufferfish (Takifugu obscurus),
GST-theta, -mu, -MAPEG and -zeta gene expression in the liver were higher than GST-alpha,

-kappa and -omega gene expression [14]. Among GPxs, GPx4 is the only one capable of reduc-

ing phospholipid hydroperoxides in vertebrate [12]. Furthermore, a recent study from our lab-

oratory showed that antioxidant enzyme genes in the same family also have varied responses

to nutrient content: dietary vitamin C deficiency downregulated gene expressions of GST-R1,

-P1 and -P2, while not affecting gene expressions of GST-O1 and -O2 in the spleen of grass

carp (Ctenopharyngodon idella) [15]. However, the effect of choline on isoforms of antioxidant

enzyme genes has not yet been studied in animals. In mammal, Cu/Zn-SOD, CAT, GST and

GR genes contain antioxidant response element (ARE) [16], and the nuclear factor erythoid

2-related factor 2 (Nrf2) can regulate expression of ARE-containing genes [17]. In its basal

state, Nrf2 is retained in the cytoplasm by its inhibitor, Kelch-like ECH associating protein 1

(Keap1) [18], but phosphorylation by protein kinase C (PKC) triggers its translocation to the
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nucleus in mammal [19]. Recently, our laboratory found that Nrf2, Keap1 and PKC are also

widely distribute in fish hepatopancreas and intestine, and can be regulated by inositol [20].

To date, whether choline could affect the Nrf2 signaling in liver and intestine is unclear. In ter-

restrial animal, diacylglycerol (DAG) can activate PKC [21]. Choline deficiency increased

DAG content in rat [22]. Therefore, choline might affect Nrf2 signaling in the liver and

intestine.

The liver and intestine are involved in different functions and the challenges that they are

closely confronted are also different. As the major detoxification organ in vertebrates, the liver

is also central to the degradation of metabolic products [23], and thus is constantly challenged

by many endogenous and exogenous free radicals. As the main site for nutrients digestion and

absorption, the intestine is constantly challenged by diet-derived oxidants, as well as endoge-

nously generated ROS [24]. Furthermore, it is reported that antioxidant defenses are more

highly developed in liver than in other organs [25]. In river pufferfish, the expressions of GST-
theta, -mu, -MAPEG and -zeta genes in the liver were five- to ten-fold higher than those in

other tissues [14]. Accordingly, liver and intestine susceptibility to oxidative stress may differ.

In vertebrates, the liver and intestine play distinct roles in choline metabolism. The liver is

probably the most active organ for choline metabolism [26], while the intestine is the main site

for choline absorption [27]. In rat, the liver is the first organ that affected by choline deficiency

[28]. These might result in the different susceptibility of liver and intestine to choline defi-

ciency. Hence, it is of interest to look at the antioxidant response of liver and intestine to cho-

line deficiency.

As Cyprinidae fish, the common carp (Cyprinus carpio) is closely related to zebrafish

(Danio rerio), a commonly used animal model to study human disease [29], and is also highly

suitable for comparative physiological and disease studies in combination with zebrafish [30].

Jian carp is a strain of carp developed by crossbreeding, inbreeding and artificial selection of

common carp, and has genetic similarity with common carp [31]. Thus, we investigated the

effect of choline on antioxidant ability of hepatopancreas and intestine in Jian carp. The anti-

oxidant parameters, gene expression of antioxidant enzymes and Nrf2-Keap1 signaling mole-

cules in hepatopancreas and intestine were assessed, aiming to provide partial theoretical

evidence for mechanism underlying the effect of choline on antioxidant system, and provide a

clue for understanding mechanisms underlying the effect of choline on fatty liver disease and

intestinal inflammation.

Materials and Methods

Diet manipulation and feeding trial

The present study used one animal trial as our previous study [4]. Formulation and proximate

composition of the basal diet is presented in S1 Table. The experimental diet, and the proce-

dures for diet preparation and storage (-20˚C) were the same as our previous study [4]. Total

sulfur amino acids (TSAA, methionine + cysteine) were formulated to marginally satisfy the

TSAA requirement of juvenile Jian carp [32]. Choline chloride (Sigma Chemicals) was added

to the basal diet to provide graded levels of choline. The choline concentrations in experimen-

tal diets were determined by the method of Venugopal [33], and final choline concentrations

of six experimental diets were 165, 310, 607, 896, 1167 and 1820 mg/kg diet.

The feeding trail followed the Guidelines for the Care and Use of Laboratory Animals of

Animal Nutritional Institute, Sichuan Agricultural University, and the same as our previous

study [4]. Juvenile Jian carp were obtained from Tong Wei Hatchery (Sichuan, China). After

one month acclimation, a total of 1200 fish (average initial weight 7.94 ± 0.01g) were randomly

distributed into 24 aquaria (90 L×30W×40H cm). The aquaria system, water quality, and
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operation of the culture system were as previously described [4]. For the feeding trial, the six

experimental diets were randomly assigned to four aquaria each. Fish were fed to apparent

satiation six times daily from 1 to 30 days and four times daily from 31 to 65 days, and uneaten

feed was siphoned out after each meal.

