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Optical deciphering of multinary chiral compound
mixtures through organic reaction based
chemometric chirality sensing
Diandra S. Hassan1 & Christian Wolf 1✉

The advances of high-throughput experimentation technology and chemometrics have

revolutionized the pace of scientific progress and enabled previously inconceivable dis-

coveries, in particular when used in tandem. Here we show that the combination of chirality

sensing based on small-molecule optical probes that bind to amines and amino alcohols via

dynamic covalent or click chemistries and powerful chemometric tools that achieve ortho-

gonal data fusion and spectral deconvolution yields a streamlined multi-modal sensing pro-

tocol that allows analysis of the absolute configuration, enantiomeric composition and

concentration of structurally analogous—and therefore particularly challenging—chiral target

compounds without laborious and time-consuming physical separation. The practicality, high

accuracy, and speed of this approach are demonstrated with complicated quaternary and

octonary mixtures of varying chemical and chiral compositions. The advantages over chiral

chromatography and other classical methods include operational simplicity, increased speed,

reduced waste production, low cost, and compatibility with multiwell plate technology if high-

throughput analysis of hundreds of samples is desired.
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Chiral compounds are ubiquitous in nature and play
essential roles in the chemical, environmental, materials,
and health sciences. Paradigm-shifting advances with an

asymmetric synthesis of chiral compounds have become possible
with the aid of artificial intelligence but there has been a little
impact at the forefront of enantioselective analysis1–6. Non-
racemic mixtures containing both enantiomers sometimes in
vastly varying ratios are frequently encountered in natural sam-
ples or during chemical development and need to be analyzed
both accurately and quickly. The determination of the total
amount and enantiomeric composition of chiral compounds has
therefore become a recurring but often challenging task in lit-
erally countless R&D projects. This can entail a prohibitively
laborious and time-consuming process, in particular when the
sample is a mixture of several compounds—a fairly common
scenario. To circumvent the daunting complexity of enantiose-
lective multicomponent analysis, each chiral analyte is typically
first isolated to determine its amount and the enantiomeric ratio
(er) is then uncovered in a separate experiment by chromato-
graphy on a chiral stationary phase or by NMR spectroscopy with
a chiral derivatizing or solvating agent. The limitations of classical
enantioselective analysis become increasingly apparent when
many samples consisting of several chiral analytes in varying
concentrations and enantiomeric compositions need to be
examined. To date, chiral chromatography, which is intrinsically
serial because one can only run one sample at a time, remains the
workhorse and is widely considered the gold standard. Despite
the development of fast and two-dimensional chromatographic
methods, a general solution amenable to high-throughput
experimentation and parallel chiral multicomponent analysis is
not in sight.

During the last decade, many chiroptical sensing methods that
are compatible with automation, multiwell plate technology, and
parallel data acquisition have been introduced to address the
shortcomings of classical techniques and to improve throughput,
time-efficiency, and sensitivity at reduced cost, waste production,
and energy consumption7–9. Molecular and supramolecular sensor
arrays mimicking chemical nose detection have been used for
qualitative analysis of chiral compound mixtures10–12. The potential
of quantitative enantioselective optical sensing is exemplified by
several case studies in which both the er and the concentration of a
single analyte were determined with carefully designed UV, fluor-
escence, and circular dichroism (CD) probes13–19. Alternatively,
single compound er determination has been accomplished with
linear discriminant analysis, artificial neural network, and principal
component analysis20–23. Recently, chiroptical er/dr sensing meth-
ods have been reported and applied to quantitative analysis of
stereoisomeric mixtures of amino alcohols with two chiral
centers.24,25, We hypothesized that merging state-of-the-art chir-
optical sensing methodology and artificial intelligence for spectral
deconvolution would overcome long-standing difficulties and lim-
itations of traditional chromatography based approaches and pro-
vide a solution toward comprehensive (determination of absolute
configuration, enantiomeric ratio, and total concentration) in situ
analysis of complicated multicomponent mixtures without physical
separation. To this end, major obstacles originate from the difficulty
with quantitative deconvolution of a massive amount of spectro-
scopic data that would be generated by simultaneous sensing of
several chiral analytes and the low resolution of inherently broad
and largely overlapping CD and UV absorption bands. We envi-
sioned that this can be addressed by integrating robust, broadly
applicable chiroptical sensing technology and chemometric tools
capable of deciphering highly convoluted, multi-modal spectral
information.

Herein we show that simultaneous analysis of individual con-
centrations and er’s of complicated multinary chiral compound

mixtures is possible by using UV and circular dichroism data
obtained by organic reaction-based optical sensing with a single
achiral probe. The demonstrated practicality and speed of che-
mometric analysis-based data fusion and spectral deconvolution
of quaternary and octonary samples are expected to largely alter
how chiral compound development and analysis tasks are solved
and bear the potential to streamline the workflow in numerous
academic and industrial laboratories.

Results and discussion
Organic reaction-based chirality sensing. At the onset of this
study, we selected 1-phenylethylamine (PEA), 1-(pyrrolidin-2-
ylmethyl)pyrrolidine (PMP), phenylglycinol (PGL) and 2-amino-1-
phenylpropan-1-ol (PPA) to structurally represent frequently
encountered chiral amine and amino alcohol drugs, auxiliaries, and
synthetic building blocks (Supplementary Fig. 1). Another impor-
tant selection criterion was to assemble a challenging mixture of
similar compounds exhibiting the same functionalities and identical
or closely related carbon scaffolds that either contains small aro-
matic moieties or are purely aliphatic (Fig. 1a). These chiral analytes
are difficult to detect and quantify, even in enantiopure form. In
fact, we observed negligible UV and CD signals at low wavelengths
when 0.083–0.125mM solutions in 1,2-dichlorethane (DCE) were
analyzed (Supplementary Figs. 2 and 3). To enable chiroptical
sensing we, therefore, screened five probes that operate on the
principles of irreversible covalent chemistry (ICC) or dynamic
covalent chemistry (DCC). The 4-chloro-3-nitrocoumarin (A) and
N-(5-fluoro-2,4-dinitrophenyl)benzamide (B) belong to the first
group while 2,4-dinitrobenzaldehyde (C), salicylaldehyde (D), and
ninhydrin (E) undergo reversible Schiff base or acetal formation
(Supplementary Figs. 4 and 5)26–29. Regardless of their operational
mode, all five probes react quickly with the target compounds at
room temperature and thus introduce a strong chromophore close
to the chiral center (Fig. 1b). This allows optical visualization
through an operationally simple mixing protocol that does not
require any precautions as exposure to air and moisture does not
interfere with the sensing chemistry. Another noteworthy feature is
that these probes do not generate a new chiral center which avoids
increasing molecular and analytical complexity that would arise
from the formation of diastereomeric species. The suitability of
these probes for the daunting task of combined concentration and
er analysis with multinary compound mixtures was first assessed
individually with (S)-PEA, (S)-PMP, (S)-PGL, and (1R,2S)-PPA,
respectively (Fig. 1b and Supplementary Figs. 6–17). We found that
the coumarin probe A generates distinct CD signals with all four
analytes and particularly strong Cotton effects with the amines PEA
and PMP. The substrate binding to A also produces characteristic
UV changes that in all cases are quite different from the original UV
signature of this sensor. The optical sensing with the other probes
showed less promise due to striking similarities and in some cases
considerable signal overlapping across the whole spectral range
from 250 to 450 nm. For example, optical visualization of PEA,
PGL, and PPA with B gave essentially identical UV spectra. The
CD effects were also unsatisfactory. While we measured strong CD
signals upon binding of (S)-PMP, the signal induction for (1R,2S)-
PPA was very weak, and (S)-PEA and (R)-PGL, which only differ
by the presence of the terminal alcohol group but otherwise share
the same 3D carbon scaffold, gave superimposable spectra (please
note that (S)-PEA and (R)-PGL have identical three-dimensional
structures but different stereochemical descriptors only by virtue of
the CIP rules). Similar problems, i.e., considerable spectral overlap
across the 250–450 nm region, were encountered with probes C, D,
and E which underscores the difficulty of the molecular and chir-
ality recognition tasks with the selected amines and amino alcohols.
In fact, the aromatic aldehyde sensors C and D are only applicable
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to analytes with a primary amino group and fail to generate a CD
signal with the enantiomers of PMP, which cannot form a Schiff
base.