Sampling

At the termination of the feeding trial, fish collected from each aquarium were anaesthetized

in benzocaine bath (50 mg/L) after being fasted for 12h as our previous study [4]. The hepato-

pancreas and intestine of 15 fish were removed, weighed and frozen in liquid nitrogen, then

stored at -70˚C until analyzed. All procedures were approved by the Institutional Animal Care

and Use Committee of Sichuan Agricultural University.

Measurement of biochemical and antioxidant related parameters

Tissue homogenates of hepatopancreas and intestine were prepared in 10 volumes (w/v) of

ice-cold normal saline and centrifuged at 6000 g and 4˚C for 20 min. The supernatant was con-

served and used to determine biochemical and antioxidant parameters. Choline and phospha-

tidylcholine (PtdCho) contents were measured by the method of enzyme hydrolysis based on

Hojjati and Jiang [34]. Protein concentration was determined by the method of Brandford

[35]. Malondialdehyde (MDA) and protein carbonyl (PC) contents were measured as the

method described by Zhang et al. [36] and Tokur & Korkmaz [37] respectively. 8-hydroxy-

deoxyguanosine (8-OHdG) content was measured by using a competitive enzyme-linked

immunosorbent assay (ELISA) kit (Elabscience) according to the manufacturer’s instructions.

ROS content was measured following the method described by Tirosh et al. [38] with slight

modification. CuZnSOD and MnSOD activities were determined according to the method of

Lambertucci et al. [39]. CAT activity was determined according to Aebi [40]. GPx activity was

assayed according to the methods described by Zhang et al. [36]. Activities of GST and GR

were measured as described by Lushchak et al. [41] and Lora et al. [42] respectively. Glutathi-

one (GSH) content was determined by the formation of 5-thio-2-nitrobenzoate according to

Vardi et al. [43].

RNA extraction and RT-qPCR

Total RNA was extracted from the hepatopancreas and intestine by using the RNAiso plus

Kit (Takara). The purity of RNA was assessed by spectrophotometry at 260 and 280 nm, and

electrophoresis on 1% agarose gels. The PrimeScript™ RT reagent Kit (Takara) was used to

synthesize the first-strand cDNA using 2 μl of total RNA. The quantification of CuZnSOD,

MnSOD, CAT, GPxs, GSTs, GR, Nrf2, Keap1a, Keap1b, PKC and house-keeping gene (β-
actin) transcript levels was performed via the real-time quantitative PCR (qPCR) using the

CFX96™ Real-Time PCR Detection System (Bio-Rad) with SYBR Green (Takara). The reac-

tions followed standard protocols with primers and thermocycling conditions indicated in

S2 Table. Primers for GSTs, GPx4a and GPx4b genes are designed according to Fu & Xie [13]

and Hermesz & Ferencz [12]. The reaction mixture (15μl) comprised of 7.5 μl of 2× SYBR1

Premix Ex Taq™ II (Takara), 2μl of diluted cDNA, forward and reverse primers, and RNase

free dH2O. In order to assess target amplification specificity, melting curve analysis was per-

formed over a range of 55–95˚C. The threshold cycle (Ct) value was obtained from the

CFX96™ Real-Time PCR system software (Bio-Rad). Each Ct value of target gene was nor-

malized with corresponding Ct values of β-actin. The 2-ΔΔCt method [44] was used to deter-

mine the relative expression levels of target genes.

Choline Modulated Antioxidant Response
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Western blotting

The processes for hepatopancreatic and intestinal protein extraction and western blotting were

the same as those described by Hu et al. [45] and Jiang et al. [46]. Briefly, after extraction, the

protein concentrations were determined with the Bio-Rad protein assay kit (Bio-Rad, Hercu-

les, CA, USA). Equal amounts of protein were separated by sodium dodecyl sulfate polyacryl-

amide gel electrophoresis (SDS-PAGE) and transferred to a PVDF membrane. Membranes

were blocked for 1 h at room temperature (RT) before being washed thrice with TBST (10 min

each), and incubated with primary antibody overnight at 4˚C. Anti-Nrf2 and β-actin antibod-

ies were the same as those in previous studies from our laboratory [45,46]; these had been

checked and also successfully cross-reacted with Jian carp proteins of interest. β-actin was

used as control protein. Next, membranes were again washed three times before incubation

with HRP-conjugated secondary antibody in TBST for 2 h. Immune complexes were visualized

with an ECL kit (Millipore). Densitometric analyses of the protein bands were performed in

Image J (NIH, USA). Different treatments were expressed relative to the level observed in the

control group. The experiment was repeated at least three times, and similar results were

obtained each time.

Statistics

All data were subjected to one-way analysis of variance (ANOVA) followed by the Duncan’s

method to determine significant differences among groups at the level of P<0.05 through

SPSS 17.0 (SPSS Inc.).

Results

Contents of choline and PtdCho

As shown in Table 1, choline contents in hepatopancreas and intestine were significantly

increased with dietary choline levels up to 607 mg/kg diet (P<0.05), however, they were

decreased significantly once dietary choline level reached 1820 mg/kg diet (P<0.05). Similarly,

PtdCho contents in hepatopancreas and intestine were enhanced significantly by increased

dietary choline levels up to 607 and 310 mg/kg diet (P<0.05) respectively, and decreased sig-

nificantly by choline of 1820 mg/kg diet (P<0.05).