Quantitative chirality sensing based on complementary CD
induction. Altogether, this clearly pointed towards coumarin A
as the optimal chiroptical sensor choice. In order to validate the
utility of this probe, we applied it to each enantiomer under
identical conditions (Fig. 2a). As expected, we obtained opposite
induced CD (ICD) signals for the enantiomeric pairs which we
anticipated can be used for the determination of the enantiomeric
ratio (er). The individual UV changes described above were
predicted to correlate with the total concentration of each target
compound because this optical response is essentially the same
for either enantiomer and independent of the er. Our first
inspection of the CD responses generated by sensing with A
revealed that the spectra produced with the four analytes would
largely overlap with the exception of PEA and PMP, at least at

two wavelengths (Fig. 2b and Supplementary Figs. 18–21). The
ICDs of the enantiomeric PMP-A adducts display x axis inter-
cepts at 340 nm, a wavelength at which the PEA-A enantiomers
show relatively strong CD responses (Supplementary Fig. 22). By
contrast, the enantiomeric PEA-A adducts are CD-silent at
400 nm which is close to a local ICD maximum produced by
coumarin sensing of (R)- or (S)-PMP. We envisioned that this
should present a rare opportunity for concomitant er sensing of
these two amines in a single sample unless there is interference
with the derivatization step or the chiroptical amplification30. We
prepared ten mixtures containing equimolar amounts of PEA and
PMP in largely varying enantiomeric compositions for sensing
with A (Supplementary Figs. 23–32 and Supplementary Table 1).
The CD responses of this probe at 340 and 400 nm in the cor-
responding spectra were then used for linear regression analysis.
We found perfectly linear correlations between the ICD ampli-
tudes generated by A and the enantiomeric compositions of the
two amines which allowed accurate er analysis while the absolute

Fig. 1 Organic reaction-based chirality sensing. a Structures of the target compounds with inherently negligible optical activity. CD and UV spectra of
(S)-PEA, (S)-PMP, (S)-PGL and (1R,2S)-PPA were recorded in 1,2-dichloroethane (DCE) at 0.125 and 0.083mM, respectively. Chiroptical sensing agents
operating based on irreversible covalent chemistry (ICC type) and dynamic covalent chemistry (DCC). b Molecular recognition principles and induced UV
and CD spectra. Sensing with A: UV 0.094mM, CD at 0.042mM in DCE; B: UV 0.083mM, CD at 0.021 mM in CHCl3; D: UV 0.062mM, CD at 0.125mM
in DMSO. PEA: 1-phenylethylamine, PMP: 1-(pyrrolidin-2-ylmethyl)pyrrolidine, PGL: phenylglycinol, PPA: 2-amino-1-phenylpropan-1-ol.
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configuration of the major enantiomer was determined by com-
parison of the (±)-sign of the ICD with a reference sample
(Supplementary Figs. 33 and 34). For example, the er’s of a
sample containing the (R)- and (S)-enantiomers of PMP and
PEA in 70.0:30.0 and 100.0:0.0 ratios, respectively, were deter-
mined as 70.4:29.6 and 97.3:2.7 (Fig. 2b, Table entry 3). In
another case, the sensing of a sample composed of 20.0:80.0 and
80.0:20.0 of the (R)- and (S)-enantiomers of PMP and PEA gave
20.4:79.6 and 83.8:16.2 (entry 5). All chiroptical sensing results
are within a relatively small absolute error margin of <4% which
is generally acceptable, in particular in high-throughput screening

applications where error margins of 5–10% have been considered
satisfactory (Supplementary Figs. 35–38)9,31. These initial studies
demonstrated to us the suitability of the coumarin probe A for
sensing of the absolute configuration and er of mixtures of PEA
and PMP. This chiroptical assay is very practical, fast (it is
complete within 15 min), yields strong ICD effects that increase
linearly with the analyte er, and does not show any chemical
interferences. A scenario in which complementary CD responses
at carefully selected wavelengths are generated during sensing of
two analytes as depicted above, however, is rare and the tradi-
tional chiroptical data handling applied is not suitable for samples

Fig. 2 Quantitative chirality sensing based on complementary CD induction. a ICD sensing of all enantiomeric pairs using A, all measurements were
taken at 0.094mM in DCE. b Sensing of equimolar mixtures containing nonracemic PEA and PMP with A. The reactions were performed at 12.5 mM in
DCE and CD measurements were taken at 0.075mM in the same solvent. PEA: 1-phenylethylamine, PMP: 1-(pyrrolidin-2-ylmethyl)pyrrolidine.
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of which the enantiomeric compositions and analyte concentra-
tions are unknown because both affect the observable CD
induction. We therefore resorted to investigating chemometric
tools for such a task32.

Chemometric concentration and er determination with qua-
ternary mixtures. Traditional univariate CD sensing of chiral
compounds allows quantification of the enantiomeric sample
composition if the total concentration is known or experimentally
determined with a separate technique. This can, for example, be
achieved with UV spectroscopic analysis as is often the case when
chiroptical methods are used because modern circular dichroism
spectrophotometers generate CD and UV spectra in parallel.
When the analyte concentration, i.e., the total amount of both
enantiomers, is known the measured CD amplitude at a given
wavelength—preferentially where the CD spectrum has a max-
imum—can be directly correlated to the enantiomeric ratio (er)
with the help of a calibration curve. In special cases, com-
plementary pairs of induced CD spectra are obtained during
sensing of mixtures of two chiral compounds as shown above. If
the total concentrations of the chiral targets are known one can
use the CD values at carefully selected wavelengths where only
one of the analytes contributes to the chiroptical sensor response
to quantify the enantiomeric ratios of each compound step-by-
step. A more typical analytical scenario, however, is that com-
pound concentrations and enantiomeric ratios vary and need to
be determined. To this end, it is important to take into con-
sideration that sensing of two samples with different concentra-
tions (or enantiomeric ratio) but the same enantiomeric ratio (or
concentration) is likely to yield completely different CD outputs.
In addition, spectra of compound mixtures are often highly
convoluted which precludes univariate analysis. Because both the
er and the concentration affect the CD signals induced by the
sensor the chiroptical analysis becomes a complicated multi-
variate problem with substantially overlapping spectra that can-
not be solved by traditional approaches (Fig. 3 and
Supplementary Fig. 51). Univariate optical sensing also suffers
from other drawbacks that limit its utility. The restriction to
single-wavelength analysis discards most information contained
in the spectrum. For example, if an induced CD spectrum consists
of 250 data points, using only a single wavelength for linear
regression analysis exploits just 0.4% of the whole spectral
information while the remaining 99.6% are literally ignored,
which makes it more susceptible to chemical and optical
interferences.