ROS contents, oxidative status and antioxidant enzyme activities

Hepatopancreatic ROS, MDA, PC and 8-OHdG decreased significantly with increasing dietary

choline, resulting in the levels highest for fish fed the choline-deficient diet (P<0.05) (Table 2).

Table 1. Effects of dietary choline (mg/kg diet) on choline and phosphatidylcholine (PtdCho) contents in the hepatopancreas and intestine of juve-

nile Jian carp1.

Choline 165 310 607 896 1167 1820

Choline (μg/g)

Hepatopancreas 208.3±12.1a 241.6±16.9ab 282.6±14.3bc 295.9±23.9c 290.4±13.8c 238.0±8.6ab

Intestine 57.3±3.8a 82.4±5.0b 114.8±8.1c 116.9±6.2c 108.7±6.8c 89.3±4.5b

PtdCho (μg/g)

Hepatopancreas 95.0±7.2a 111.5±12.9a 150.1±8.6b 151.3±4.4b 144.8±4.8b 105.6±7.5a

Intestine 1613.1±49.8a 1925.7±69.9bc 1986.6±127.5c 1996.9±70.6c 1871.4±40.9bc 1752.5±47.0ab

1 Values are means with S.E. of four replicates, with 5 fish in each replicate. Mean values with the different superscripts in the same row are significantly

different (P<0.05).

doi:10.1371/journal.pone.0169888.t001
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The GSH content, CuZnSOD, MnSOD, CAT, GPx, GST and GR activities in hepatopancreas

are also showed in Table 2. The GSH content in hepatopancreas was the highest in group fed

with the choline-unsuppplemented diet and decreased with the increasing of dietary choline

levels (P<0.05). The activities of CuZnSOD and MnSOD were significantly increased with the

increase level of dietary choline and the highest in groups fed with 1820 and 1167 mg/kg diet

respectively (P<0.05). The hepatopancreas GPx activity was significantly increased with the

increment of dietary choline levels up to 310 mg/kg diet (P<0.05), and then a plateau. GST

activity was significantly higher in the groups fed with 607, 896 and 1167 mg choline/kg diet

than that in the choline-deficient group (P<0.05). However, dietary choline had no significant

effects on CAT and GR activities in hepatopancreas (P>0.05). Regression analysis showed that

CuZnSOD activity and GSH content in hepatopancreas quadratically responded to increasing

dietary choline levels (Table 2).

The effect of dietary choline on intestinal antioxidant parameters are displayed in Table 3.

ROS, MDA, PC and 8-OHdG contents were the highest in the choline-deficient group

(P<0.05). Intestinal CuZnSOD, MnSOD and CAT activities were significantly increased as the

dietary choline levels enhanced and the highest in groups fed with 896, 607 and 896 mg/kg diet

respectively (P<0.05) (Table 3). GPx activity was significantly improved by dietary choline lev-

els of 1167 mg/kg diet (P<0.05), and GST activity was significantly higher in groups with cho-

line levels of 310, 607 and 896 mg/kg diet (P<0.05), while GR activity showed no significant

difference among dietary groups (P>0.05). However, GSH content was significantly decreased

with the increase of dietary choline levels up to 310 mg/kg diet respectively (P<0.05), and then

a plateau. Regression analysis again revealed a quadratic response of GPx to the incremental

increase of dietary choline levels (Table 3).

Table 2. Effects of dietary choline (mg/kg diet) on oxidative damage and antioxidant parameters in the hepatopancreas of juvenile Jian carp1.

Choline 165 310 607 896 1167 1820

ROS 305.5±23.8b 199.9±9.8a 213.9±11.0a 213.9±24.8a 189.8±18.3a 190.0±23.3a

MDA 9.82±0.20c 8.39±0.20a 8.45±0.15a 8.45±0.27a 8.63±0.11ab 9.17±0.31b

PC 0.67±0.02c 0.56±0.01a 0.56±0.02a 0.60±0.02ab 0.63±0.03bc 0.66±0.02bc

8-OHdG 22.46±1.54d 3.37±0.29a 5.89±0.45b 6.85±0.30b 7.73±0.47bc 9.78±0.45c

CuZnSOD 6.68±0.20a 11.43±0.23b 17.78±0.40c 17.83±0.46c 18.84±0.47cd 19.89±0.44d

MnSOD 8.88±0.30ab 8.15±0.33a 10.92±0.32c 10.74±0.32c 12.67±0.40d 9.49±0.26b

CAT 30.41±1.26a 32.24±0.23a 31.55±0.76a 32.10±0.87a 31.55±0.83a 30.73±0.49a

GPx 85.14±2.75a 92.93±2.07b 93.09±2.36b 97.89±1.64b 97.38±3.12b 97.71±3.24b

GST 43.68±0.85a 45.61±1.74ab 50.41±0.69c 48.13±1.23bc 49.78±0.99c 43.82±1.11a

GR 38.45±1.22a 37.93±1.09a 38.13±1.10a 38.13±1.09a 37.93±1.09a 38.55±1.15a

GSH 9.54±0.29d 8.22±0.21c 7.53±0.24b 7.57±0.20b 6.18±0.26a 6.70±0.03a

Regression

YCuZnSOD = -0.000008x2+0.02x+4.45 R2 = 0.923 P < 0.05

YGSH = 0.000002x2-0.005x+10.02 R2 = 0.884 P < 0.05

1 Values are means with S.E. of four replicates, with 5 fish in each replicate. Mean values with the different superscripts in the same row are significantly

different (P<0.05).