Since the absolute configuration, enantiomeric ratio, and
concentration of chiral compound mixtures that generate highly
convoluted chiroptical spectra cannot be comprehensively
determined by single-wavelength analysis, we resorted to
chemometric tools which have become increasingly popular for
processing of large data sets that overwhelm traditional data
handling approaches33. In multivariate analysis, multiple inde-
pendent variables are considered to minimize information loss
and possible interference from spectral noise. We, therefore,
decided to apply multivariate chemometric sensing to quaternary
mixtures containing the enantiomers of PEA and PMP in varying
concentrations and enantiomeric ratios (Fig. 3 and Supplemen-
tary Figs. 39–48, 52–93). In full spectrum analysis, the number of
independent variables (the number of CD and UV data points
included, e.g., the whole range from 250 to 450 nm) is typically
larger than the number of dependent variables (how many
samples are in a training set), and simple ordinary least square
methods without prior dimensionality reduction cannot be used.
A useful approach to full-spectrum analysis is Latent Variable
Multivariate Regression (LVMR), where the dimensionality of the

data is reduced and regression is then applied to model the
relationship between the dependent and independent variables.
When data are reduced to a lower dimension, one concern is
information loss. To examine this with quaternary chiral
compound mixtures, we applied principal component analysis
(PCA) to the convoluted UV and CD spectra obtained with our
coumarin sensing assay. PCA is an unsupervised dimensionality
reduction technique that projects large data sets into smaller ones,
called principal component (PC), in a way that maximizes the
variance, i.e., the overall variability of the data. Figure 3 contains
an illustration of how PCA can transform a 2D plot with
correlated data points into one dimension. PCA is very useful for
large, collinear data sets, like those obtained in UV and CD
spectroscopy, where the independent variables are continuous
and therefore highly correlated (see Supplementary Table 2 for
explained variance ratio for CD and UV data). Using PCA, we
were able to reduce the convoluted CD and UV spectra obtained
by our chiroptical sensing assay to four PCs and then
reconstructed the spectra via inverse transformation (Fig. 3 and
Supplementary Figs. 49, 50). Plotting of the original and the
reconstructed spectra revealed almost perfect overlap, demon-
strating that there is minimal information loss after reducing the
dimensionality of the original spectral data. In other words, most
of the information contained across the whole spectrum range is
conserved in the PC.

One simple yet powerful LVMR method is Principal
Component Regression (PCR), which is a multivariate calibration
technique that combines PCA with Ordinary Least Squares (OLS)
principles. We constructed a regression model using PCR with 16
training sets and 5 test sets (Fig. 4). First, PCA treatment of the
UV and CD spectra allowed us to reduce the dimensionality into
4 PCs, and then OLS was applied to model the analyte
concentrations using the PCs as independent variables. Cross-
validation was performed on the training sets to evaluate how
well the model can be applied to new data. The heat map in Fig. 4
displays how accurately the algorithm predicts the quaternary
sample compositions (Supplementary Figs. 94 and 95). The actual
millimolar concentrations of the enantiomers of PEA and PMP
are given in each box while the colors correspond to the sensing
accuracy. The green color indicates a relatively small absolute
deviation of <0.5 mM that increases up to 1.5 mM represented by
yellow coloring. The PCR algorithm used shows excellent overall
performance (averaged R2= 0.94 and RMSE= 0.52 during cross-
validation; averaged R2= 0.99 and RMSE= 0.17 for the test sets,
see Supplementary Figs. 96 and 97), and the successful correlation
between all actual and predicted concentration values as depicted
in the scatterplot in Fig. 4 underscores the general utility. We like
to point out that with a trained model in hand the PCR test
sample analysis, programmed in Python or another programming
language (R, Matlab, etc), is completed within seconds using a
simple desktop computer. A detailed comparison between the
actual and the predicted individual concentrations of the four
chiral compounds in the five test sets is visualized in the stacked
column chart which shows that the results obtained with our
chemometric coumarin sensing analysis are very close to the
original sample compositions. Altogether, this demonstrates
reliable determination of absolute configuration, er and concen-
tration of complicated quaternary mixtures by a straightforward
chemometric sensing protocol. For example, the concentrations
of the PEA and PMP enantiomers in the test sample #4 were
3.75 mM for (R)-PEA, 1.25 mM for (S)-PEA, 11.25 mM for (R)-
PMP, and 3.75 mM for (S)-PMP, which compares well with the
chemometrically predicted concentrations of 3.82, 1.32, 11.35,
and 3.51 mM, respectively. As expected, the error of chemometric
chirality sensing of samples with low enantiomeric ratios or even
racemates is increased due to weaker induced CD signals with a
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higher signal-to-noise ratio. This is exemplified by the training set
#13 containing equimolar amounts of both enantiomers of PEA
and PMP at 5.50 and 4.50 mM, respectively. The absolute errors
were determined as 1.65 mM for (R)-PEA, 1.13 mM for (S)-PEA,
0.51 mM for (R)-PMP, and 1.04 mM for (S)-PMP as indicated by
the light green to yellow colors in the heat map. This contrasts
with the training set #16 containing enantiopure (R)-PEA and
(R)-PMP at 7.00 and 13.00 mM, respectively, and thus producing
relatively strong ICD signals upon reaction with the coumarin
probe. In this case, the absolute errors are only 0.08 mM for (R)-
PEA, 0.29 mM for (S)-PEA, 0.28 mM for (R)-PMP and 0.00 mM
for (S)-PMP.

Multi-modal optical chirality sensing of octonary samples.
Finally, we decided to attempt chemometric sensing of octonary
chiral compound mixtures by exploiting multi-modal analysis
tools that are capable of processing multivariate data sets from
complementary measurements. As explained above, we antici-
pated highly convoluted spectra because of the structural simi-
larity of PEA, PMP, PGL, and PPA, which were intentionally
chosen to allow evaluation of the capabilities, limitations, and
robustness of chemometric organic reaction-based chiroptical
sensing. We realized early on that this increasingly complicated
task could not be adequately performed by traditional methods
and would instead require adaptation of multiblock chemo-
metrics which, for example, have been successfully used to inte-
grate Raman and IR spectral data sets for comprehensive
materials characterization34,35. To obtain multi-modal data we
favored a practical solution that is based on essentially the same

chiroptical sensing procedure with coumarin A described above
but in different solvents. The CD and UV sensing spectra of
octonary mixtures of the enantiomers of PEA, PPA, PGL, and
PMP were collected in dichloroethane and methanol, respec-
tively, with the expectation that these solvent choices would
induce distinguishable chiroptical coumarin responses due to
variance in intramolecular hydrogen bonding and altered con-
formational equilibria (Fig. 5a and Supplementary Figs. 98–199).
Our initial optical sensing analysis proved very promising and
showed that this can indeed increase spectral information. For
example, we observed very similar UV spectra by coumarin
sensing of PEA and PPA in MeOH which turned strikingly dif-
ferent when dichloroethane was used as a solvent. As expected,
the ICD spectra obtained with PMP in these two solvents are very
similar, presumably because PMP-A does not exhibit an intra-
molecular hydrogen bond which largely reduces the solvent
dependence of the CD readout. By contrast, the coumarin deri-
vatives of the other compounds, in particular, PEA-A and PPA-
A, display significant ICD modifications as the solvent is changed
(Fig. 5a and Supplementary Figs. 6–9).

First, octonary mixtures were subjected to coumarin sensing
and traditional PCA and PLS modeling. Reconstruction of the
UV and CD spectra showed minimal data loss (Fig. 5b). We then
used two multiblock algorithms, MBPCA and MBPLS, for
regression analysis of the octonary mixtures. MBPCA and
MBPLS are the multiblock versions of PCA and PLS, respectively,
and both algorithms aim to increase the interpretability of
multivariate models. For both cases, the interpretability is
exemplified by the block loadings that inform how much
individual wavelengths contribute to the latent variable/principal