ROS, reactive oxygen species (fluorescence intensity/mg protein); MDA, malondialdehyde (nmol/mg tissue); PC, protein carbonyl (nmol/mg protein);

8-OHdG, 8-hydroxydeoxyguanosine (ng/mg protein); CuZnSOD, Copper-zinc (U/mg protein); MnSOD, manganese superoxide dismutase (U/mg protein);

CAT, catalase (U/mg protein); GPx, glutathione peroxidase (U/mg protein); GST, glutathione-S-transferase (U/mg protein); GR, glutathione reductase (U/g

protein); GSH, glutathione (mg/g protein).

doi:10.1371/journal.pone.0169888.t002
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Antioxidant enzyme gene expressions

As presented in Fig 1A, expression levels of hepatopancreatic CuZnSOD andMnSOD were sig-

nificantly upregulated by increased dietary choline level from 165 up to 896 and 1167 mg/kg

diet respectively (P<0.05). Hepatopancreas CAT gene expression level showed no significant

difference among groups fed with 165 to 1167 mg choline/kg diet (P>0.05), but was the high-

est in group fed with 1820 mg choline/kg diet (P<0.05) (Fig 1B). Hepatopancreas GR gene

expression was the lowest in groups fed with 607, 896 and 1120 mg choline/kg diet (P<0.05)

(Fig 1B). Gene expressions of hepatopancreas GPx1a and GPx1bwere increased with increas-

ing dietary choline level, and the highest in group fed with 1167 and 310 mg/kg diet respec-

tively (P<0.05) (Fig 1C). However, the relative expression levels of GPx4a and GPx4b gene

were significantly downregulated by choline, and the highest in the choline-deficient group

(P<0.05) (Fig 1C). GST-theta, GST-mu, mGST1 andmGST2 gene expressions significantly

downregulated with the increase of dietary choline levels up to 310, 310, 1167 and 607 mg/kg

diet respectively (P<0.05), and plateaued thereafter (Fig 2). GST-rho gene expression was

increased with the increased choline levels up to 310 mg/kg diet (P<0.05) and plateaued there-

after (Fig 2). The relative gene expression of GST-alpha was the highest in group fed with 310

mg choline/kg diet (P<0.05) (Fig 2). GST-kappa gene expression levels in groups fed with 896,

1167 and 1820 mg choline/kg diet were significantly lower than those in groups fed with the

choline-deficient diet, 310 and 607 mg choline/kg diet (P<0.05) (Fig 2).mGST3 gene expres-

sion significantly increased with the increased dietary choline levels up to 896 mg/kg diet, after

then decreased significantly (P<0.05) (Fig 2). There is no significant difference in GST-pi gene

expression among groups (P>0.05) (Fig 2). Regression analysis showed thatMnSOD, mGST1,

mGST2,mGST3 and CAT gene expression levels were quadratic response to the increase of

dietary choline levels (Table 4).

Table 3. Effects of dietary choline (mg/kg diet) on oxidative damage and antioxidant parameters in the intestine of juvenile Jian carp1.

Choline 165 310 607 896 1167 1820

ROS 1611.7±77.2b 1432.6±65.4ab 1449.5±54.7ab 1426.9±60.0ab 1429.1±74.5ab 1301.4±82.1a

MDA 13.99±0.32c 11.31±0.45a 12.14±0.29ab 12.14±0.26ab 12.20±0.25ab 12.98±0.42b

PC 1.49±0.04b 1.33±0.05a 1.29±0.05a 1.25±0.05a 1.25±0.03a 1.26±0.04a

8-OHdG 98.90±8.08c 35.94±2.61a 32.85±3.04a 38.20±1.59a 39.40±1.30a 61.12±3.18b

CuZnSOD 4.77±0.13a 4.35±0.11a 7.21±0.23c 12.69±0.28e 8.47±0.17d 6.56±0.20b

MnSOD 3.47±0.09a 3.68±0.10a 8.78±0.29d 6.37±0.20c 4.64±0.15b 3.78±0.08a

CAT 1.96±0.05a 1.99±0.05a 2.53±0.07b 2.89±0.13c 2.46±0.08b 2.14±0.07a

GPx 60.22±1.56ab 62.39±1.40bc 62.87±1.85bc 64.41±1.68bc 65.68±2.13c 56.30±0.76a

GST 20.16±1.07a 25.79±0.86b 26.68±0.47b 26.68±0.92b 21.83±0.75a 20.14±0.42a

GR 48.62±1.45a 48.44±1.90a 52.97±1.39a 50.89±1.91a 52.33±1.32a 50.50±1.03a

GSH 14.93±0.53b 9.33±0.17a 8.46±0.11a 8.42±0.31a 8.95±0.32a 9.03±0.15a

Regression

YGPx = -0.00001x2+0.02x+57.51 R2 = 0.914 P < 0.05

1 Values are means with S.E. of four replicates, with 5 fish in each replicate. Mean values with the different superscripts in the same row are significantly

different (P<0.05).

ROS, reactive oxygen species (fluorescence intensity/mg protein); MDA, malondialdehyde (nmol/mg tissue); PC, protein carbonyl (nmol/mg protein);

8-OHdG, 8-hydroxydeoxyguanosine (ng/mg protein); CuZnSOD, Copper-zinc (U/mg protein); MnSOD, manganese superoxide dismutase (U/mg protein);

CAT, catalase (U/mg protein); GPx, glutathione peroxidase (U/mg protein); GST, glutathione-S-transferase (U/mg protein); GR, glutathione reductase (U/g

protein); GSH, glutathione (mg/g protein).

doi:10.1371/journal.pone.0169888.t003
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Fig 1. Effects of dietary choline (mg/kg diet) on CuZnSOD, MnSOD, CAT, GR and GPxs gene

expressions in the hepatopancreas of juvenile Jian carp. A) CuZnSOD and MnSOD. B) CAT and GR. C)

GPx1a, GPx1b, GPx4a and GPx4b. Values are means with S.E. of four replicates, with five fish in each

replicate, and different letters denote significant difference (P<0.05).

doi:10.1371/journal.pone.0169888.g001
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Intestinal CuZnSODmRNA levels was the highest in the group with 896 mg choline/kg diet

(P<0.05), while intestinal MnSOD mRNA levels were upregulated by dietary choline levels up

to 310 mg/kg diet (P<0.05) before plateauing (Fig 3A). As showed in Fig 3B, intestinal CAT
gene expression was the lowest in the choline-deficient group, and significantly upregulated by

Fig 2. Effects of dietary choline (mg/kg diet) on GSTs gene expressions in the hepatopancreas of

juvenile Jian carp. A) GST-theta, GST-mu and GST-rho. B) GST-alpha, GST-pi and GST-kappa. C)

mGST1, mGST2 and mGST3. Values are means with S.E. of four replicates, with five fish in each replicate,

and different letters denote significant difference (P<0.05).

doi:10.1371/journal.pone.0169888.g002
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choline supplementation (P<0.05). However, the expression level of intestinal GR gene was

significantly downregulated by dietary choline levels from 165 to 607 mg/kg diet (P<0.05),

after then plateaued. Intestinal GPx1a gene expression level was significantly higher in groups

fed with choline of 896, 1167 and 1820 mg/kg diet (P<0.05) (Fig 3C). Meanwhile, the relative

expression levels of intestinal GPx1b,GPx4a and GPx4b gene also significantly increased with

increasing dietary choline levels up to 1167, 607 and 896 mg/kg diet respectively, and then

decreased significantly (P<0.05) (Fig 3C). The relative mRNA levels of GST-pi, GST-rho,

mGST1 andmGST2were significantly upregulated with the increased choline level up to 607,

607, 310 and 896 mg/kg diet respectively, and then downregulated significantly (P<0.05) (Fig

4). GST-theta and GST-mu gene expression levels in groups fed with 310, 607 and 896 mg cho-

line/kg diet were significantly higher than those in other groups (P<0.05) (Fig 4). GST-alpha
gene expression was the highest in groups fed with 607 and 896 mg choline/kg diet (P<0.05),

and GST-kappa gene expression was the highest in groups fed with 310 and 607 mg choline/kg

diet (P<0.05) (Fig 4).mGST3 gene expression levels in groups fed with 165 and 310 mg cho-

line/kg diet were significantly higher than those in other groups (P<0.05). Regression analysis

suggested that the relative mRNA levels of GPx1b and GR were quadratic response to dietary

choline levels (Table 4).

Nrf2-Keap1 gene expressions

Effects of dietary choline on the relative expressions of Nrf2, Keap1a, Keap1b and PKC gene in

the hepatopancreas and intestine are showed in Fig 5. Expression level of Nrf2 in hepatopan-

creas was not significantly different among groups (P>0.05). Keap1a and PKC mRNA levels in

hepatopancreas were significantly downregulated by dietary choline levels up to 607 mg/kg

diet and plateaued thereafter (P<0.05), while Keap1b gene expression was significantly upre-

gulated by increased choline levels from 165 to 607 mg/kg diet (P<0.05), and downregulated

significantly by further increase of choline levels up to 896 mg/kg diet (P<0.05). As shown in

Fig 5B, mRNA levels of intestinal Nrf2 was significantly decreased with dietary choline up to

607 mg/kg diet (P<0.05) and then plateaued. Intestinal Keap1a expression level was also

downregulated by dietary choline and the lowest in group of 896 mg/kg diet (P<0.05). Intesti-

nal Keap1b gene expression was the highest in groups fed with 310, 607 and 896 mg choline/kg

diet (P<0.05). The relative expression levels of intestinal PKC gene was significantly increased

with dietary choline levels up to 310 mg/kg diet and then decreased significantly (P<0.05).