Fig. 3 Multidimensional complexity of quaternary mixtures of the individual enantiomers of PEA and PMP in varying concentration and enantiomeric
composition. The dependence of the induced CD signal on the sample concentration and enantiopurity is shown exemplarily for PMP in a 3D plot. The
convoluted UV and CD spectra of five samples and the reconstituted spectra were subjected to PCA (principal component analysis); A is the m × n matrix.
U is the Eigenvector of ATA. VT is the Eigenvector of AAT. Σ contains the square roots of the Eigenvalues. PEA: 1-phenylethylamine, PMP: 1-(pyrrolidin-2-
ylmethyl)pyrrolidine. The data underlying this figure are available as Source Data.
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components LV1-4 or PC1-4 (Fig. 5b and Supplementary
Tables 14, 15, 20–45, Supplementary Figs. 208–211). Interest-
ingly, both algorithms select similar wavelength intervals with the
strongest contributions for the first LV and PC, respectively, i.e.,
270–320 nm and 360–430 nm for CD; 270–330 nm and
400–450 nm for UV. Evaluation of the block importance in
MBPLS analysis of (R)-PEA revealed that the CD data contribute
64% to LV1, a general trend also observed with the other
compounds (see pie charts in Fig. 5b and Supplementary
Figs. 208–211). For the first and second latent variable, the
strongest contributions come from CD data in MeOH and DCE
while the third and fourth latent variable largely depends on UV
data obtained in DCE. In order to maximize accuracy and
minimize overfitting at the same time, the optimal number of
latent variables/principal components having the smallest RMSE
was determined by leave-one-out cross-validation (LOOCV)
(Supplementary Figs. 200–207). For example, three and four
LVs were used for the analysis of (S)-PMP and (R)-PEA,
respectively (Fig. 5b and Supplementary Figs. 200, 203). We were
pleased to find that the results obtained by multiblock chemo-
metric analysis of six randomly prepared octonary chiral mixtures
were in excellent agreement with the actual sample compositions.

Averaged R2 and RMSE values for all set samples were
determined as 0.96 and 0.26–0.28, respectively (Fig. 5b and
Supplementary Tables 3–8). For example, the test set #1
contained 4.13 mM (R)-PMP, 1.38 mM (S)-PMP, 3.38 mM (R)-
PEA, 1.13 mM (S)-PEA, 3.38 mM (1R, 2S)-PPA, 1.13 mM (1S,
2R)-PPA, 4.13 mM (R)-PGL, and 1.38 mM (S)-PGL. As shown in
the Table in Fig. 5, MBPLS analysis of the coumarin sensing data
predicted 4.06 mM (R)-PMP, 1.29 mM (S)-PMP, 3.30 mM (R)-
PEA, 1.29 mM (S)-PEA, 3.30 mM (1R, 2S)-PPA, 1.33 mM (1S,
2R)-PPA, 4.07 mM (R)-PGL, and 1.30 mM (S)-PGL. Meanwhile,
MBPCA+OLS predicted 3.98 mM (R)-PMP, 1.40 mM (S)-PMP,
3.62 mM (R)-PEA, 1.00 mM (S)-PEA, 3.62 mM (1R, 2S)-PPA,
1.00 mM (1S, 2R)-PPA, 3.98 mM (R)-PGL, 1.40 mM (S)-PGL
(Supplementary Tables 16–19 and 46–49). As an alternative to
multiblock analysis, we also investigated a combination of Least
Absolute Shrinkage and Selection Operator (LASSO), which
allows variable selection and traditional chemometric PCR and
PLS regression. The benefit of this approach is that variable
selection can improve the performance and interpretability of the
model as irrelevant and noisy spectroscopic data are removed
(Supplementary Tables 50, 117–126 and Supplementary
Figs. 212–235)36. Although this proved quite successful, a closer