Expression levels of Keap1a in the hepatopancreas and intestine showed a quadratic response

Table 4. Regression analysis of gene expressions responded to dietary choline.

Genes Regressions R2 P

Hepatopancreas

MnSOD Y = -0.000002x2+0.0125x-0.1104 0.8711 < 0.05

mGST1 Y = 0.0000005x2-0.0015x+1.2403 0.9515 < 0.05

mGST2 Y = 0.0000003x2-0.0009x+1.1219 0.9659 < 0.01

mGST3 Y = 0.0000004x2-0.0011x+1.189 0.9487 < 0.05

CAT Y = 0.00000009x2-0.000003x+0.9664 0.8991 < 0.05

Keap1a Y = 0.0000008x2-0.0021x+1.4323 0.904 < 0.05

Intestine

GPX1b Y = -0.000001x2+0.0028x+0.7496 0.9232 < 0.05

GR Y = 0.0000007x2-0.0019x+1.3101 0.9372 < 0.05

Keap1a Y = 0.0000008x2-0.002x+1.3131 0.880 < 0.05

doi:10.1371/journal.pone.0169888.t004
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Fig 3. Effects of dietary choline (mg/kg diet) on CuZnSOD, MnSOD, CAT, GR and GPxs gene

expressions in the intestine of juvenile Jian carp. A) CuZnSOD and MnSOD. B) CAT and GR. C) GPx1a,

GPx1b, GPx4a and GPx4b.Values are means with S.E. of four replicates, with five fish in each replicate, and

different letters denote significant difference (P<0.05).

doi:10.1371/journal.pone.0169888.g003
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Fig 4. Effects of dietary choline (mg/kg diet) on GSTs gene expressions in the intestine of juvenile

Jian carp. A) GST-theta, GST-mu and GST-rho. B) GST-alpha, GST-pi and GST-kappa. C) mGST1, mGST2

and mGST3. Values are means with S.E. of four replicates, with five fish in each replicate, and different letters

denote significant difference (P<0.05).

doi:10.1371/journal.pone.0169888.g004
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to dietary choline levels (Table 4). As presented in Fig 5C, Nrf2 protein levels in hepatopan-

creas were significantly decreased with dietary choline levels up to 1167 mg/kg diet (P<0.05),

and then significantly increased (P<0.05). However, Nrf2 protein levels in intestine were sig-

nificantly increased by dietary choline and the lowest in the choline-deficient group (P<0.05).

Discussion

Choline deficiency-induced oxidative damage and potential mechanisms

of action in the hepatopancreas and intestine

In rat, choline deficiency decreased hepatic choline and choline metabolite concentrations

[47]. Our present study showed that choline and PtdCho contents in the hepatopancreas and

intestine were the lowest in the group fed with the basal diet, i.e. choline-deficient diet. Simi-

larly, choline deficiency decreased choline concentration in the liver of cobia (Rachycentron
canadum) [48] and throughout the body of hybrid tilapia (Oreochromis niloticus × O. aureus)
[49]. In rat, choline deficiency also induces ROS generation in hepatocytes [5]. Excessive

ROS can induce oxidative damage, resulting in lipid peroxidation, as well as protein and

DNA oxidation [50]. Thus, we further investigated whether choline deficiency could induce

oxidative damage in hepatopancreas and intestine and the potential underlying mechanism

in fish.

Choline deficiency caused oxidative damage in the hepatopancreas and intestine. The

present results showed that ROS, MDA, PC and 8-OHdG contents in the hepatopancreas and

intestine were the highest in the choline-deficient group. The correlation analysis showed that

8-OHdG content was significantly positive related to ROS content in the hepatopancreas (r =

Fig 5. Effects of dietary choline (mg/kg diet) on Nrf2, Keap1a, Keap1b and PKC gene expressions, as well as Nrf2 protein levels in

the hepatopancreas and intestine of juvenile Jian carp. A) Gene expressions in hepatopancreas. B) Gene expressions in intesine. C)

Nrf2 protein levels. Values are means with S.E., and different letters denote significant difference (P<0.05).

doi:10.1371/journal.pone.0169888.g005
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+0.887, P<0.05), and PC content was significantly positive related to ROS content in the intes-

tine (r = +0.851, P<0.05), suggesting that choline deficiency caused oxidative damage via

increasing ROS levels in the hepatopancreas and intestine. As oxidative damage is usually asso-

ciated with decreased antioxidant ability, we next investigated how choline deficiency influ-

enced antioxidant capacity in the hepatopancreas and intestine.

Choline deficiency impaired hepatopancreatic and intestinal antioxidant systems.

Glutathione is a major non-enzymatic antioxidant which can scavenge ROS directly or indi-

rectly through enzymatic reactions [51]. Interestingly, the present study showed that GSH con-

tents in the hepatopancreas and intestine were the highest in the choline-deficient group. This

change might be attributed to two reasons. Firstly, because GSH content was increased by

slight oxidative stress in fish [52], choline deficiency-induced oxidative stress may have con-

tributed to this outcome. Secondly, the choline-deficient group may have consumed less GSH,

a process that occurs via GPx and GST-catalyzed reactions [53]. In this study, the choline-defi-

cient group exhibited decreased hepatopancreatic and intestinal GPx and GST activities than

choline-supplemented groups (such as 607 and 896 mg/kg diet groups), suggesting lower GSH

consumption in the choline-deficient group. However, further investigation is necessary to

clarify the exact mechanisms behind these findings.

Besides, SOD and CAT are antioxidant enzymes that act as key lines of defense against ROS

[54]. In this study, compared with choline-supplemented groups (such as 607 and 896 mg/kg

diet groups), choline deficiency decreased hepatopancreatic and intestinal CuZnSOD and

MnSOD activities, as well as intestinal CAT activity, indicating that choline deficiency-induced

oxidative damage in both organs might be partially related suppressing antioxidant capacity in

carp. Antioxidant enzyme activities in tissue were correlated with their mRNA levels in rat

[55]. This study observed that choline deficiency caused decreases in the mRNA levels of intes-

tinal CAT, hepatopancreatic and intestinal CuZnSOD,MnSOD, GPx1a,GPx1b and GST-rho,

which might partly explain the decreased CAT, CuZnSOD, MnSOD, GPx and GST activities

in the choline-deficient group. However, we also found that SOD isoforms were differentially

susceptible to choline deficiency. These varied responses may be related to isoforms subcellular

localization and choline function. CuZnSOD is found almost exclusively in intracellular cyto-

plasmic spaces, whereas MnSOD exists exclusively in the mitochondrial spaces of aerobic cells

[54]. In rat, choline deficiency causes mitochondrial dysfunction in hepatocytes through dis-

rupting mitochondrial transmembrane potential [56]. Thus, the importance of choline to

mitochondrial may lead to the heightened sensitivity ofMnSOD to choline deficiency; how-

ever, this hypothesis needs further investigation.

Choline deficiency altered Nrf2 expression in the hepatopancreas and intestine. The

transcriptions of antioxidant enzyme genes are regulated by several cell signaling pathways

[53]. The Nrf2-Keap1 signaling is found critical for regulating cellular antioxidant enzyme

gene expressions in mammals [57] and zebrafish [58]. Thus, we further investigated the effects

of choline on the Nrf2 signaling in the hepatpopancreas and intestine. The present study

observed that choline deficiency upregulated mRNA levels of Nrf2 but downregulated its pro-

tein levels in the intestine. However, choline deficiency upregulated Nrf2 protein levels in the

hepatopancreas but showed no significant effect on its mRNA levels. Regoli & Giuliani [59]

reported that the transcriptional induction of Nrf2 gene could indicate an increase to its de
novo synthesis in fish, which could explain our present results. Furthermore, choline defi-

ciency downregulated Keap1b mRNA levels but upregulated Keap1a mRNA levels in the

hepatpopancreas and intestine. These results might be partially related to the autoregulatory

feedback loop in the Nrf2 pathway. In mammals, the Keap1 promoter contains a functional

antioxidant response element sequence that allows Nrf2 regulation of Keap1 expression [60].

Therefore, depressed expression of Keap1b gene might allow free-Nrf2 accumulation in the
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choline-deficient group, and the high Nrf2 expression could then lead to increased Keap1a
transcript level. However, the detailed mechanisms await further characterization.

Choline deficiency induced varied change patterns of antioxidant system

in different organs

Choline deficiency induced opposing changes to antioxidant enzymes in the digestive

(hepatopancreas and intestine) versus immune (spleen) organ. Interestingly, the changes

of antioxidant enzymes caused by choline deficiency in the present study were entirely oppo-

site to our previous study in the carp spleen, which found that choline deficiency induced

increase in activities of SOD, CAT, GPx and GST, and upregulation in the gene expressions of

CuZnSOD,MnSOD, CAT, GPx1a and GPx1a [8]. These interesting results might be partially

explained by the following reasons. First, in fish, the liver is the central metabolic organ, the

intestine is the main site for nutrients digestion and absorption, and the spleen is one of the

major immune organs [61]. It was reported that dampened antioxidant status decreased liver

function [62] and intestinal absorption function in fish [63]. However, macrophage-derived

ROS are critical for phagocytosis and subsequent destruction of microorganisms in terrestrial

animal [64]. Additionally, choline is mainly absorbed in the intestine [27] and metabolized in

the liver [26]. Thus, in the choline-supplemented groups, enhanced antioxidant ability in the

hepatopancreas and intestine could benefit the maintenance of their normal function and con-

tinued choline metabolism, whereas decreased antioxidant enzymes activities in the spleen

may benefit immune activation. Our previous study demonstrated that dietary choline

improved immune function and attenuated inflammation in juvenile Jian carp [65], support-

ing this hypothesis. But the exact mechanisms underlying how the antioxidant ability in differ-

ent organs is regulated by choline await further characterization.

Choline deficiency-induced change in antioxidant enzyme gene expressions differed

between the hepatopancreas and intestine. Interestingly, although the activities of most

antioxidant enzymes were generally decreased by choline deficiency, different change patterns

of antioxidant enzyme gene isoforms were observed in the hepatopancreas and intestine of

carp.