Fig. 4 Chiroptical sensing of quaternary mixtures. Heat map for the 16 training sets and the 5 samples. Color corresponds to the absolute error of
predicted [mM] versus actual [mM]. The sensing-chemometrics analysis results are compared to the actual data in the stacked column chart. PEA:
1-phenylethylamine, PMP: 1-(pyrrolidin-2-ylmethyl)pyrrolidine. The data underlying this figure are available as Source Data.
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Fig. 5 Multi-modal optical chirality sensing of octonary samples. a Representation of a complex octonary chiral compound mixture and individual
coumarin UV/CD responses for each chiral analyte in MeOH and DCE. b Top: The convoluted UV and CD spectra of five samples were subjected to PCA
and PLS analysis and the reconstituted spectra were generated using inverse transformation. Results with two samples are shown. Middle: Representative
MBPCA and MBPLS block loadings for CD and UV spectra in DCE for (R)-PEA. Bottom: Averaged LOOCV RMSE of the training sets vs. number of latent
variables for (R)-PEA and (S)-PMP. The pie charts display the MBPLS block importance of 4 latent variables for (R)-PEA. The table shows the comparison
of the octonary sensing results obtained with MBPLS for six test samples and the actual concentrations. PEA: 1-phenylethylamine, PMP: 1-(pyrrolidin-2-
ylmethyl)pyrrolidine, PGL: phenylglycinol, PPA: 2-amino-1-phenylpropan-1-ol. MBPCA multiblock principal component analysis, MBPLS multiblock partial
least square, DCE dichloroethane, LOOCV leave-one-out cross-validation, RMSE root mean squared error, LV latent variable. The data underlying this
figure are available as Source Data.
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inspection of the overall performance of all chemometric tools
developed herein shows that the multiblock methods give
superior results (Supplementary Tables 3–13, 51–58, 127, 128).
Finally, we compared the effects of different scaling methods. We
found that unit variance and multiblock scaling give results that
generally have comparable error margins. The chemometric data
obtained with unit variance scaling are shown in Fig. 5 and are
discussed above. The results acquired with hard and soft block
scaling using either LASSO+ PCR or MBPLS for the regression
analysis are provided in Supplementary Tables 59–116.

In summary, we have introduced organic reaction-based multi-
modal optical chirality sensing methodology and chemometric
tools capable of orthogonal data fusion and spectral deconvolu-
tion to achieve stereochemical analysis of complicated mixtures of
structurally analogous and therefore particularly challenging
chiral target compounds. Reduction of the sensing data
dimensionality coincides with minimal information loss as
verified by accurate reconstruction of the original spectra thus
setting the stage for efficient multiblock regression analysis. The
practicality and speed of this approach were demonstrated with
the determination of the absolute configuration, enantiomeric
ratios, and individual concentrations of quaternary and octonary
samples with drastically varying chemical and chiral composi-
tions. The successful development of straightforward chemo-
metric in situ chirality sensing methodology using a simple
achiral probe and an optimized MBPLS algorithm described
herein overcomes major obstacles originating from the difficulty
with quantitative deconvolution of a massive amount of spectro-
scopic data that are generated by simultaneous detection of
several chiral analytes and the low resolution of inherently broad
and largely overlapping CD and UV absorption bands, a
complexity that has not been solved previously. In the future, it
seems likely that the integration of chiroptical sensing and
chemometric technologies will supersede traditional chirality
analysis workflows and drastically accelerate the discovery pace in
numerous academic and industrial settings.

Data availability
The data generated in this study are provided in the Supplementary Information/Source
Data file. Source data are provided with this paper.

Code availability
Data handling and processing were conducted in Python using pandas (https://github.com/
pandas-dev/pandas), numpy (https://github.com/numpy/numpy), and scikit-learn (https://
github.com/scikit-learn/scikit-learn) except for block scaling which was run in R using the
software package prospectr available at https://cran.r-project.org/web/packages/prospectr/
index.html. Linear regression, LASSO, PCA, and PLS were conducted in Python using scikit-
learn available at https://github.com/scikit-learn/scikit-learn. MBPCA was performed in R
using the software package Multiblock Sparse Multivariable Analysis (msma) available at
https://CRAN.R-project.org/package=msma. MBPLS was performed in Python using the
software package Multiblock Partial Least Squares available on github at https://github.com/
DTUComputeStatisticsAndDataAnalysis/MBPLS.
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