Firstly, the present study found that choline deficiency decreased mRNA levels of GPx4a
and GPx4b in the intestine; whereas increased mRNA levels of GPx4a and GPx4b in the hepa-

topancreas. This interesting result might be partially explained by two factors. Tissue-specific

expression of GPx4 genes under oxidative stress is one likely reason for the observed differ-

ences. In carp, oxidative stress increased GPx4a transcript level in the liver, but reduced it in

other tissue [12]. Another possible explanation is that increased mRNA levels of GPx4a and

GPx4b in the hepatopancreas might be a mechanism to compensate for choline deficiency-

induced membrane damage. In rat, choline deficiency firstly altered liver, while leaving other

organs largely unaffected [28], and induced membrane peroxidation in the liver [66]. As GPx4

is the only GPx that can metabolize membrane phospholipid hydroperoxides [67], the liver

might need more de novo synthesis of GPx4 for this reaction. But excessive ROS that resulted

from choline deficiency may continually inactivate GPx activity, and we thus observed

decrease in GPx activity.

Secondly, different expression patterns of varied GST isoforms caused by choline deficiency

were observed in the hepatopancreas and intestine. In the present study, dietary choline defi-

ciency decreasedmGST3mRNA levels and increased GST-theta, GST-mu, GST-kappa, mGST1
andmGST2mRNA levels in the hepatopancreas, but did the opposite in the intestine. To date,

this is the first report about the regulation of GSTs gene expressions by choline in animal. In

the hepatopancreas, increased mRNA levels of some GST isoforms might indicate an adaptive
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mechanism in the choline-deficient group; specifically, more de novo synthesis of those

enzymes may be necessary for detoxifying oxidation products. The liver is the main organ for

the metabolism of xenobiotics, and GSTs represent 10% of total cytosolic liver proteins in fish

[68]. In river pufferfish, GST-theta, GST-mu and GST-kappa have the highest mRNA expres-

sions in the liver and considered to be primarily associated with detoxification [14]. Mamma-

lian mGST1, GST-kappa and GST-mu are also involved in protecting mitochondria from

oxidative stress [69]. In rats, the liver is the most sensitive organ to choline deficiency [28], and

mitochondria are susceptible to choline deficiency-induced oxidative damage [66]. Accord-

ingly, the higher expressions of some hepatopancreatic GSTs genes may serve as a mechanism

for protecting the hepatopancreas from dysfunctions related to choline deficiency, but this link

requires further investigation.

Choline deficiency induced varied change patterns of antioxidant-related signaling

molecule gene expressions between the hepatopancreas and intestine. The present study

observed that the choline-deficient diet upregulated the intestinal Nrf2 and PKC mRNA levels,

but had no significant effect on the hepatopancreatic Nrf2mRNA levels and downregulated

PKC mRNA levels in the hepatopancreas. The reason for this variability is unknown. But the

highest PKC expression in the intestine may partly explain the highest intestinal Nrf2 expres-

sion in the choline-deficient group.

Optimal choline levels for antioxidant ability of juvenile jian carp

The current results showed that dietary choline deficiency could result in decrease of antioxi-

dant ability of hepatopancreas and intestine in fish. Thus, it is quite necessary to evaluate the

optimal choline levels required for antioxidant ability in the carp. Antioxidant-related parame-

ters, such as antioxidant enzymes, have begun to be used to estimate the nutrient doses

required for adequate function of the fish antioxidant system [70,71]. Based on intestinal GPx

activity, the optimal choline level was 884 mg/kg diet for juvenile Jian carp (Fig 6), which was

Fig 6. Quadratical regression analysis of intestinal GPx activity for juvenile Jian carp fed diets containing

graded levels of choline for 65 days.

doi:10.1371/journal.pone.0169888.g006
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higher than the requirement (566 mg/kg diet) determined based on growth in our previous

study [4].

Conclusions

The present study showed that dietary choline deficiency induced oxidative damage in the

hepatopancreas and intestine of Jian carp, mainly through decreasing enzymatic antioxidant

capacity, i.e. CuZnSOD, MnSOD, GPx and GST activities which might be related to the down-

regulated mRNA levels of some antioxidant enzymes. Furthermore, the changes of antioxidant

enzyme mRNA levels might be partly due to the alterations of Nrf2-Keap1 gene expressions

induced by choline deficiency. However, this study provided three novel findings for under-

standing the effect of choline on antioxidant system in vertebrates. First, choline deficiency

enhanced GSH contents probably by decreasing its consumption in the hepatopancreas and

intestine. Second, this study firstly indicated that choline deficiency induced varied change

patterns of different GPx and GST isoforms between the hepatopancreas and intestine. Third,

this study firstly found that choline deficiency induced different antioxidant response in the

hepatopancreas and intestine compared with the response in the spleen. Moreover, choline

deficiency caused opposing changes in the mRNA levels of intestinal versus hepatopancreatic

GPx4,mGST3,GST-theta, GST-mu, GST-kappa, mGST1, andmGST2. However, further inves-

tigation is necessary to fully understand the underlying mechanism of these choline-mediated

antioxidant responses in the vertebrate liver and intestine.
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